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Abstract

In this paper we propose some bootstrapping methods to obtain critical values for
sequential change-point tests for linear regression models. Theoretical results show
the asymptotic validity of the proposed bootstrap procedures. A simulation study
compares the bootstrap and the asymptotic tests and shows that the studentized
bootstrap test behaves generally better than asymptotic tests if measured by α–
resp. β–errors and its run length.
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1 Introduction

For many testing procedures in change-point analysis the calculation of critical values
is based on the limit behavior of the test statistic under the null hypothesis. However,
the convergence to the limit distribution of the test statistic is frequently rather slow, in
other cases the explicit form is unknown. For time series models it can also happen that
the limit distribution does not take the small sample dependency structure sufficiently
into account. Therefore permutation and bootstrap tests have been developed. Some
guidelines for bootstrap hypothesis testing are given by Hall and Wilson [9]. For a
thorough introduction into permutation and bootstrap tests we refer to Good [8].

In change-point analysis this approach was first suggested by Antoch and Hušková [2]
and later pursued by others (for a recent survey confer Hušková [11]). Berkes et. al. [5]
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1 Introduction

showed that the bootstrap provides better approximations for the critical values than
asymptotics in a number of change-point situations. All of those papers, however, deal
with a posteriori tests, i.e. tests, where we have observed the complete data set already.

In recent years an increasing number of data sets are collected automatically or without
significant costs in such a way that the observations arrive steadily. Examples include
financial data sets e.g. in risk management (Andreou and Ghysels [1]) or CAPM models
(Aue et al. [3]) as well as medical data sets e.g. monitoring intensive care patients (Fried
and Imhoff [7]). More applications can be found in different areas of applied statistics.
With each new observation the question arises whether the model is still capable of
explaining the data. If this is not the case an alarm needs to be raised, for example the
financial models might not be appropriate anymore or the condition of the patient in
intensive medical care might have changed.

The consideration of such data sets leads to sequential statistical analysis, which is some-
times also called on-line monitoring. Critical values in this setting are also frequently
based on asymptotics. Additionally to the problems of a-posteriori tests the asymptotics
usually assume that the monitoring goes on for an infinite time horizon. In many situa-
tions it is much more realistic to monitor data only for a finite time horizon (maybe as
long or twice as long as the historic data set, on which the preliminary assumptions are
based). If the calculation of the critical values is based on an infinite observation period
but in fact it is finite, one necessarily looses some power.

In the classical statistical setting, where we have observed the complete data set already,
the bootstrap has turned out to be very useful in many applications. Therefore, we are
interested in developing variations of the bootstrap that are appropriate in a sequential
setting. However, it is not obvious how best to do that. New data arrive steadily,
so we could use these new observations in the bootstrap and hopefully improve the
estimate of the critical values. From a practical point of view this is computationally
expensive, so one might think of alternatives, which are less expensive and still good
enough. From a theoretical point of view this means that we have new critical values with
each incoming observation, so the question is whether this procedure remains consistent.
The literature on bootstrapping methods for sequential tests is very scarce. Steland [16]
used a bootstrap in sequential testing of the unit-root problem. Kirch [14] considered
several possibilities to do sequential bootstrapping in the simple case of a mean change
for i.i.d. errors. Not surprisingly it turned out that the bootstrap versions of the test
behave better for small sample sizes than the asymptotic tests. While the validity of the
bootstrap that is only based on the historic data sequence is easily proven, this method
only behaves well for larger historic data sequences. For smaller sample sizes the power
is smaller than for the bootstrap that takes every observation into account. The latter
bootstrap version recalculates the critical values after each new observation using all
observation up to that time. The drawback is that it is computationally very expensive.
This is why in practical situations it is better to update the critical values only from time
to time and also to use new bootstrap samples as well as old ones for this procedure.
The simulation study in Kirch [14] showed that this almost yields the same results as if
one updates the critical values after each observation, but it is much faster. Moreover
it turned out that only the studentized test statistics did hold the level right for small
samples.

In this paper we would like to follow that ideas but some additional problems arise due
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1 Introduction

to the much more complicated data structure. We focus on the linear regression model

y(i) = x(i)Tβi + e(i), i > 1, (1.1)

where x(i) is a p×1 random vector and βi is a p×1 vector. Furthermore we assume that
the error sequence is i.i.d. and independent of the regressors. However, the proposed
version of the bootstrap can be extended to other sequential setups including regression
models for dependent data or nonlinear models in a similar fashion as the bootstrap can
be extended to such settings in a classical off-line model.

We assume that we have a historic sequence of observations, where no change in the
regression coefficient occurred, i.e.

βi = β0, 1 6 i 6 m. (1.2)

Now we are interested in testing the null hypothesis of no change in the monitoring
period

H0 : βi = β0, m < i < m+N(m) + 1 (1.3)

against the alternative of a change in the regression coefficient

H1 : there is a k◦ > 1 such that βi = β0, m < i 6 m+ k◦

and βi = β1 6= β0, m+ k◦ < i < m+N(m) + 1. (1.4)

N(m) is the observation horizon which can be finite or infinite but has to converge to
infinity with m. The values of β0,β1 and k◦ are not known and can depend on m. This
includes local changes for which dm := β1 − β0 → 0. The test is then based on the
following statistic

Γ(m, k, γ) =
∑

m<i6m+k

(
y(i)− x(i)T β̂m

)
/g(m, k, γ),

where g(m, k, γ) = m1/2

(
1 +

k

m

)(
k

m+ k

)γ
(1.5)

for 0 6 γ < 1/2 and

β̂m = C−1
m

m∑
j=1

x(j)y(j), where Cm =
m∑
i=1

x(i)x(i)T ,

is the least squares estimator of the regression coefficient based on the historic data set
y(1), . . . , y(m). The statistic is then given by

1
σ̂m

sup
16k<N(m)+1

|Γ(m, k, γ)| ,

where N(m)/m → ∞, N(m)/m → N > 0, as m → ∞ (closed-end procedure), or
N(m) = ∞ (open-end procedure) and σ̂2

m − σ2 = oP (1) is a consistent estimator of
σ2 and only depends on the historic data set. In this paper we use the following variance
estimator on the historic data set

σ̂2
m =

1
m− p

m∑
i=1

(
y(i)− x(i)T β̂m

)2
. (1.6)
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2 Assumptions and limit behavior of the test statistic

We reject the null hypothesis at the following stopping time

τ(m) =

{
inf{k > 1 : 1bσm |Γ(m, k, γ)| > c},
∞, if 1bσm |Γ(m, k, γ)| < c, 1 6 k < N(m) + 1,

where c is chosen in such a way that we control the false alarm rate, i.e. that under the
null hypothesis

lim
m→∞

P (τ(m) <∞) = α (1.7)

for some given level 0 < α < 1. We require that under the alternative H1

lim
m→∞

P (τ(m) <∞) = 1. (1.8)

The paper is organized as follows: In Section 2 we summarize some known results on
the limit behavior of the test statistic under the null as well as alternative hypotheses.
In Section 3 we introduce the so called regression bootstrap in a sequential setting and
show that the corresponding bootstrap test is asymptotically equivalent to the procedure
based on asymptotic critical value. In Section 4 the corresponding result is given for
another type of bootstrap namely the pair bootstrap.
In Section 5 some simulations illustrate the usefulness of the bootstrap methods. Finally
the proofs are given in Sections 6 and 7 for the regression and pair bootstrap, respectively.

2 Assumptions and limit behavior of the test statistic

Here, we shortly summarize the assumptions and the results proved in Horváth et al. [10]
on the behavior of the test statistics related to the above introduced test procedure.

Assumption A. 1. We assume that the sequence of vectors of regressors {x(i)} and the
sequence of random errors {e(i)} satisfy

(i) {e(i) : 1 6 i <∞} are independent identically distributed (i.i.d.) random variables
with

E e(i) = 0, 0 < var e(i) = σ2, E |e(i)|ν <∞ for some ν > 2,

(ii) for the sequence of vectors {x(i) = (1, x2(i), . . . , xp(i))T : 1 6 i < ∞} there exists
a positive definite matrix C and a constant 0 < ρ 6 1/2 such that∥∥∥∥∥ 1

n

n∑
i=1

x(i)x(i)T −C

∥∥∥∥∥
∞

= O(n−ρ) a.s.,

where ‖ · ‖∞ denotes the maximum norm of matrices,

(iii) the sequences {e(i) : 1 6 i <∞} and {x(i) : 1 6 i <∞} are independent.

Next we formulate the main results proved in Horváth et al. [10] and also some of their
useful simpler modifications.
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2 Assumptions and limit behavior of the test statistic

The following theorem gives the null asymptotics, which have been proven for the open-
end procedure in Horváth et al. [10]. The results for the closed-end procedure can be
obtained analogously but are not stated in that paper. However, for the bootstrap
techniques discussed in this paper, it is the closed-end procedures that play he crucial
role.

Theorem 2.1. Let (1.1) and Assumption A.1 hold true. Let

0 6 γ < min(ρ, 1/2). (2.1)

Then, under the null hypothesis (i.e. (1.2) and (1.3)), for all y ∈ R

lim
m→∞

P

(
sup

16k<∞

|Γ(m, k, γ)|
σ̂m

6 y

)
= P

(
sup

06t61

|W (t)|
tγ

6 y

)
, (2.2)

holds true (open-end procedure). Here {W (t) : 0 6 t <∞} denotes a Wiener process.

For N(m) <∞ (closed-end procedure) with limm→∞N(m)/m = N for some 0 < N <∞
or limm→∞N(m)/m =∞ it holds as m→∞

P

(
sup

16k<N(m)+1

|Γ(m, k, γ)|
σ̂m

6 y

)
= P

(
sup

16k<N(m)+1

|W1(k/m)− k/mW2(1)|
(1 + k/m)(k/(k +m))γ

6 y

)
+oP (1),

(2.3)

where {W1(·)}, {W2(·)} are independent Wiener processes.

Proof. Assertion (2.2) with N(m) =∞ is proven in Horváth et al. [10]. Going through
the proof of Theorem 2.1 in Horváth et al. [10] we realize that assertion (2.3) holds true.

Remark 2.1. a) The limit distribution in (2.2) is explicitly only known for γ = 0.

b) The distribution on the right hand side of (2.3) converges to the same limit as given
in (2.2) for N(m)/m→∞ and it converges to

sup
06t6N/(N+1)

|W (t)|
tγ

for N(m)/m→ N (cf. the proof of Theorem 2.1 in Horváth et al. [10]).

c) In the simulation study we compare our bootstrap procedures with the closed-end
procedure where the critical values are obtained from simulated quantiles of the
distribution on the right hand side of (2.3). This will be called asymptotic closed-
end procedure. Simulations concerning the location model in Kirch [14] show that
this distribution is very close to the one in (2.2) if N > 10. For a smaller observation
horizon it is not recommendable to use critical values from the distribution in (2.2)
(for a detailed discussion we refer to Kirch [14]).

Remark 2.2. Horváth et al. [10] pointed out that a value of γ close to 1/2 has the
shortest detection delay time for early changes, however the probability of a false alarm
(before the change occurred) is higher. If the change occurs well after the monitoring
started, the detection delay time is similar for all values of γ, but a γ close to 1/2 has a
higher probability of a false alarm well before the change occurred.
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3 Regression Bootstrap

The following theorem has been proven in Horváth et al. [10] for the open-end procedures
and fixed alternatives. The same proof techniques can be applied to obtain the following
result also including closed-end procedures as well as local changes.

Theorem 2.2. Let (1.1), Assumption A.1, and (2.1) hold true. Let

k◦ = O(m), lim
m→∞

√
m|cT1 dm| =∞, (2.4)

hold, where c1 is the first column of C and dm = β1−β0. Then, under H1, as m→∞,

1
σ̂m

sup
16k<N(m)

|Γ(m, k, γ)| P−→∞, (2.5)

for limm→∞N(m)/m =∞ or N(m) =∞.
Assertion (2.5) remains true if limm→∞N(m)/m = N for some 0 < N < ∞ and if
lim supm→∞ k◦/m < N .

Proof. The assertion follows analogously to the proof of Theorem 2.2 in Horváth et
al. [10].

The assertions in Theorems 2.1 and 2.2 were proved in a more general setup including
e.g. heteroscedastic errors, cf. Aue et al. [4]. However, bootstrapping methods need to
be adapted in order to work well in such situations. Furthermore, one can consider a
different class of test statistics, e.g. Hušková and Koubková [12, 13] and Koubková [15]
developed and studied the limit behavior of test procedures based on L1 estimators and
related partial sums of residuals instead of the corresponding L2 procedures above.

The test based on the test statistic (1.5) is only consistent under (2.4) which is quite
restrictive, since essentially it means that our change somehow implies a mean change of
y(·). Hušková and Koubková [12] introduced test procedures based on quadratic forms of
weighted partial sums of residuals, which yield consistent tests for all fixed alternatives
of the above type. Extensions of the bootstrapping techniques developed in this paper
to these test statistics are in principle possible but quite technical and will be considered
elsewhere.

3 Regression Bootstrap

In linear regression there are essentially two main approaches to bootstrapping, namely
the regression or fixed design bootstrap and the pair bootstrap. We will use the index
R for the regression bootstrap and the index P for the pair bootstrap. In this section
we discuss the first one.

The general idea of the regression bootstrap is that we resample the estimated residuals
but keep the regressors in their original order, so in the bootstrap world we deal with a
regression with a fixed design rather than a stochastic one. In sequential bootstrapping
this yields the problem that we have only observed the regressors up to the current time
point but we also need the future ones.

First, observe that under the null hypothesis respectively for ` 6 k◦ under the alternative

y(`)− x(`)TC−1
m

m∑
j=1

y(j)x(j) = e(`)− x(`)TC−1
m

m∑
j=1

e(j)x(j), (3.1)
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3 Regression Bootstrap

thus under the null hypothesis and for ` 6 k◦ under alternatives it holds

Γ(m, `, γ) =

 m+∑̀
i=m+1

e(i)−
m+∑̀
i=m+1

x(i)TC−1
m

m∑
j=1

x(j)e(j)

 /g(m, `, γ). (3.2)

This is the version we will use in the bootstrap as it splits the errors and regressors in
addition to being closer to the null hypothesis even under alternatives.

The general idea in sequential bootstrapping is to repeat the bootstrap procedure at
several times during the monitoring in order to incorporate the increased knowledge
obtained from the additional observations in the bootstrap. Suppose now that we are at
point m + k in the monitoring, i.e. we know the m observations from the historic data
set in addition to k observations that we have already obtained during the monitoring
(without rejecting yet). Based on those m+k observations (y(i),x(i)), i = 1, . . . ,m+k,
we construct a bootstrap statistic in the following way:
First, we replace e(i) in the formula on the right hand side of (3.2) by the bootstrap
estimates e∗m,k(i) below and keep x(i) for 1 6 i 6 k + m. The problem is that the test
statistic sup16`<N(m)+1 |Γ(m, `, γ)| (with Γ(m, `, γ) as in the right-hand side of (3.2))
depends additionally on the future regressors x(`), ` > k, which have not been observed
yet (at least in the more interesting case of a random design). More precisely it depends
on the term

∑m+`
i=m+1 x(i)T which contains unknown regressors if ` > k. In order to use

as much information as possible and still be close to the original statistic (also in the
situation where k is very small), we propose to replace this term by c1(m, k, `) below.
Different choices are possible as long as they fulfill Lemma 6.1 b) as well as

c1(m, k, `)T (1, 0, . . . , 0) = 1.

To sum up, for the calculation of bootstrap critical values we use the ’test statistic’1

sup16`<N(m)+1 |Γ̃(m, `, γ)| where

Γ̃(m, `, γ)(e(1), . . . , e(m+ `)) =

 m+∑̀
i=m+1

e(i)− c1(m, k, `)TC−1
m

m∑
j=1

x(j)e(j)

 /g(m, `, γ),

where c1(m, k, `) =


∑m+`

i=m+1 x(i), ` 6 k,∑m+k
i=m+k−`+1 x(i), k < ` < k +m,

`
m+k

∑m+k
i=1 x(i), ` > m+ k.

(3.3)

for 1 6 ` < N(m) + 1. Let

e∗m,k(i) = êm,k(Um,k(i)), where êm,k(j) = y(j)− x(j)T β̂m+k, (3.4)

i = 1, . . . ,m + N(m), j = 1, . . . ,m + k, where {Um,k(i) : 1 6 i 6 m + N(m)} are i.i.d.
random variables with P (Um,k(1) = j) = 1/(m + k), j = 1, . . . ,m + k, independent
of {y(i) : 1 6 i 6 m + N(m)} and {x(i) : 1 6 i 6 m + N(m)}. By P ∗m,k, E∗m,k,

1This is not a test statistic as the errors e(i) are not observable, but it is quite useful for the regression
bootstrap where we artificially create bootstrap errors.
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3 Regression Bootstrap

var∗m,k etc. we denote the conditional probability, expectation, variance etc. given
{(y(i),x(i)T ) : 1 6 i 6 m+ k}, i.e. with respect to {Um,k(i) : 1 6 i 6 m+N(m)}.

Now, we are ready to discuss the sequential bootstrap more precisely. A first idea is to
calculate critical values at time m+ k based on the distribution P ∗m,k, i.e. based on the
quantiles of

F
(R∗)
m,k (x) = P ∗m,k

 1

σ̂
(R∗)
m,k

sup
16`<N(m)+1

∣∣∣Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))
∣∣∣ 6 x

 ,
where

(
σ̂

(R∗)
m,k

)2
=

1
m− p

m∑
i=1

e∗m,k(i)− x(i)TC−1
m

m∑
j=1

x(j)e∗m,k(j)

2

(3.5)

is the bootstrap version of (1.6) by (3.1).
However, it is computationally too expensive to generate new bootstrap samples after
each new incoming observation in the above way and calculate the critical values based
on these.

Therefore, we follow an approach by Steland [16], that has also proven to work well
in Kirch [14]. The idea is that only the older bootstrap samples do not represent the
current data well enough whereas the newer ones are still reasonably good.

We apply two modifications to reduce computation time significantly. First, we calculate
new critical values only after each Lth observation. Secondly, and maybe even more im-
portantly, we use a convex combination of the latest M bootstrap distributions. Thus,
in applications we use an empirical distribution function not only based on the newest
bootstrap samples but also on older samples. This is why we need to generate only a
fraction of the bootstrap samples each time we update: E.g. for αi = 1/M below, we
only need t1 = t/M new samples each time we update the critical values to get an em-
pirical distribution function based on t samples. Therefore, the procedure is significantly
accelerated even if we calculate new critical values after each new observation (L = 1).
Let for j > 1,

∑M−1
i=0 αi = 1 and αi > 0

F̃
(R)
m,k =

M−1∑
i=0

αiF
(R∗)
m,max((j−i)L,0), for k = j L, . . . , (j + 1)L− 1.

Then, we calculate the critical values c(R)
m,k at time k +m as follows

F̃
(R)
m,k(c(R)

m,k) > 1− α, (3.6)

c
(R)
m,k minimal.

For the simulations in this paper we use the convex combinations with equal weights
αi = 1

M , L = m/5 and M = 5. Thus, after monitoring for m observations we have
completely replaced the bootstrap samples.

Now we are ready to state the main theorem of this section:
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4 Pair Bootstrap

Theorem 3.1. Let (1.1), Assumption A.1, and (2.1) hold true, let N(m) <∞ (closed-
end procedure) with either limm→∞

N(m)
m = N , 0 < N < ∞, or limm→∞

N(m)
m = ∞.

Then we have as m→∞

a) under the null hypothesis,

P

 1
σ̂m

sup
16k<N(m)+1

|Γ(m, k, γ)|
c
(R)
m,k

> 1

→ α.

b) Under the assumptions of Theorem 2.2 and if additionally dm = O(1), then

P

 1
σ̂m

sup
16k<N(m)+1

|Γ(m, k, γ)|
c
(R)
m,k

> 1

→ 1.

Remark 3.1. The assertions of Theorem 3.1 remain true, if we use the open-end proce-
dure, i.e. N(m) =∞, and critical values based on a bootstrap with horizon Ñ(m) <∞
fulfilling Ñ(m)/m → ∞. This is important because a computer can obviously not cal-
culate critical values based on an infinite monitoring horizon.

Remark 3.2. Clearly, the test procedure based on the bootstrap approximation of
critical values have the desired properties (1.7) and (1.8).
Moreover, under H0 and local alternatives the bootstrap provides an asymptotically
correct approximation for the critical value in the sense given in equation (6.24).
Under alternatives we can only obtain that the bootstrap critical values are uniformly
bounded, cf. (6.25). However, it is to be expected that more technical proofs also yield
that the bootstrap critical values under alternatives are asymptotically correct in a P -
stochastic sense corresponding to (6.24). The reason is as follows: Checking the proofs it
can be seen that the term that is responsible for the weaker result is 1

m+kCk◦,k (cf. e.g.
(6.13)), which is without further knowledge only uniformly bounded. As soon as we can
prove that it converges to 0 uniformly for 1 6 k 6 τ̃(m), where τ̃(m) is the stopping time
of the procedure, the stronger result follows. But Aue et al. [4] show for the stopping
time τ(m) of the procedure with the asymptotic critical values from Theorem 2.1 that

τ(m)− k◦ = oP (m+ k◦).

It is to be expected that this result remains true for a sequence of critical values as in
the bootstrap as long as this sequence is uniformly bounded, which in turn implies
sup16k6τ(m) ‖ 1

m+kCk◦,k‖∞ = oP (1) as desired.

4 Pair Bootstrap

In this section we introduce another bootstrapping scheme in linear regression. This is
especially suitable but not restricted to situations where (e(1),x(1)), (e(2),x(2)), . . . are
i.i.d. vectors. For dependent situations a block version also seems suitable.

The advantage of the pair bootstrap is that the dependence structure between x(i)
and y(i) is directly preserved in the bootstrap, thus we expect it to be more robust
in situations where the regression is not purely linear. In fact, in the simulations of
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4 Pair Bootstrap

the misspecified Scenarios 4 and 5 the pair bootstrap does behave quite well, but the
regression bootstrap does not behave too badly either.

The specifics about sequential bootstrapping are the same as for the regression bootstrap.

Precisely we bootstrap the pairs {(y(i),x(i)) : 1 6 i 6 m+ k}, i.e. let

y∗m,k(i) = y(Um,k(i)), x∗m,k(i) = x(Um,k(i)), (4.1)

where {Um,k(i) : 1 6 i 6 m + N(m)} are i.i.d. random variables with P (Um,k(1) =
j) = 1/(m + k), j = 1, . . . ,m + k, independent of {y(i) : 1 6 i 6 m + N(m)} and
{x(i) : 1 6 i 6 m + N(m)} as above. Now we bootstrap the statistic and obtain as
bootstrap statistic

g(m, `, γ) Γ(m, `, γ)(P∗)m,k

=
∑

m<i6m+`

y∗m,k(i)− x∗m,k(i)
T

 m∑
j=1

x∗m,k(j)x
∗
m,k(j)

T

−1
m∑
j=1

x∗m,k(j)
T y∗m,k(j)


Analogously to Section 3 we define

F
(P∗)
m,k (x) = Pm,k

 1

σ̂
(P∗)
m,k

sup
16`<N(m)+1

∣∣Γ(m, `, γ)∗m,k
∣∣ 6 x

 , (4.2)

where(
σ̂

(P∗)
m,k

)2
=

1
m− p

m∑
i=1

(
y∗m,k(i)− x∗m,k(i)

T
(
C∗m,k

)−1
m∑
l=1

x∗m,k(l)
T y∗m,k(l)

)2

,

where C∗m,k =
m∑
j=1

x∗m,k(j)x
∗
m,k(j)

T ,

is the bootstrap version of (1.6) and

F̃
(P )
m,k =

M−1∑
i=0

αiF
(P∗)
m,max((j−i)L,0), for k = j L, . . . , (j + 1)L− 1.

Then we calculate the critical value at time k +m as

F̃
(P )
m,k

(
c
(P )
m,k

)
> 1− α,

c
(P )
m,k minimal.

In order for the pair bootstrap to be valid we need somewhat stronger assumptions than
before. Precisely one of the following two assumptions is needed.

Assumption A. 2. Let the observation horizon N(m), on which the bootstrap is based,
fulfill

N(m)1−ρ

m
= O(m−κ)

for some κ > 0 and ρ is as in Assumption A.1 (ii).

10



5 Some simulations

This assumption is only a restriction on the bootstrap observation horizon, meaning
we can still use an original statistic, which is based on an observation horizon which
converges to infinity with a faster rate or more importantly is equal to infinity. In this
case the result of the following theorem remains true as long as the observation horizon
that is used in the bootstrap converges to infinity with a rate faster than m and fulfills
the above assumption (cf. also Remark 4.1).

Alternatively we can put some stronger assumptions on the regressors.

Assumption A. 3. The regressors fulfill for some r > 1 as k →∞

k−1
k∑
i=1

‖x(i)x(i)T ‖r∞ = O(1) P − a.s.

This assumption is also not very strong, since usually the rate in Assumption A.1 (ii) is
obtained by some higher moment assumptions which also imply the above.

Now we are ready to state the main theorem of this section, namely that the pair
bootstrap is valid.

Theorem 4.1. Let (1.1), Assumption A.1, and (2.1) hold true. Furthermore assume
either A.2 or A.3. Then, we have as m→∞

a) under the null hypothesis,

P

 1
σ̂m

sup
16k<N(m)+1

|Γ(m, k, γ)|
c
(P )
m,k

> 1

→ α.

b) Under the assumptions of Theorem 2.2 and if additionally dm = O(1), then

P

 1
σ̂m

sup
16k<N(m)+1

|Γ(m, k, γ)|
c
(P )
m,k

> 1

→ 1.

Remark 4.1. The assertion in Remarks 3.1 and 3.2 remain true for the pair bootstrap.

We would like to point out that for p = 1 both procedures coincide with the bootstrap
in the location model considered in Kirch [14].

5 Some simulations

In the previous sections we have established the asymptotic validity of the bootstrap
tests. The question remains how well the procedures work for small sample sizes.

We will establish the answer to this question in the following simulation study where we
compare the two bootstrap procedures with the asymptotic closed-end (CE) procedure
(from Remark 2.1 c)).

The goodness of sequential tests can essentially be determined by three criteria:

11



5 Some simulations

C.1 The actual level (α-error) of the test should be close to the nominal level.

C.2 The power of the test should be large, preferably close to 1, i.e. the β-error should
be small.

C.3 The stopping time τ(m) should be shortly after the change-point. This is often also
called run-length of the test.

We visualize these qualities by the following plots:

Size-Power Curves

Size-power curves are plots of the empirical distribution function of the p-values of a
test under the null hypothesis as well as under various alternatives, where the p-values
represent the smallest level for which this realization is rejected. What we get is a plot
that shows the empirical size and power (i.e. the empirical α–errors resp. 1−(β–errors))
on the y-axis for the chosen level on the x-axis (thus visualizing C.1 and C.2). So, the
graph for the null hypothesis should be close to the diagonal (which is given by the
dotted line) and for the alternatives it should be close to 1.
The question is how to calculate the p-value in a sequential setting with possibly varying
critical values. At point m+k the null hypothesis is rejected if |Γ(m, k, γ)|/σ̂m is greater
than the critical value ck which is obtained as a quantile with respect to some distribution
Zk. In case of the regression bootstrap, for example, Zk is determined by the distribution
function F̃ (R)

m,k. As usual one can calculate the p-value pk of |Γ(m, k, γ)|/σ̂m with respect
to Zk. This is the smallest level for which the null hypothesis is rejected at point m+ k.
The monitoring stops as soon as this happens for the first time, so that the smallest
level for which the sequential test rejects the null hypothesis is the smallest one of the
pk. Hence the p-value of a sequential test is given by min16k<N(m)+1 pk.

Plot of the estimated density of the run length

For the density estimation we use the standard R procedure which uses a Gaussian kernel,
where the bandwidth is chosen according to Silverman’s rule of thumb (Silverman (1986,
p. 48 eq. (3.31))). The estimation is based on only those simulations where the null
hypothesis was rejected at the 5% level. The vertical line in the plot indicates where the
change occurred. In the plots given here, we use the specific alternative dm = (1, 1)T .
This visualizes C.3.

Note that only a combination of the three criteria can result in a reliable judgment of the
quality of the test, and the emphasize on the criteria may also depend on the application.
For example the actual power is higher if the actual level is higher, so that two tests
are comparable in terms of their power only if the true size (not the nominal one) is
equal. Concerning the estimated density of the run length it is important to note that
it is based only on those simulations where the null hypothesis was indeed rejected. The
percentage of rejected samples can be found in the SPC-plot right next to it (green line
at nominal 5% level) and needs to be taken into account.

For the simulation study we use a model for p = 2, the results for p = 1 can be found in
Kirch [14]. The following model is considered

Y (i) = x2(i) + d01{i>k◦} + d11{i>k◦}x2(i) + ε(i)

with parameters

• x2(i) i.i.d. U [0, 2] (Scenario 1), x2(i) = 1+x̃(i), where x̃(·) is an AR(1) process with

12



5 Some simulations

(a) SPC: m = 10, N = 10, k◦ = 2m (b) RL: m = 10, N = 10, k◦ = 2m

(c) SPC: m = 10, N = 2, k◦ = m/4 (d) RL: m = 10, N = 2, k◦ = m/4

(e) SPC: m = 20, N = 2, k◦ = m/4 (f) RL: m = 20, N = 2, k◦ = m/4

(g) SPC: m = 50, N = 2, k◦ = m/4 (h) RL: m = 50, N = 2, k◦ = m/4

Figure 5.1: Size-power curves and plots of estimated density: Scenario 1, centered ex-
ponential errors, γ = 0, in RL: d = (1, 1), α = 0.5.
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5 Some simulations

(a) SPC: m = 10, N = 10, k◦ = 2m (b) RL: m = 10, N = 10, k◦ = 2m

(c) SPC: m = 10, N = 2, k◦ = m/2 (d) RL: m = 10, N = 2, k◦ = m/2

Figure 5.2: Size-power curves and plots of estimated density: Scenario 1, centered ex-
ponential errors, γ = 0.49, in RL: d = (1, 1), α = 0.5.

U [−1, 1] distributed innovations and coefficients −0.5, 0.5 respectively (Scenarios
2 resp. 3).

• dTm = (d0, d1) = (0, 1), (1, 0), (1, 1), i.e. changes in the slope resp. intercept only as
well as in both

• m = 10, 20, 50

• N(m) = Nm with N = 1, 2, 5, 10

• k◦ = bϑmc with ϑ = 0.25, 0.5, 2, 5

• standard normally distributed errors and centered exponentially distributed errors

• γ = 0, 0.49

The following misspecified models were also considered (each with x2(·) i.i.d. U [0, 2]):

Y (i) = x2(i) + 0.1x2(i)2 + d01{i>k◦} + d11{i>k◦}x2(i) + ε(i) (Scenario 4)

Y (i) = x2(i)2 + d01{i>k◦} + d11{i>k◦}x2(i) + ε(i) (Scenario 5)

Due to limitations of space and similarity of results we will only present a small selection
of plots here, the complete simulation results can be obtained from the authors (pdf-File,
51 p., 9 MB).

For the pair and regression bootstrap we use L = m/5, M = 5, furthermore the boot-
straps are based on 500 bootstrap samples while the plots are based on 200 repetitions of
the procedure. These relatively small numbers of repetitions are necessary due to rather
long computation times even when using the sequential bootstrap based on the convex
combination. In Figures 5.1-5.3 some selected size-power curves and density plots of the
run length can be found.
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5 Some simulations

(a) SPC: Scenario 2 (b) RL: Scenario 2

(c) SPC: Scenario 3 (d) RL: Scenario 3

(e) SPC: Scenario 4 (f) RL: Scenario 4

(g) SPC: Scenario 5 (h) RL: Scenario 5

Figure 5.3: Size-power curves and plots of estimated density: centered exponential errors,
γ = 0, m = 10, N = 2, k◦ = m/4, in RL: d = (1, 1), α = 0.5.
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6 Proofs of Section 3

It can be concluded from the simulations that both bootstrap methods perform better
than the asymptotic closed-end procedure for two reasons:

• The bootstrap methods hold the level much better.

• The run-time of the bootstrap methods is a bit longer, however a much smaller
percentage of all rejections takes place before the change. This can especially be
seen in Figure 5.2 and may be caused partly by the smaller level of the bootstrap
methods.

• All three methods still work well under the misspecified scenarios 3 and 4 (cf.
Figure 5.3).

• All three methods become approximately equivalent for m > 50 (for p = 2).

• The bootstrap methods already work well for a very small historic data length of
m = 10 (for p = 2).

Concerning a comparison of the two bootstrap methods the following can be noticed:

• The pair bootstrap holds the level better consequently has a somewhat smaller
power and higher run-length. Interestingly, this remains true even if the regres-
sors are correlated (Figure 5.3, Scenarios 2 and 3), where one would expect the
regression bootstrap to be better.

• The bootstrap methods become very close for m > 20.

6 Proofs of Section 3

The following lemma summarizes some results on C and c1(m, k, `). It follows immedi-
ately from Lemma 5.1 in Horváth et al. [10].

Lemma 6.1. Under the Assumption A.1 (ii) it holds as m→∞

a)
∥∥mC−1

m −C−1
∥∥
∞ = O(m−ρ) P − a.s.

b) sup
`>1

sup
k>1

‖c1(m, k, `)− `c1‖∞
(m+ `)1−ρ + `m−ρ

= O(1) P − a.s.

Our aim is to prove that the bootstrap critical values are uniformly asymptotically
correct under the null hypothesis and bounded under alternatives (see equations (6.24)
resp. (6.25) below).

In view of the following lemma it is clear that for this it is sufficient to prove the correct
asymptotic behavior of supk F

(R∗)
m,k (x).

Lemma 6.2. Let c, ck(m) be such that P (Y > c) = α respectively
P ∗m,k(Yk(m) > ck(m)) 6 α for some 0 < α < 1 (ck(m) minimal), where Yk(m) is some
statistic and Y is a random variable with strictly monotone and continuous distribution
function in a compact neighborhood K of c.

a) Moreover let for all x in K (as m→∞)

sup
16k<∞

∣∣P ∗m,k(Yk(m) 6 x)− P (Y 6 x)
∣∣→ 0 P − a.s. (6.1)
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6 Proofs of Section 3

Then, as m→∞,

sup
16k<∞

|ck(m)− c| → 0 P − a.s. (6.2)

b) If instead we only have that for each ε > 0 there exists a constant A = A(ε) > 0, s.t.

sup
16k<∞

∣∣P ∗m,k(Yk(m) > A)
∣∣ 6 ε+ o(1) P − a.s. (6.3)

then

sup
16k<∞

|ck(m)| = O(1) P − a.s. (6.4)

Proof. For a) we refer to the proof of Kirch [14], Lemma A.1. Concerning b), con-
sider the set of all ω ∈ M with P (M) = 1 and such that (6.3) holds. We prove
(6.4) for all ω ∈ M by contradiction. If (6.4) does not hold, we find a subsequence
β(·) and a function f , such that cf(β(m))(β(m)) → ∞. On the other hand since
P ∗m,f(β(m))

(
Yf(β(m))(m) > cf(β(m))

)
6 α we get by the minimality of cf(β(m))(m) by (6.3)

that

cf(β(m))(m) 6 A(α/2),

which is a contradiction.

Note that F (R∗)
m,k is determined mainly by the distribution of (` = 1, . . . , N(m))

g(m, `, γ) Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))

=
m+∑̀
i=m+1

êm,k(Um,k(i))− c1(m, k, `)TC−1
m

m∑
j=1

x(j)êm,k(Um,k(i))

and the bootstrap variance (3.5). Note that

êm,k(i) =e(i)− x(i)TC−1
m+k

m+k∑
j=1

x(j)e(j)

+ 1{i>m+k◦}x(i)Tdm − 1{k>k◦}x(i)TC−1
m+kCk◦,kdm, (6.5)

and for k > k◦

Ck◦,k =
m+k∑

i=m+k◦+1

x(i)x(i)T = Ck −Ck◦ .

From this we can decompose g(m, `, γ)Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `)) as follows:

g(m, `, γ) Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))

= I1(m, k, `) + I2(m, k, `) + I3(m, k, `) + I4(m, k, `) + I5(m, k, `) + I6(m, k, `),

where

I1(m, k, `) =
m+∑̀
i=m+1

e(Um,k(i)),
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6 Proofs of Section 3

I2(m, k, `) = −c1(m, k, `)TC−1
m

m∑
j=1

x(j)e(Um,k(j)),

I3(m, k, `) =
m+∑̀
i=m+1

x(Um,k(i))TC−1
m+k

m+k∑
j=1

x(j)e(j)− `

m+ k

m+k∑
i=1

e(i),

I4(m, k, `) = −c1(m, k, `)TC−1
m

m∑
j=1

x(j)x(Um,k(j))TC−1
m+k

m+k∑
v=1

x(v)e(v)+
`

m+ k

m+k∑
i=1

e(i),

I5(m, k, `) =
m+∑̀
i=m+1

(
1{Um,k(j)>m+k◦}x(Um,k(j))Tdm − 1{k>k◦}x(Um,k(j))TC−1

m+kCk◦,kdm

)
I6(m, k, `) = −c1(m, k, `)TC−1

m

m∑
j=1

x(j)
(

1{Um,k(j)>m+k◦}x(Um,k(j))Tdm

− 1{k>k◦}x(Um,k(j))TC−1
m+kCk◦,kdm

)
.

In order to prove (6.1) under H0 resp. (6.3) under H1, we show that
g(m, `, γ)Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `)) is asymptotically determined by I1(m, k, `)
respectively I2(m, k, `). Precisely, the following lemma shows that Ij(m, k, `), j = 3, 4,
converge uniformly to 0 and the terms Ij(m, k, `), j = 5, 6, which are nonzero only under
alternatives, are uniformly bounded.

Lemma 6.3. Let (1.1), Assumption A.1, and (2.1) hold true and either H0 or dm =
O(1).

a) Then for all ε > 0 it holds:

(i) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I3(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.,

(ii) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I4(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.

b) Under H0 it holds that Ij(m, k, `) = 0, j = 5, 6, under local alternatives, i.e. if
dm = o(1), it holds for all ε > 0 that

(i) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I5(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.,

(ii) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I6(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.

c) For alternatives, for which only dm = O(1), we get only the following weaker asser-
tion: For every ε > 0 there exists A > 0 such that

(i) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I5(m, k, `)|
g(m, `, γ)

> A

)
6 ε+ o(1) P − a.s.,

(ii) sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I6(m, k, `)|
g(m, `, γ)

> A

)
6 ε+ o(1) P − a.s.
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6 Proofs of Section 3

Proof. All terms are sums of i.i.d. random vectors. Therefore, it suffices in all cases to
calculate the variance matrices and to apply the Hájek-Rényi or Markov inequality. By
direct calculations

E∗m,kx(Um,k(i)) =
1

m+ k

m+k∑
j=1

x(j),

and since

m+k∑
j=1

x(j)TC−1
m+kx(v) = (1, 0, . . . , 0)x(v) = 1

we obtain

E∗m,k

x(Um,k(i))TC−1
m+k

m+k∑
j=1

x(j)e(j)

 =
1

m+ k

m+k∑
j=1

e(j),

showing that I3(m, k, `) is centered. Moreover

E∗m,k
(
x(Um,k(i))x(Um,k(i))T

)
=

1
m+ k

Cm+k,

hence (by var(Z) 6 E(Z2))

var∗m,k

x(Um,k(i))TC−1
m+k

m+k∑
j=1

x(j)e(j)


6

1
m+ k

m+k∑
j=1

x(j)e(j)

T

C−1
m+kCm+kC

−1
m+k

m+k∑
j=1

x(j)e(j)


=

1
m+ k

m+k∑
j=1

x(j)e(j)

T

C−1
m+k

m+k∑
j=1

x(j)e(j)

 .

Standard decoupling arguments yield

sup
k>1

1
m+ k

∣∣∣∣∣∣
m+k∑
j=1

x(j)e(j)

∣∣∣∣∣∣ = o(1) P − a.s., (6.6)

since conditioned on {x(·)} the sequence fulfills the Kolmogorov condition for a strong
LLN. This together with Lemma 6.1 shows that, as m→∞,

sup
16k<∞

1
m+ k

m+k∑
j=1

x(j)e(j)

T

C−1
m+k

m+k∑
j=1

x(j)e(j)

 = o(1) P − a.s.

Denote

Zm,k(Um,k(j)) = x(Um,k(j))TC−1
m+k

m+k∑
v=1

x(v)e(v)− 1
m+ k

m+k∑
j=1

e(j). (6.7)
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6 Proofs of Section 3

Conditionally {Zm,k(Um,k(j)} are i.i.d. random variable with

E∗m,k Zm,k(Um,k(1)) = 0,

sup
k

var∗m,k Zm,k(Um,k(1)) = o(1) P − a.s. (6.8)

We start by proving assertion a)(i): For some D1 > 0

g(m, `, γ) >

{
D1m

1/2−γ `γ , ` 6 m,

D1m
−1/2 `, ` > m,

(6.9)

yielding for some D2 > 0

N(m)∑
l=1

1
g2(m, `, γ)

6 D−2
1 m−1+2γ

m∑
`=1

1
`2γ

+D−2
1 m

N(m)∑
`=m+1

1
`2

6 D2. (6.10)

Then, by the Hájek-Rényi inequality for any ε > 0

P ∗m,k

(
max

16`<N(m)+1

|I3(m, k, `)|
g(m, `, γ)

> ε

)
6 ε−2D2 var∗m,k Zm,k(Um,k(1))→ 0 P − a.s.

uniformly in k which finishes the proof of a)(i) by (6.8).

Now we prove a) (ii). Notice that I4(m, k, `) can be expressed as the product of two
terms one of them is (conditionally) nonrandom and depends on ` while the other one is
(conditionally) random and does not depend on `. We will make use of this fact, which
is why the proof differs from the one of a)(i). By x(i)TC−1

m

∑m
j=1 x(j) = 1 it holds

I4(m, k, `) = −c1(m, k, `)TC−1
m

m∑
j=1

x(j)Zm,k(Um,k(j)).

Denote by uj the jth unit vector i.e. the p-dimensional vector uj = (u1,j , . . . , up,j)T

with ui,j = 1{i=j}, then by Lemma 6.1 a)

E∗m,k

(
√
muTj C−1

m

m∑
i=1

x(i)Zm,k(Um,k(i))

)2

= var∗m,k

(
√
m

m∑
i=1

uTj C−1
m x(i)Zm,k(Um,k(i))

)

=
(
var∗m,k Zm,k(Um,k(1))

)
uTj mC−1

m

m∑
i=1

x(i)x(i)T C−1
m uj

=
(
var∗m,k Zm,k(Um,k(1))

)
uTj (C−1 + o(1)) uj = o(1) P − a.s. (6.11)

uniformly in k. By Lemma 6.1 b) in addition to (6.9) we additionally get for some
D3 > 0

sup
k>1

sup
16`<N(m)+1

∥∥∥∥ c1(m, k, `)T√
mg(m, `, γ)

∥∥∥∥
∞

6 D3 + o(1) P − a.s. (6.12)
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6 Proofs of Section 3

Together this yields that

E∗m,k

(
max

16`<N(m)+1

|I4(m, k, `)|
g(m, `, γ)

)2

= o(1) P − a.s.,

which gives the assertion by the Markov inequality. Now, we prove b) and c). First note
that it suffices to consider k > k◦, since for k 6 k◦ it holds Ij(m, k, `) = 0, j = 5, 6.
Denote

Z̃m,k(Um,k(i)) = 1{Um,k(i)>m+k◦}x
T (Um,k(i))dm−1{k>k◦}x

T (Um,k(i))C−1
m+kCk◦,kdm.

Direct calculations give

E∗m,k Z̃m,k(Um,k(i)) = 0,

E∗m,k
(
Z̃m,k(Um,k(i))

)2
=

1
m+ k

dTm(Ck◦,k −Ck◦,kC
−1
m+kCk◦,k)dm

6
1

m+ k
dTmCk◦,kdm 6

1
m+ k

dTmCm+kdm 6 dTmCdm (1 + o(1)) P − a.s. (6.13)

uniformly in k by Lemma 6.1 a).

Assertions b) (i) and c) (i) follow now by the Hájek-Rényi inequality and (6.10).

Furthermore (P − a.s.)

E∗m,k

√muTj C−1
m

m∑
j=1

x(j)Z̃m,k(Um,k(j))

2

6 dTmCdm uTj C−1uj (1 + o(1))

(6.14)

uniformly in k. This, in addition to (6.12), yields b) (ii) and c) (ii) by the Markov
inequality.

The next lemma allows us to replace I2(m, k, `) by a simpler expression.

Lemma 6.4. Let (1.1), Assumption A.1, and (2.1) hold true. Then for all ε > 0 it
holds

sup
16k<∞

P ∗m,k

(
max

16`<N(m)+1

|I2(m, k, `)− −`m
∑m

j=1 e(Um,k(j))|
g(m, `, γ)

> ε

)
→ 0 P − a.s.

Proof. The proof is a slight modification of Lemma 5.2 in Horváth et al. [10]. Denote

ēm,k =
1

m+ k

m+k∑
i=1

e(i), σ̂2
m,k =

1
m+ k

m+k∑
i=1

(e(i)− ēm,k)2 . (6.15)

By Assumption A.1 and the law of iterated logarithm we get uniformly in k

sup
k
|m1/2−(ρ−γ)ēm,k| → 0 P − a.s., sup

k
|σ̂2
m,k − σ2| → 0 P − a.s., (6.16)
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since by assumption ρ− γ > 0 for ρ from Assumption A.1. Let uj denote again the jth
unit vector. Then, we get uniformly in k

E∗m,k

(
1

m1/2+ρ−γ uTj

m∑
i=1

x(i)e(Um,k(i))

)2

=
1

m1+2(ρ−γ)

m∑
i=1

(uTj x(i))2 var∗ (e(Um,k(1))) +

(
uTj

m1/2+ρ−γ

m∑
i=1

x(i) E∗(e(Um,k(1))

)2

=
1

m1+2(ρ−γ) u
T
j Cmuj σ̂2

m,k + (uTj c1 + o(1))2
(
m1/2−(ρ−γ)ēm,k

)2

= o(1) P − a.s.
(6.17)

By Lemma 6.1 and (6.9) we get

sup
k

sup
16`<N(m)+1

∥∥∥∥c1(m, k, `)T mC−1
m − `cT1 C−1

m1/2−ρ+γ g(m, `, γ)

∥∥∥∥
∞

= O(1) sup
16`<N(m)+1

∣∣∣∣ (m+ `)1−ρ + `m−ρ

m1/2−ρ+γ g(m, `, γ)

∣∣∣∣ = O(1) P − a.s.

Since cT1 C−1
∑m

i=1 x(j)e(Um,k(i)) =
∑m

i=1 e(Um,k(i)) we obtain the assertion by an ap-
plication of the Markov inequality.

We are now ready to state the asymptotics of Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `)).

Lemma 6.5. Let (1.1), Assumption A.1, and (2.1) hold true and either H0 or dm =
O(1), N(m) is as in Theorem 2.1. Let σ̂2

m,k as in (6.15).

a) Under H0 and for local alternatives dm = o(1) it holds

sup
16k<N(m)+1

∣∣∣∣∣P ∗m,k
(

1
σ̂m,k

sup
16`<N(m)+1

Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))
g(m, `, γ)

6 x

)

− P

(
sup

16k<N(m)+1

|W1(k/m)− k/mW2(1)|
(1 + k/m)(k/(k +m))γ

6 x

)∣∣∣∣∣→ 0 P − a.s.

b) Under H1 for every ε > 0 there exists a constant A > 0 such that (P − a.s.)

sup
16k<N(m)+1

∣∣∣∣∣P ∗m,k
(

1
σ̂m,k

sup
16`<N(m)+1

Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))
g(m, `, γ)

> A

)∣∣∣∣∣ 6 ε+o(1).

Proof. The proof of Theorem 2.3 in Kirch [14] shows that (note that this corresponds
to the null hypothesis there)

sup
16k<N(m)+1

∣∣∣∣∣P ∗m,k
 1
σ̂m,k

sup
16`<N(m)+1

∣∣∣∑m+`
i=m+1

(
e(Um,k(i))− 1

m

∑m
j=1 e(Um,k(j))

)∣∣∣
g(m, `, γ)

6 x


− P

(
sup

16k<N(m)+1

|W1(k/m)− k/mW2(1)|
(1 + k/m)(k/(k +m))γ

6 x

)∣∣∣∣∣→ 0 P − a.s.
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Putting this together with Lemmas 6.3 and 6.4, as well as (6.16) yields the assertion.

Before we finally deal with the bootstrapped variance, we need a small auxiliary lemma
which will also be crucial for the proof of the pair bootstrap.

Lemma 6.6. Let (1.1) and Assumption A.1 hold true. For any 1
2 < ξ < 1 and any

ε > 0 (P − a.s.)

a) sup
k>1

P ∗m,k

(
m−ξ

∥∥∥∥∥
m∑
s=1

x(Um,k(s))T e(Um,k(s))

∥∥∥∥∥
∞

> ε

)
→ 0

b) sup
k>1

P ∗m,k

(
m−ξ

∥∥∥∥∥
m∑
s=1

x(Um,k(s))T e(Um,k(s))1{Um,k(s)>m+k◦}

∥∥∥∥∥
∞

> ε

)
→ 0

If for the pair bootstrap additionally Assumption A.3 holds, then we even get the asser-
tions for ξ = 1

2 .

Proof. By the von Bahr-Esseen inequality (cf. Theorem 3 in [17]) with 1/ξ we get for
some constant D > 0 and for any c > 0

sup
k>1

P ∗m,k

(
m−ξ

∥∥∥∥∥
m∑
s=1

x(Um,k(s))T e(Um,k(s))

∥∥∥∥∥
∞

> c

)

6
D

c1/ξ
sup
k>1

1
m+ k

m+k∑
j=1

‖x(i)e(i)‖1/ξ∞ = O(1) P − a.s.,

since conditioned on {x(·)} the sequence fulfills condition (1) in Theorem 5.2.1 in Chow
and Teicher [6] similarly to (6.6). This proves a) but b) is analogous.

The same arguments also holds for ξ = 1
2 if the stronger assumption A.3 holds.

Finally we deal with the bootstrapped variance in the following lemma:

Lemma 6.7. Let (1.1) and Assumption A.1 hold true and either H0 or dm = O(1). Let
σ̂2
m,k be as in (6.15).

a) Under H0 or local alternatives (dm = o(1)) it holds for all ε > 0

sup
k
P ∗m,k

∣∣∣∣∣∣ σ̂m,kσ̂
(R∗)
m,k

− 1

∣∣∣∣∣∣ > ε

→ 0 P − a.s.

b) Under H1 for every ε > 0 there exists A > 0 such that

sup
k
P ∗m,k

∣∣∣∣∣∣ σ̂m,kσ̂
(R∗)
m,k

∣∣∣∣∣∣ > A

 6 ε+ o(1) P − a.s.

Proof. By (6.5) it holds

e∗m,k(i)− x(i)TC−1
m

m∑
j=1

x(j)e∗m,k(j)

= J1(m, k, i) + J2(m, k, i) + J3(m, k, i) + J4(m, k, i) + J5(m, k, i) + J6(m, k, i),
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where

J1(m, k, i) = e(Um,k(i)),

J2(m, k, i) = −x(i)TC−1
m

m∑
j=1

x(j)e(Um,k(j)),

J3(m, k, i) = −x(Um,k(i))TC−1
m+k

m+k∑
j=1

x(j)e(j) + ēm,k,

J4(m, k, i) = x(i)TC−1
m

m∑
j=1

x(j)

(
x(Um,k(j))TC−1

m+k

m+k∑
v=1

x(v)e(v)− ēm,k

)
,

J5(m, k, i) = 1{Um,k(i)>m+k◦}x(Um,k(i))Tdm − 1{k>k◦}x(Um,k(i))TC−1
m+kCk◦,kdm,

J6(m, k, i) = −x(i)TC−1
m

m∑
j=1

x(j)x(Um,k(j))T
(

1{Um,k(j)>m+k◦} − 1{k>k◦}C
−1
m+kCk◦,k

)
dm,

where ēm,k is as in (6.15). Note that J5(m, k, i) and J6(m, k, i) are equal to 0 under the
null hypothesis and under alternatives for k 6 k◦.

The following relations hold true for any fixed ε > 0 as m→∞.

By Lemma A.3 and the proof of Theorem 2.3 in Kirch [14] (this corresponds to the null
hypothesis there) it holds

sup
k>1

P ∗m,k

(∣∣∣∣∣ 1
m

∑m
i=1(e(Um,k(i))− ēm,k)2

σ̂2
m,k

− 1

∣∣∣∣∣ > ε

)
→ 0 P − a.s.,

which in addition to (6.16) yields

sup
k>1

P ∗m,k

(∣∣∣∣∣
1

m−p
∑m

i=1 J
2
1 (m, k, i)

σ̂2
m,k

− 1

∣∣∣∣∣ > ε

)
→ 0 P − a.s. (6.18)

Denote by uj again the jth unit vector. By Lemma 6.1 and (6.17) it holds by the
Cauchy-Schwarz inequality

E∗m,k

(
1
m

m∑
i=1

J2
2 (m, k, i)

)

= E∗m,k

 1
m

m∑
i=1

x(i)TC−1
m

m∑
j=1

x(j)e(Um,k(j))

2
6 p2‖mC−1

m ‖∞ max
j=1,...,p

E∗m,k

(
uTj
m

m∑
i=1

x(i)e(Um,k(i))

)2

→ 0 P − a.s.,

which yields by an application of the Markov inequality

sup
k>1

P ∗m,k

(
1

m− p

m∑
i=1

J2
2 (m, k, i) > ε

)
→ 0 P − a.s. (6.19)
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6 Proofs of Section 3

Noting that J3(m, k, i) = −Zm,k(Um,k(i)) as in the proof of Lemma 6.3, hence by an
application of the Markov inequality in addition to (6.8)

sup
k>1

P ∗m,k

(
1

m− p

m∑
i=1

J2
3 (m, k, i) > ε

)
→ 0 P − a.s. (6.20)

Similarly by (6.11)

sup
k>1

P ∗m,k

(
1

m− p

m∑
i=1

J2
4 (m, k, i) > ε

)

6 sup
k>1

1
ε

E∗m,k

 1
m− p

m∑
j=1

x(j)TZm,k(Um,k(j))C−1
m

m∑
j=1

x(j)Zm,k(Um,k(j))


6

1
ε

∥∥∥∥ 1
m

Cm

∥∥∥∥
∞

p2

m− p
sup
k>1

sup
j=1,...,p

E∗m,k

(
√
muTj C−1

m

m∑
v=1

x(v)Zm,k(Um,k(v))

)2

→ 0 P − a.s. (6.21)

Putting (6.18) to (6.20) together with (6.16) yields assertion a) under H0.

Now we prove the assertions under alternatives. First, note that it is sufficient to consider
k > k◦, since otherwise J5 and J6 are equal to 0. First we prove that J6 is negligible:
By (6.14) it holds

sup
k>1

P ∗m,k

(
1
m

m∑
i=1

J2
6 (m, k, i) > ε

)

6
1
ε

p2

m− p

∥∥∥∥ 1
m

Cm

∥∥∥∥
∞

sup
j=1,...,p

E∗m,k

√muTj C−1
m

m∑
j=1

x(j)Z̃m,k(Um,k(j))

2

= o(1) P − a.s. (6.22)

J5 is only negligible for local alternatives but still bounded for fixed alternatives. Pre-
cisely for any c > 0,

sup
k>1

P ∗m,k

(
1
m

m∑
i=1

J2
5 (m, k, i) > c

)
6
dTmCdm

c2
+ o(1) P − a.s. (6.23)

by (6.13), since J5(m, k, i) = Z̃m,k(Um,k(i)) as in the proof of Lemma 6.3. This yields a)
under local alternatives.

For fixed alternatives note that

(
σ̂

(R∗)
m,k

)2
=

1
m

m∑
i=1

 6∑
j=1

J2
j (m, k, i) +

∑
u6=v

Ju(m, k, i)Jv(m, k, i)

 .

The square terms are negligible except for J2
1 and J2

5 by (6.19) – (6.22). By the Cauchy-
Schwarz inequality, (6.18) and (6.23) the same holds true for the mixed terms except
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J1 J5 but the latter one is also negligible due to Lemmas 6.1 and 6.6 since

1
m

m∑
s=1

(J1(m, k, s)J5(m, k, s)) =
1
m

m∑
s=1

x(Um,k(s))T e(Um,k(s))1{Um,k(s)>m+k◦}dm

− 1
m

m∑
s=1

x(Um,k(s))T e(Um,k(s))C−1
m+kCk◦,kdm.

This shows that the only influential terms are 1
m

∑m
i=1(J2

1 (m, k, i) + J2
5 (m, k, i)). But

since σ̂(R∗)
m,k in Lemma 6.6. b) is in the denominator and 1

m

∑m
i=1(J2

1 (m, k, i)+J2
5 (m, k, i)) >

1
m

∑m
i=1 J

2
1 (m, k, i) assertion b) follows by (6.18).

Putting the above lemmas together we easily obtain Theorem 3.1.
Proof Proof of Theorem 3.1. Putting together Lemmas 6.5 and 6.7 we obtain under
H0 as well as local alternatives

sup
16k<N(m)+1

∣∣∣∣∣P ∗m,k
 1

σ̂
(R∗)
m,k

sup
16`<N(m)+1

Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))
g(m, `, γ)

6 x


− P

(
sup

16k<N(m)+1

|W1(k/m)− k/mW2(1)|
(1 + k/m)(k/(k +m))γ

6 x

)∣∣∣∣∣→ 0 P − a.s.

By Lemma 6.2 this yields

sup
k>1
|c(R)
m,k − c| → 0 P − a.s., (6.24)

where c is the asymptotic critical value obtained from the distribution of sup06t61− 1
N+1

|W (t)|
tγ .

Together with Theorem 2.1 this implies a).

Under H1, by Lemmas 6.5 and 6.7 for every ε > 0 there exists a constant A > 0 such
that (P − a.s.)

sup
16k<N(m)+1

∣∣∣∣∣∣P ∗m,k
 1

σ̂
(R∗)
m,k

sup
16`<N(m)+1

Γ̃(m, `, γ)(e∗m,k(1), . . . , e∗m,k(m+ `))
g(m, `, γ)

> A

∣∣∣∣∣∣ 6 ε+o(1)

By Lemma 6.2 this yields

sup
k>1
|c(R)
m,k| = O(1) P − a.s. (6.25)

Together with Theorem 2.2 this implies b).

7 Proofs of Section 4

Denote

A1(m, k, `) =
m+∑̀
i=m+1

e∗m,k(i)
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A2(m, k, `) =
m+∑̀
i=m+1

x∗m,k(i)

A3(m, k) =
m∑
j=1

x∗m,k(j)x
∗T
m,k(j)

A4(m, k) =
m∑
s=1

x∗m,k(s)e
∗
m,k(s)

A5(m, k, `) =
m+∑̀
i=m+1

x∗m,k(i)1{Um,k(i)>m+k◦}

A6(m, k) =
m∑
s=1

x∗m,k(s)x
∗T
m,k(s)1{Um,k(s)>m+k◦}

where e∗m,k(i) = e(Um,k(i)), which is different from the bootstrapped residuals in the
regression bootstrap. Similarly to (3.1) it holds

g(m, k, γ) Γ(m, `, γ)∗m,k = B1(m, k, `) +B2(m, k, `) +B3(m, k, `) +B4(m, k, `),

where

B1(m, k, `) = A1(m, k, `),

B2(m, k, `) = −AT
2 (m, k, `)A−1

3 (m, k)A4(m, k)

B3(m, k, `) =
(
A5(m, k, `)− `E∗m,k x∗m,k(1)1{Um,k(1)>m+k◦}

)
dm,

B4(m, k, `) = −
(
AT

2 (m, k, `)A−1
3 (m, k)A6(m, k)− `E∗m,k x∗m,k(1)1{Um,k(1)>m+k◦}

)
dm.

The next lemma gives some properties of the terms Aj .

Lemma 7.1. Let (1.1) and Assumption A.1 hold true.

a) Under either Assumption A.2 or A.3 we get for any ε > 0

sup
16k<N(m)+1

P ∗m,k

(
1

m1−η ‖A3(m, k)−mC‖∞ > ε

)
→ 0

P − a.s. for some η > 0.

b) Under either Assumption A.2 or A.3 we get for any ε > 0

sup
16k<N(m)+1

P ∗m,k

(∥∥∥∥ 1
m
A6(m, k)− E∗ x∗m,k(1)x∗m,k(1)T 1{Um,k(i)>m+k◦}

∥∥∥∥
∞

> ε

)
→ 0 P−a.s.

Proof. First note that from AssumptionsA.1 (ii) we get for every ω ∈M with P (M) = 1
the existence of a constant D(ω), such that∥∥∥∥∥

j∑
i=1

(x(i)(ω)x(i)T (ω)−C)

∥∥∥∥∥
∞

6 D(ω)j−ρ

for each j. Subtracting the term for j and j − 1 we get

‖x(j)(ω)x(j)T (ω)‖∞ 6 ‖C‖∞ + 2D(ω)j1−ρ,
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which yields

‖x(j)x(j)T ‖∞ = O(j1−ρ) P − a.s. (7.1)

Further note that

E∗m,k(x
∗
m,k(i)x

∗
m,k(i)

T ) =
1

m+ k

m+k∑
j=1

x(i)x(i)T = C +O(m−ρ) P − a.s. (7.2)

uniformly in k by Assumption A.1. This, (7.1) and an application of the Chebyshev
inequality yields now (the square of the matrix is meant componentwise)

sup
16k<N(m)+1

P ∗m,k

(
1

m1−η

∥∥∥∥∥
m∑
i=1

(x∗m,k(i)x
∗
m,k(i)

T −C)

∥∥∥∥∥
∞

> ε

)

6 O(m2η−2ρ) +O(1)
1

m1−2η
sup

16k<N(m)+1

1
m+ k

∥∥∥∥∥
m+k∑
i=1

(x(i)x(i)T )2
∥∥∥∥∥
∞

6 O(m2η−2ρ) +O

(
(m+N(m))1−ρ

m1−2η

)
sup
k>1

sup
j=1,...,p

1
m+ k

m+k∑
i=1

x2
j (i)

= O(m2η−2ρ +m2η−ε) = o(1) P − a.s.

under Assumption A.2 for some ρ > 0, which yields a). A similar argument but using
A.3 and the von Bahr-Esseen inequaltiy (cf. Theorem 3 in [17]) also yields assertion a).

Analogously we obtain b).

The next lemma is the analogue to Lemmas 6.3 and 6.4 for the regression bootstrap.

Lemma 7.2. Let (1.1), Assumption A.1, and (2.1) hold true and either H0 or dm =
O(1).

a) Then for all ε > 0 it holds:

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B2(m, k, `)− −`m
∑m

j=1 e
∗
m,k(j)|

g(m, `, γ)
> ε

)
→ 0,

b) Under H0 it holds that Bj(m, k, `) = 0, j = 3, 4, under local alternatives, i.e. if
dm = o(1), it holds for all ε > 0 that

(i) sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B3(m, k, `)|
g(m, `, γ)

> ε

)
= o(1) P − a.s.,

(ii) sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B4(m, k, `)|
g(m, `, γ)

> ε

)
= o(1) P − a.s.

c) For fixed alternatives, for which dm = O(1), we get only the following weaker asser-
tion: For every ε > 0 there exists A > 0 such that

(i) sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B3(m, k, `)|
g(m, `, γ)

> A

)
6 ε+ o(1) P − a.s.,

(ii) sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B4(m, k, `)|
g(m, `, γ)

> A

)
6 ε+ o(1) P − a.s.
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Proof.

−B2(m, k, `) = B2,1(m, k, `) +B2,2(m, k, `) +B2,3(m, k, `),

where

B2,1(m, k, `) = (A2(m, k, `)− E∗m,kA2(m, k, `)T )A3(m, k)−1A4(m, k)

B2,2(m, k, `) = E∗m,kA
T
2 (m, k, `)(E∗m,kA3(m, k))−1A4(m, k)

B2,3(m, k, `)

= E∗m,kA
T
2 (m, k, `)(E∗m,kA3(m, k))−1(E∗m,kA3(m, k)−A3(m, k))A3(m, k)−1A4(m, k).

Direct calculations give

E∗m,kA
T
2 (m, k, `)(E∗m,kA3(m, k))−1 =

`

m+ k

m+k∑
i=1

x(i)
( m

m+ k

m+k∑
i=1

x(i)x(i)T
)−1

=
`

m
(1, 0, . . . , 0)T (7.3)

Therefore

B2,2(m, k, `) =
`

m

m∑
i=1

e∗m,k(i).

By Lemmas 6.6 and 7.1 as well as (7.2) we get for any ε > 0

sup
k>1

P ∗m,k
(
mη−1‖A3(m, k)− E∗m,k A3(m, k)‖∞ > ε

)
→ 0 P − a.s. (7.4)

sup
k>1

P ∗m,k

(
m1−ξ‖A3(m, k)−1A4(m, k)‖∞ > ε

)
→ 0 P − a.s. (7.5)

for some η > 0 and for ξ as in Lemma 7.1.

By (6.9) we get

sup
`>1

`

mg(m, `, γ)
= O(m−1/2), (7.6)

which together with (7.3), (7.4) and (7.5) yields

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B2,3(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.

Finally note that by Assumption A.1 (ii)

var∗m,k(x
∗
m,k(i)) 6

1
m+ k

m+k∑
i=1

x(i)x(i)T = C + o(1) P − a.s. (7.7)

uniformly in k. An application of the Hájek-Rényi inequality, (6.10) and (7.5) yields

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B2,1(m, k, `)|
g(m, `, γ)

> ε

)
→ 0 P − a.s.
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This completes the proof of a).

In the following let D > 0 be some (non-random) constant which can differ in every
occurrence. Concerning b) and c), first note that by Assumption A.1 we get uniformly
in k > 1∥∥∥var∗m,k(x

∗
m,k(i)1{Um,k(i)>m+k◦})

∥∥∥
∞

=
1

m+ k

∥∥∥∥∥
m+k∑

i=m+k◦

x(i)x(i)T
∥∥∥∥∥
∞

6 D+o(1) P−a.s.

An application of the Hájek-Rényi inequality, (6.10) and Lemma 7.1 yields for any c > 0

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B3(m, k, `)|
g(m, `, γ)

> c

)
6 D

‖dm‖2∞
c2

+ o(1) P − a.s.,

which proves b) (i) and c) (i).

Concerning B4(m, k, `) we need an analogous decomposition as for B2(m, k, `) above.

−B4(m, k, `) = B4,1(m, k, `) +B4,2(m, k, `) +B4,3(m, k, `),

where

B4,1(m, k, `) =
(
AT

2 (m, k, `)− E∗m,kAT
2 (m, k, `)

)
A3(m, k)−1A6(m, k)dm

B4,2(m, k, `)

=
(
E∗m,kA

T
2 (m, k, `)(E∗m,kA3(m, k))−1A6(m, k)− `E∗m,k x∗m,k(1)1{Um,k(1)>m+k◦}

)
dm

B4,3(m, k, `)

=
(
E∗m,kA

T
2 (m, k, `)(E∗m,kA3(m, k))−1(E∗m,kA3(m, k)−A3(m, k))A3(m, k)−1A6(m, k)

)
dm.

Since

E∗m,k x∗m,k(1)x∗m,k(1)T 1{Um,k(1)>m+k◦} =
1

m+ k

m+k∑
i=m+k◦

x(i)x(i)T 6 D+o(1) P−a.s.

(7.8)

uniformly in k, we obtain from Lemma 7.1 that for each ε > 0 there exists A > 0 such
that

sup
k>1

P ∗m,k
(
‖A3(m, k)−1A6(m, k)‖∞ > A

)
6 ε+ o(1) P − a.s. (7.9)

This in addition to an application of the Hájek-Rényi inequality and (6.10) yields for
any c > 0

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B4,1(m, k, `)|
g(m, `, γ)

> c

)
6 D

‖dm‖2∞
c2

+ o(1) P − a.s.

By (7.3) we get

B4,2(m, k, `) =
`

m

m∑
j=1

(x∗m,k(j)
T 1{Um,k(j)>m+k◦} − E∗ x∗m,k(j)1{Um,k(j)>m+k◦})dm.
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An application of the Chebyshev inequality yields for any c > 0

sup
k>1

P ∗m,k

 1√
m

∣∣∣∣∣∣
m∑
j=1

(x∗m,k(j)
T 1{Um,k(j)>m+k◦} − E∗ x∗m,k(j)

T 1{Um,k(j)>m+k◦})dm

∣∣∣∣∣∣ > c


6
‖dm‖2∞
c2

sup
k>1

1
m+ k

∥∥∥∥∥
m+k∑

i=m+k◦

x(i)x(i)T
∥∥∥∥∥
∞

6 D
‖dm‖2∞
c2

+ o(1) P − a.s.

(7.10)

Together with (7.6) this yields

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B4,2(m, k, `)|
g(m, `, γ)

> c

)
6 D

‖dm‖2∞
c2

+ o(1) P − a.s.

Finally by (7.3)

B4,3(m, k, `) = − `

m

m∑
j=1

(x∗m,k(j)
T − E∗m,k x∗m,k(j)

T )A3(m, k)−1A6(m, k)dm

By (7.6), (7.9) and an analogous argument to (7.10) using (7.7) we finally obtain

sup
16k<N(m)+1

P ∗m,k

(
max

16`<N(m)+1

|B4,3(m, k, `)|
g(m, `, γ)

> c

)
6 ‖C‖∞

‖dm‖2∞
c2

+ o(1) P − a.s.,

which completes the proof.

Now, we prove the equivalent of Lemma 6.7.

Lemma 7.3. Let (1.1), Assumption A.1, and either Assumption A.2 or A.3 hold true.
Let σ̂2

m,k be as in (6.15).

a) Under H0 or local alternatives (dm = o(1)) it holds for all ε > 0

sup
k
P ∗m,k

∣∣∣∣∣∣ σ̂m,kσ̂
(P∗)
m,k

− 1

∣∣∣∣∣∣ > ε

→ 0 P − a.s.

b) Under H1 with dm = O(1) for every ε > 0 there exists A > 0 such that

sup
k
P ∗m,k

∣∣∣∣∣∣ σ̂m,kσ̂
(P∗)
m,k

∣∣∣∣∣∣ > A

 6 ε+ o(1) P − a.s.

Proof. Note that

y∗m,k(i)− x∗m,k(i)
T

 m∑
j=1

x∗m,k(j)x
∗
m,k(j)

T

−1
m∑
l=1

x∗m,k(l)
T y∗m,k(l)

= D1(m, k, i) +D2(m, k, i) +D3(m, k, i),
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where

D1(m, k, i) = e∗m,k(i),

D2(m, k, i) = −x∗Tm,k(i)A3(m, k)−1A4(m, k),

D3(m, k, i) = x∗Tm,k(i)1{Um,k(i)>m+k◦}dm − x∗Tm,k(i)A3(m, k)−1A6(m, k)dm.

By (6.18) it holds (D1(m, k, i) = J1(m, k, i))

sup
k>1

P ∗m,k

(∣∣∣∣∣
1

m−p
∑m

i=1D
2
1(m, k, i)

σ̂2
m,k

− 1

∣∣∣∣∣ > ε

)
→ 0 P − a.s. (7.11)

Furthermore since
m∑
i=1

D2
2(m, k, i) = A4(m, k)A−1

3 (m, k)A4(m, k),

for every ε > 0 by Lemmas 6.6 and 7.1

sup
k>1

P ∗m,k

(
1

m− p

m∑
i=1

D2
2(m, k, i) > ε

)
→ 0 P − a.s. (7.12)

This shows that asymptotically this summand is negligible as is the mixed term of D1

and D2 due to the Cauchy-Schwarz inequality. Since D3 = 0 under H0 this proves a)
under H0.

Concerning alternatives it holds

m∑
j=1

D2
3(m, k, i) = dTmA6(m, k)dm − dTmA6(m, k)(A3(m, k))−1A6(m, k)dm,

which implies due to Lemma 7.1 and (7.8) for every c > 0 for some constant D > 0

sup
k>1

P ∗m,k

(
1

m− p

m∑
i=1

D2
3(m, k, i) > c

)
6 D

‖dm‖2∞
c2

+ o(1) P − a.s. (7.13)

proving a) for local alternatives, since the mixed terms are again negligible due to the
Cauchy-Schwarz inequality.

Finally for Ã4(m, k) =
∑m

s=1 x∗m,k(s)e
∗
m,k(s)1{Um,k(s)>m+k◦}

m∑
i=1

D1(m, k, i)D3(m, k, i) = Ã4(m, k)dm −A4(m, k)(A3(m, k))−1A6(m, k)dm,

which is also negligible due to Lemmas 6.6 and 7.1. We can now finish the proof for
fixed alternatives analogously to the proof of Lemma 6.7.

Proof Proof of Theorem 4.1. Due to Lemma 7.2 we obtain the analogous assertion
for the pair bootstrap to what is given for the regression bootstrap in Lemma 6.5. We
can then conclude as in the proof of Theorem 3.1 using Lemma 7.3.
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[10] Horváth, L., Hušková, M., Kokoszka, P., and Steinebach, J. Monitoring changes in linear
models. J. Statist. Plann. Inference, 126:225–251, 2004.
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