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The purpose of this paper is to evolve non-smooth Riemannian metrie 
tensors by the dual Ried-Harmonie map flow. This flow is equivalent (up to a 
diffeomorphism) to the Ricci flow. One appli
cation will be the evolution of metrics which arise in the study of spaces whose 
curvature is bounded from above and below in the 
sense of Aleksandrov, and whose curvature operator (in dimension 
three Ricci curvature) is non-negative. We show that such met
rics may always be deformed to a smooth metric having the same properties in a 
strong sense. Author's post-publish note: This published version has some errors, 
which were later corrected (see the errata on the author's homepage) .  1)   Lemma 
2.2 and Theorem 2.3 are  only correct when delta, delta_1, delta_2 >0  are  small 
enough. 2) In  Definition 6.4 we need to assume that the g_{alpha} have bounded 
curvature, 3) In Theorem 7.3 one needs to assume that N > -cg  on M x [0,T].

1. Introduction and statement of results.

Let (Mn, D) be an n-dimensional manifold with a smooth ( C00 ) structure
D. We say that a tensor S on a smooth manifold (M, D) is ck or S is in
Ck((M, D)) if in local co-ordinates (which come from the structure), S =

{ Sij}, is Ck . To avoid any confusion we will fix the differentiable structure
D of M and do not consider other structures (M, D). For this reason we
will suppress the D in (M, D).

When considering a Riemannian metric tensor g = {gij} on a compact 
manifold M we often assume g is C2. This allows us to define the Riemannian
curvature tensor which is then continuous. Given a C00 Riemannian metric 
g0 on a compact manifold M, we can always find a T > 0 and a 1-parameter 
family of C00 Riemannian metrics {g(t)}tE[O,T] on M, denoted (M,g(t)),
such that 

%tg(t) = -2Ricci(g(t)), for all t E [ü, T]
g(O) = go, (1.1) 

where g is C00 (Mx [ü, Tl) (C00 on the manifold (Mx [O, Tl) with the induced 
structure), and Ricci(g(t)) is the Ricci curvature of the Riemannian manifold 
(M, g(t)). Notice that (1.1) makes no sense if g is not twice differentiable
in space for all t E [O, T]. The family (M, g(t))tE[O ,T] is called a solution to
the Ricci flow with initial value go. Ricci flow was invented, and used by
Hamilton to prove that every compact three manifold which admits a C00 
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Riemannian metric go with Ricci(go) > 0 also admits a metric #00 of constant 
positive sectional curvature [Ha 1]. The flow was constructed in such a way 
that various geometrical conditions are preserved by the flow, and so that it 
is 'nearly' a gradient flow for the Yamabe quotient 

UM
VO1

9)    
n 

where R(g) is the scalar curvature of (M, g) and volg is the volume form with 
respect to g on M. Many metric tensors on manifolds arise from Riemannian 
metric tensors which are not smooth. For example the geometric object 
obtained by cupping a two dimensional cylinder off with two hemispheres 
([Pe] example 1.8) is a nice geometrical object sitting in R3. As a manifold 
it is simply topologically S2, and we give this 52 the standard differentiable 
structure. It inherits a natural Riemannian metric g from the ambient space 
R3 (along the joins we define g by continuity). This metric g on S2 is C1,1 

with respect to the standard differentiable structure of 52, but not C2. The 
curvature is defined away from the join and is bounded from above and 
below, but has a discontinuity at the join. This manifold with metric tensor 
is a well known example of a 'metric space with curvature bounded from 
above and below' studied initially by Aleksandrov [Al] in connection with 
his investigation of the intrinsic geometry of convex surfaces, and later for 
it's own sake by Aleksandrov and his followers (see [BN] for an overview of 
the theory and a good bibliography). Here the curvature bound from below 
is zero. 

If we take two copies of a two dimensional truncated cone imbedded in 
R3 and join them at their boundary we obtain a nice geometrical object (as 
a manifold it is topologically equivalent to the infinite cylinder R x 51). The 
metric g inherited from the ambient space R3 may be defined on the join by 
continuity and is then C0,1 (Lipschitz continuous), but not C1. Note that 
if we approximate this metric g by a family of metrics {Cfl,}aer12 "i with 
ag —> g as a —>• 00 in the C0 norm, then s\ipxeM |Riem(^)| -> 00 as a -> 00. 
In this sense g has infinite curvature at the join, and (M, g) is not a manifold 
with curvature bounded from above and below. 

The third example is the cone. Let us consider the two dimensional cone 
sitting in R3 as a graph over R2. This cone then inherits a metric g from 
the ambient space R3. Clearly g is C00 with respect to the standard co- 
ordinates in R2 away from the point corresponding to the tip of the cone 
(for simplicity let this point be 0 = (0,0)), but g cannot be continuously 
extended to this point. We see this as follows. The cone C is a graph over 
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R2, C — {(£, a|5|), x G R2}, where a > 0 is some fixed constant, and hence 
using the formula for the metric of a graph, we obtain 

^ = ^ + ^1x1^-1x1 = 5^ + ^^. 

v2 
Clearly x£ = (e,e) -¥ 0 as e —> 0 and lime->ogi2{%e) = %-• Also y£ = 

(e, —e) ->• 0 as e -» 0, but lim^o ffi2(ye) = -%-• Hence there is no way to 
continuously extend g to the point 6. Note however that 

Sij < Qij < (1 + a2)Sij, for all a; G M - (0), 

in the sense of tensors. Later we shall see that metrics which fulfill such 
estimates, with 0 < a2 < e(n) small, can nevertheless be flown. 

We would like to have a way of evolving C0 metrics go by something 
like Ricci flow, so that for all times t bigger than zero, the solution g(t) is 
smooth, and as time approaches zero from above, the metric g(t) approaches 
go uniformly on all compact subsets of M. The flow should also preserve 
various curvature conditions. 
Non-regular Example. Let M = S1 x N, where N is a compact manifold 
which admits a positive Einstein metric 7, go be the warped product metric 
on M given by go{x,q) = ^o(^) ©7(^)5 where HQ is a Riemannian metric on 
S1. Then the Ricci flow has the solution g{x,q,t) = hofa) © (1 — 2kt)j(q)j 
which has for all times t > 0 the same regularity as the regularity of ho. 

This means clearly that we cannot hope that the Ricci flow will 'smooth 
metrics out' on M with respect to the fixed differentiable structure. 

It is well known that if a metric is a C2 Einstein metric then one may 
introduce Harmonic co-ordinates for which the metric is C00 ([DK]). Such 
co-ordinates are only C2'a compatible with our fixed structure D on M, 
and so not admissible as smooth (C00) co-ordinates for (M, D). We note 
that in example one, if we introduce Harmonic co-ordinates (change the 
structure) the metric will never be C2 (otherwise we could apply the result 
of [DK] mentioned above, and introduce Harmonic co-ordinates which make 
the metric C00 which contradicts the fact that the scalar curvature has a 
discontinuity at the join). 

In this paper we shall consider the dual Ricci-Harmonic Map flow (see 
section 6. [Ha 3]). This leads to a more general version of the Ricci De- 
Turck flow, considered initially by DeTurck in [DeT]. In the paper [Bern] the 
authors use Ricci flow to smooth out C2 metrics by introducing harmonic 
co-ordinates at appropriately chosen times. 
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We give here a short introduction to the the dual Ricci-Harmonic and 
the Ricci DeTurck flow. 

Let g(t), t E [0,T] be an arbitrary one parameter family of smooth 
metrics, and fa : M —> M an arbitrary one parameter family of smooth 
diffeomorphisms. Then the metric g(t) defined by g(t) = </>£ #(£) satisfies 

Q-t9ij(t) = (ftQ-t9(t))ij +tViFj +
tVjVi, 

where (V)i = ($V)i, Va(p) = {■§i<l)t(!P))^9pcn and v is the co-variant deriva- 
tive with respect to the metric g (see [Si], proposition 1.4). In particular if 
g(t), t € [0,T] is a solution to Ricci flow, then 

!^(i)    = -2Ricci($(t)) ^ViVj +tVjVh 

where     (V^fat)    = ^f(P,t)Va((Mp),t)9ij, (1-2) 
and        |(^(p))    =n^(p),*)- 

We have now the freedom to choose the diffeomorphism </>. If go is already 
Einstein, then the solution to the Ricci flow g(t) is given by g(t) = (1 — 
2kt)goiis also Einstein and has the same regularity as go- Hence g(t) = (f)lg(t) 
is also Einstein. We want to choose fa so that g(t) will be regular for t > 0. 
As mentioned before, in harmonic co-ordinates an Einstein metric is regular. 
To this end we let </> = f'1 : (M x [0,T]) ->► (M x [0,T]), where / is the 
solution to the Harmonic map heat flow equation: 

f/(p,*)   =   f(t)'AA/)(/M), 
/(p,0)   =   Id(p), 

where h is some fixed smooth background metric. For an arbitrary function 
/ : (M, g) -> (iV, h) between two Riemannian manifolds, the Laplacian of / 
is then a vector field in TN defined in co-ordinate form by 

where f(x) = y. Since V{y^t) = —§if{x^t) = —A/(y,^), we obtain 

V(y,t) = 9^(y,t)C%g-f
<;s)(y,t), 
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where g = /*#, in view of the way Christoffel symbols and tensors change 
under a co-ordinate transformation. So we see that the system (1.2) may be 
written 

J^y(t)    =-2Ricci(p(t))+tVi^ + Vi^, where 

The reader is referred to [Ha 3] section 6 for further discussion of the system 
(1.3) which is called the dual Ricci harmonic map heat flow, or [ES], [St] for 
further information about harmonic map heat flow. It is shown in [Ha 3] 
section 6 , that the evolution equation (1.3) for g(t) is a strictly parabolic 
system of equations. In particular if we choose h = go, then the evolution 
equation for g(t) in (1.3) is the Ricci-DeTurck flow, which was first intro- 
duced in [De] to prove the short time existence for Ricci flow on a compact 
manifold using standard parabolic techniques (short time existence for Ricci 
flow on a compact manifold was first proved by Hamilton [Ha 1] and re- 
lied upon the sophisticated machinery of the Nash-Moser Inverse function 
Theorem). 

The evolution equation for (f)t in (1.2) may be written as a first order 
evolution equation in terms of g. That is, 

§-tr(p,t) =^tsnHP,t)) = iir(P,t)9jkC%-^i
jk)(p,t), (14) 

0(p,O)        =Id(p), 

in view of the derivation of V given above. If we can solve the evolution 
equation for g(t),t G [0,T] in (1.3), and the solution g(t) is sufficiently reg- 
ular, then we may solve (1.4) and then define g(t) to be g(t) = ((/>71)*(<7(£)), 
which is then a solution to the Ricci flow. We say that g(t) solves the h Ricci 
flow or h flow of go- Many geometric quantities that are preserved by Ricci 
flow will also be preserved by h flow. 

In Shi's paper [Sh], the Ricci-DeTurck flow was written term by term to 
obtain the evolution equation for solutions to (1.3) in co-ordinate form. We 
present here the evolution equation, in co-ordinate form, for metrics which 
solve (1.3) for an arbitrary smooth fixed background metric h. For the rest 
of the paper we shall be chiefly concerned with solutions of (1.3) and not 
solutions of Ricci flow. For this reason we will use the notation g(t), t G [0, T] 
to refer to a solution of (1.3). Let g(t), t G [0, T] be a solution to (1.3). Then 
g{t), t G [0, T] solves the evolution equation 

jrt9ab =   gcdVcVdgah - gcdgaP9pqRbcqd - 9cd9bP9
pqRacqd 

+ycd9pq(Xa9pc • Vbgjd + 2Vcgap • Vqgbd _ 
-^c9ap ' ^d9bq - 4Va9pc ' ^d9bq), 

5(0) =      30, 
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where Rabcd = Riem(h)abcd and 'v' is the eo-variant derivative with respect to 
h. Note that if h is not twice differentiable, then (1.5) makes no sense, since
then Rabcd = Riem( h) abcd is not defined. If we choose h = 9o, that is we wish
to examine the Ricci DeTurck flow, and 9o is not twice differentiable, then
we cannot make sense of the above equation. For this reason we will always
choose a smooth h not equal to 90 (but close to 9o in some to be specified 
e0 sense) when examining (1.5). 

The first part of this paper is concerned with finding a sensible solution 
to the h fl.ow for initial data 90 which is non-smooth. Theorem 1.1 (below) 
is the target theorem of this section. 
Definition 1. 1. Let M be a camplete manifald and 9 a e0 metric, and 
1 :=; 8 < oo a 9iven canstant. A metric h is said ta be a 8 fair background
metric far g, ar '8 fair to g ', if h is e00 and there exists a canstant ko with 

and 

sup hlRiem(h)(x)I = ko < oo, 
xEM 

1 
-gh(p) :=; 9(p) :=; 8h(p) far all p EM. 

(1.6) 

(1.7) 

Remark 1. By the result af Shi {Shi ], if 9 is Riemannian metric and h 
a smaath Riemannian metric satisfyin9 {1.6) and {1. 1) then there exists a 
smaath metric h' which is 28 fair to 9, and 

sup YvjRiem(h)(x)I = kj < oo, 
xEM 

where 'v
j is the jth cavariant derivative with respect ta h. We will assume 

{withaut lass af generality) that aur h always fulfills such estimates. 
Remark 2. Let M be a campact manifald, and 9 a e0 metric an M far 
which (M, 9) is camplete. Then far every 0 < E < 1 there exists a metric
h(c), far which h(c) is 1 + c fair ta 9. 
Proof (of Remark 2): We may use de Rham regularisation [deR], or a locally 
finite partition of unity and Sobolev averaging (see section on mollifiers in 
[GT]) to obtain a e00 metric h which is e0 as close as we like to 9. A bound 
on the curvature follows from the compactness of M. ◊

Theorem 1. 1. Let go be a camplete metric and h a camplete metric an 
M which is 1 + c(n) fair ta 9o, c(n) as in Lemma 2.4- There exists a 
T = T(n, ko) > 0 and a family af metrics 9(t), t E (0, T] in e00(M x (0, Tl) 
which salves h fiaw far t E (0, T],h is (1 + 2c) fair ta 9(·, t), far t E (0, T] 
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limsup  \g(',t) - go{')\ = 0, 

sup 
xeM 

|V5|2 < Ci(n'fc0'-'"fci)^ for <*"* (0»T]^ e {1.2,...}, 

where ft' is any open set satisfying fi' CC fi; w;/iere fi is any open set on 
which go is continuous (see Theorem 5.2). 
Remark 3. As a consequence of Theorem 1.1, we see that if the metric 
go is continuous except for a set I C M of isolated points, then the dis- 
tance function p(t) : M x M —> R, defined by p(t)(x,y) = dist(g(t))(x,y) 
is lipschitz, and smooth almost everywhere, for all t > 0, and satisfies 
lim^o p(t)(', •) = p(0)(-, •) uniformly on any compact subset of M — I. 
Remark 4. // M is not compact, g is C0 on M, and g is a 'metric of 
curvature bounded from above an below7 (see below) outside some compact 
set 0; and satisfies the global bound 

sup   |Riem(<7)(a;)|2 < fco, 
xeM-Q 

for some constant ko < oo, then for every 0 < e < 1 there exists an h(e) so 
that h is 1 + e fair to g. 
Proof (of Remark 4): We mollify g as in the proof of remark two to obtain 
a metric h which is C0 as close as we like to g. One needs to check that 
supM Riem(/i) < oo. On Q this follows by compactness. Outside of O this is 
true because a metric with bounded curvature also has bounded curvature 
after it is mollified (see Lemma 6.1). 

The second section of the paper is concerned with flowing metrics go of 
bounded curvature from above and below (initially studied by Aleksandrov 
[Al], see [BN] for a good overview), or locally Lipschitz metrics which satisfy 
(for example) Ricci(<7o) > 0, to obtain a smooth metric g which satisfies 
Ricci(^) > 0. The main theorem of this section is as follows. Let 11(g) be 
the curvature operator of g, and G(g) : A2(M)® A2(M) -> R be the operator 
defined by 

G(g)(ct>,i>)=4>ijipkl9ikgjh (1.8) 

where A2(M) is the space of smooth two forms on M. 1(g) will refer to the 
Isotropic curvature in the case that Mn = M4 (see the proof of Theorem 6.7 
for an overview of Isotropic curvature, and the discussion before Theorem 
6.6 for an overview of the curvature operator). 
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Theorem 1.2. Let M{n,ko,d,v) be the set of {Mn,g) such that Mn is an 
n-dimensional compact manifold and g is a metric with curvature K(M,g) 
bounded from above and below which satisfies 

-ko < K(M,g) < ko,vol(M,g) > v,diam(M,g) < d. 

There exists an ei(3,ko,d,v) > 0, e2{n,ko,d,v) > 0, esi^ko.d.v) > 0 and 
e4(n,ko,d,v) > 0 with the following properties. If (M3,g) is an element of 
M(3iko,d,v) and satisfies Ricci(g) > —Sig, then there exists a smooth Rie- 
mannian metric g' on M3 where (M3,^') has non-negative Ricci-curvature. 
If (M,g) is an element of M{n,ko,d,v) and satisfies TZ(g) > -S2G(g), then 
there exists a smooth Riemannian metric g' on M where {M,g') has non- 
negative curvature operator. If (M,g) is an element of .M(4, fco?d, v) and 
satisfies 1(g) > —S3, then there exists a smooth Riemannian metric g' on M 
where (M,g') has non-negative Isotropic curvature. If (M,g) is an element 
of M(n, koyd,v) and satisfies R(g) > —£4, (scalar curvature), then there 
exists a smooth Riemannian metric gf on M where (M.g1) has non-negative 
scalar curvature (see Theorem 6.8). 
Remark 5. In dimension three non-negative curvature operator is equivalent 
to non-negative sectional curvature. In dimensions bigger than three, non- 
negative curvature operator implies non-negative sectional curvature. 

Theorem 1.2 is proved by an application of Cheeger's finiteness Theo- 
rem and Gromov's compactness Theorem for metrics in M(n,ko,d,v) and 
a contradiction argument, and an application of the following theorem. 
Theorem 1.3. Let Mn be a manifold (compact or not compact) which 
admits a complete metric go of bounded curvature from above and below. 
If 1Z(go) > 0 then Mn admits a smooth Riemannian metric g satisfying 
I^ig) > 0. // R(<7o) > 0 then Mn admits a smooth Riemannian metric g 
satisfying R(g) > 0. If n — 3 and Ricci(go) > 0 then M3 admits a smooth 
Riemannian metric g satisfying Ricci(g) > 0. If n = 4 and T(go) > 0, then 
M4 admits a smooth Riemannian metric g satisfying X(g) > 0 (see Theorem 
6.2, 6.6 and 6.7). 

Theorem 1.3 is proved by flowing the metric go with the hflow from 
Theorem 1.1, and showing that the smooth solution g(t) also satisfies the 
curvature bounds from below. 

We may slightly weaken the hypotheses of theorem 1.3 in the Ricci curva- 
ture case. We replace the bound on the curvature from above by a Lipschitz 
condition. 
Theorem 1.4. Let M3 be a three manifold, and go be a complete locally 
Lipschitz metric on M which satisfies Ricci(go) ^ 0; in the weak sense of 
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definition (6.4). Then the solution g{x,t),t £ (0,T] to h flow of go exists 
(for some smooth metric h) and satisfies J{\cci{g{x,t)) > 0 for all t £ (0,T] 
in the usual smooth Riemannian sense (see Theorem 6.5). 

2. A priori parabolicity. 

Let go be C0, and h be 8 fair to g^. We define the function </>o : M —V M as 
follows, 

^0 (p) =gi){p)hij{p). 

We may always choose local co-ordinates around a fixed point p, so that at 
p we have hij{p) = 5^, and gijip) = <JjjAj(p), and hence 

0o(p) = T" + T-+... + iri Ai       A2 An 

and hence, 5 fairness implies that supp6M0o(p) < f < 00. We will use 
similar techniques to those of Shi [Sh] to obtain a priori estimates for a 
priori smooth solutions to the kflow with initial C00 data go 5 where h is a 
metric 5 fair to go (0 < 8 < 00). 
Lemma 2.1. Let D be a compact region in M, Let go be a C00(D) metric 
and h a metric on M which satisfies 

9o > (1 - S)h. (2.1) 

Let g(t),t E [0,T] be a G°°(D x [0,T]) solution to the h flow with Dirichlet 
boundary conditions glaoO^) = ffo(-)> #(0) = po- For every a > 1 there 
exists an S = S(n, ko, S, a) such that 

g(t) > (1 - a)(l - 8)h,\/t € [0,5] n [0,.T\. 

Proof : We define the function <f> by 

<P(x, t) = gj^ (x, t)hilh^ (x, t)hi2j3 ... g^m (a.> t)him.i j 

and note that it satisfies 

sup (p{x,t) = sup <l>0(x) <       n (2.2) 
(a;,*)e£>x{0}Ud£>x[0,T] xeD (1 - 0)m 

due to (2.1). Using (1.5) as in [Sh] Lemma 2.2 we see that 
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and hence 
r\ -1 

— (0)~m > gliViVj((l)~™) - (m + 1)0™ Vi0~^V^-™ A:o. 

This implies 

(^)-d + —kt   > inf (</.)■ 
m (x,4)eox{o}udr>x[o,r] 

>      r- > 
(1-5) 

1      — 15 

me' 

,      /(I-8)      1 7 \-^ 

in view of (2.2) and the parabolic maximum principle. Rewriting the above 

quality, we obtain 4 > f ^ ^ — ^kt)   , which implies that 

(Ij-S)     i 

nm 

which may be rewritten in co-ordinate form as 

Since all the terms on the left hand side of the above equation are positive, 

we see that (JT)"
1
 < (^^ - ^kt\ "", for fixed i € {1,2,...n} which 

implies that 

\(x,t) > (^—rl-—kt). 

This means for any given a > 0, we may find an S = S(ko, n, a), such that 

Aj > (1 - <*)(! - ff),Vt G [0,5] n [0,T]. 

We wish also to obtain bounds from above for g in terms of h. 
Lemma 2.2. Let D be a compact region in M, and go be a C00(D) metric 
and h a metric on M which satisfies h < go < (1 + S)h. Let g{t),t 6 
[0, T] be a C00(D x [0, T]) solution to the h flow with Dirichlet boundary 
conditions g^D^'-,^) — 9Q{')> <?(0) = ^o- For every a > 0, there exists an 
S = S(n,ko,<j) > 0 such that 

Sii <(1+ *)(!+a)/iy, 

for all te [0,Sf\n[0,T\. 
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Proof : Choose m(n), and a(m) so that 

m > 64n2 + 1 + 2c(n, h), (2.3) 

and large enough so that 
(2n)m < (l + tr) (2.4) 

and choose a = a(m) > 0 so small that 

(1 - a)™-1 > I (2.5) 

By the previous theorem, there exists an S = *Sf(n, &05 ^) > 0 such that 

g(;t) > h(l - a) for all t G [0,5] n [0,T]. (2.6) 

Equation (2.3) implies that 

4-(m-l)(l-a)m-1        ' <   4-(l-ar-1^ 
2(2n)1+m 8n2 

=   4-8(1-a)"1-1, 

which combined with (2.5) gives 

4 - (m - 1)(1 - a)"*-1        I < -2. (2.7) 
2(2n)1+m 

Similar to Shi [Sh], we define 

G = h^gj^h^g^ ... h^-gj^, (2.8) 

and for (1 + S)m - [±](G) > 0, we define F =  {1+s)m
l_[MGr See [Sh], 

Lemma 2.3, equation (79). In our preferred co-ordinate system, 

^t)= (1+ 8)<" - [^](Af (X, t) +\?(x,t) + ... Xrn(x, t)) " (2'9) 

From (2.8) and the fact that h is 1 + 5 fair to go we see that 

1 71 1 
(1 + 5)m - [^KGfo0)) > (1 + Sr - [£](1 + ^m > £(1 + 5)-,    (2.10) 

and hence F(x,0) = /1+(yNm_r\_1/G/a.0xx < oo, is well defined at time zero. 

Since D is compact, and g{x,t) is a priori smooth, there is some maximal 
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T' 6 [0,T] n [0,5], such that F{-,t) is well defined (not infinity) for all 
t 6 [0,T'), and \i s\xpDx[QTI)F < oo, then [0,T'] = [0,T] n [0,5]. Since the 

function F is well defined on [0,T'), we see that (1 + 5)m - [^]((?(£,*)) > 
0 for all t e [0,T'), that is £" Af < (2n)(l + 5)m, which implies 

Ai<(2n)m(H-*)foraU»€{l,...,n}, for allt € [O.T'). (2.11) 

Then we calculate as in Shi (but remove the error stemming from (82), that 
is he should have there ^^Riaia not -2T4— Riaia- Once corrected one 
calculates as he does and no problem occurs) up to equation (89) on page 
241, that 

where here we have used (2.3),(2.6) and (2.11) to arrive at this evolution 
equation in the same way Shi does. Substituting (1 + 6) < 2 and then (2.5) 
into the above we get 

& < <^vav/3F + ^^F2,W e [O,T'). 
ot (1 — a) 

From the parabolic maximum principle, and equation(2.10) we obtain 

F(;t)<a{t)<j^, (2.12) 

where a(t) = sup^x^eDx^T^ F(x^t)1 CLQ = a(0), s(t) = 1 — ao^o^, and bo = 

jfz^-. Substituting (2.9) into (2.12) we see that 

(l + Sr-^G>S-^> s(t){-^P^Vt e [0, T')5 

in view of (2.10). Rewriting this equation we get 

G < 2n(l + 5r(l -S-Y-) = 2n(l + J)m(^ + aoM), Vt G [0,T7),     (2.13) 

in view of the definition of s(t). Without loss of generality, we assume that 
S < 4^^7 which implies that aoM < \ for all t e [0, T'), which when 
substituted into (2.13) implies that 

\?(x,t) + \?(x,t) + ... + A- < ^-(1 + Sr,yt 6 [0,T') (2.14) 
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Equation (2.14) then implies that 

(1 + S)m - [i(G) > -(I + 6)m > ovt e [0,TO, 
2n 4 

and hence T" = min(S', T). Prom equation (2.14) we see, for fixed i G 
{1,... n}, that 

i77     1 
Mx,t) < (—)»(! + *) foraine[0,5]n[0,T]. 

Substituting (2.4) into this inequality gives us A^o;,*) < (1 + 5)(1 + cr) as 
required. 0 
Theorem 2.3. Le£ D be a compact region in M, and go be a C0O(D) metric 
and h a metric on M which satisfies j-h < go < 52h, where Si > 1 for 
i e {1,2}. Let g(t),t £ [0,T] be a C00{Dx [0,T]) smooth solution to h flow 
. For every a > 0; there exists an S = S(n, &o,£i,£2,cr) > 0 such that 

(1 - (j)—hij < gij < 62(1 + (T)hij, 

for all te [0,5] n [0,71. 
Proof : The proof relies on some simple scaling arguments. First note that 
if g(-,t) is a solution to hflow, then so is cg(-, ^t), with initial data cg(^0). 
Let (/(■,<) = 5ig(-, ±t). Then ffo(') = ^(-,0) = 6igo{-) satisfies h < ^(-,0) < 
S^h. Prom the previous two lemmas, we may find an S = 5(a, 5i52, n, ko) 
so that (1 - a)hij < gij < 8182(1 + (r)hij, for all t G [0, S] D [0, T]. Multiplying 
the above equation by ^-, we obtain the result. 0 
Lemma 2.4. Let g{t),te [0,5] be a C00^ x [0,5]) solution to the h flow, 
for some h which is l + e(n) fair to g(t), for all t G [0, 5] (e(n) to be specified 
in the proof below).  Then 

sup|V#0z;,£)|2 < c(n,M,Asup|V#o|2) for allt e t0'5]- 
xeD D 

Proof : Let 

*(*, *) = 9im (x, tW^g^ (x, t)h™ ... gjmim (x, *)/»*•»*. (2.15) 

We may always choose co-ordinates at a point so that hij(p,t) — 8ij, 
gij(p,t) = \i5ij, and then 0(p,t) = (Ai)m + ... + (An)m. Notice that since 
(1 - e)h(x) < g(x,t) < (1 + e)/i, we get 

l-e< Ai < (1 + e) (2.16) 
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in our preferred co-ordinate system. We will calculate the evolution equation 
for the function ip = ((/)(x,t) + a(n))| vg(x,t)\2. Calculating as in Shi, and 
using the fact that h is a priori (1 + e) fair to g(x, £), we see, as in Shi ([Sh], 
§4, page 250, estimate (33)) that the function ^ satisfies 

—V < 9aPVaV^ - -V2 + co(n, fco, fci), 

as long as £(n) > 0 is chosen small enough (as is the case in [Sh], §4, (33)) . 
For now we only need the fact that this implies that 

-(V-cot)<5^VQV^(^-coi), 

although the term — ^i/j2 shall be important later. Prom the maximum prin- 
ciple we obtain that 

sup  (^ - cot) <        sup        ip. (2.17) 
£>x[0,S] dDx[0,S]UDxQ 

Applying lemma 3.1, VI, §3 [LSU] to the evolution equation (1.5) for #, 
we get sup0£x[o,S] 1^01 ^ c{n,8,dD), in view of the apriori parabolicity 
(Theorem 2.3). Upon substituting this inequality into (2.17) we obtain the 
result. 0 

3. Solution to the Dirichlet problem. 

Theorem 3.1. Let go be a C00^) metric and h a metric which is 1 + e{n) 
fair to go on D, where D C M is a compact domain in M (e{n) as in 
lemma 2.4)- There exists an S = S(n,ko,6) > 0 and a family of metrics 
g(t),t G [0,S] which solves h flow, h is 1 + 2s(n) fair to g(t) for all t E [0, S], 
and g\dD(',t) = go(-), g(0) = go- 
Proof : We consider the family of evolution problems 

s. 

sL{sg(x,t))    =   0, for (x,t) eDx [0,T], 
sg(;0)    =    (l-s)go(-) + sh(-), 
sg(x, t)    =   (1 - s)go(x) + sh(-){x) for all x e dD, for all t G [0,T], 

(3-1) 
where 

8L(v)ki   = jj-tvkl - v'iViVjVu + vcdvkphrmlcqd + vcdvlph™Rkcqd 

-±VcdvP1{VaVpc • VbVgd + 2VcVap • VqVbd 
-2Vcuap • WdVbq - 4VaiipC • Vdvbq), 
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where Rabcd = Riem(h)abcd and V = V, t)(-,t) = (1 - s)v(;t) + sh(>) and 
s G [0,1] (strictly speaking the notation v should be s£ since the operator" 
depends on s). Then if sg(x,t),t G [0,T] is a classical solution to (3.2), one 
may verify that v(x,t) = 5g(x,t),t e [0,r] solves 

d_ 
-vkl   =   tf'ViVjVki - (1 - s)vcdvkph^Rlcqd - (1 - s)vcdvlphP^Rkcqd 

-    \vcdv^(Vavpc-Vbvqd + ...), 

v(',0)    =    (l-s)go + sh, 

v(x, t)    =    (1 - s)go(x) + sh{x), for all x G SD, for all t G [0,T). 

This is essentially equation (1.5), and we may use the same techniques we 
used there to obtain lemma 2.3 and lemma 2.4 for all classical solutions 
sg{-, t), t G [0, S] of Ls(

sg) = 0 (independently of s) for all t in [0,5], where 
5 = S(fco, ft, 1 + £) is as in Theorem 2.3. Then hiss, priori 1 + 2£ fair to sg(t) 
for all t G [0,5] because of Theorem 2.3, and the fact that h is 1 + e fair to 
s#(0). Also using lemma 2.4, we get that sup^ |V55(t)| < c(D,go, h, 1 + e). 
Hence the equation Ls(

sg) — 0 may be written as 

-gl'Ski + sVJViV/gkl = /w, 

where fki is bounded uniformly by a constant depending only on 
A;o,n,/i,go|i}j<J ari(* ^' Using the WJf'1 estimates for parabolic equations 
(see [LSU], chapter. IV, §9, thm. 9.1) we obtain g G Wqfl(D x (0,T)) with 
IMIw^Dxfo/r)) — c(^0'n' hi9o\D, 8, D, q), for all integral g, and hence using 
the Sobolev imbedding Theorem (see for example Lemma 3.3, Section 3, 
Chapter II [LSU]) we get vg is Holder continuous in space and time with a 
norm bounded by 

ll^llca'f ((£>x(0,T)) - c(*to>n>fc>ffob,<J, Aa)- 

The standard existence Theorem using the Leray Schauder fixed point 
Theorem (See for example [LSU] §6, ch. V, the argument given at the 
beginning of the chapter and in Theorem 6.1, with the family of quasi-linear 
problems given by Ls above) then applies to obtain existence of solutions to 
(1.5) for some short time [0,T] where T > 0. 

Notice that in this argument, all derivatives (time like and spatial) of 
the solutions sg(-, t), t G [0, T), and hence of the solution g(x, t), t G [0, T) to 
(1.5), are bounded by constants depending on 5o5M + £, n and D , as long 
as T < 5(n, fco, ^ 5), S as in thm. 2.3. Hence we obtain a solution to hflow 
g(x,«), (x, t)eDx [0, T) for every T < S. 0 
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4. A priori interior estimates for the gradient and higher 
order mixed derivatives of g. 

To obtain interior estimates for the first derivative of g(x,t) we may modify 
the argument used in Shi. 
Lemma 4.1. Let g{t),t e [0,5] be a C00(D x [0,5]) solution to the h flow, 
for some h which is 1 + e(n) fair to g{t)Jor all t G [0, 5] (s(n) as in Lemma 
24).  Then 

sup     \hVg{x,t)\2 < c(n,h, -)-, for all t G [0, 5], 
B(h)(xo,r) r   t 

where B(h)(xo,r) denotes a ball of radius r with centre XQ calculated with 
respect to the metric h. 
Proof     : In     lemma     2.4     we     saw     that     the     function 
ij) = ((j)(x,t) + a(n))(| \/g(x1t)\21 satisfies 

—ifj < g^VaVrf - -i>2 + co{n,£{n),ko,k1) for all (x,t) G M x [0,r]. 

We have been careful to include the dependence of the constant CQ here, and 
note that it does not depend upon go or D. Using this inequality we see that 
the function f(x,t) — il)(x,t)t satisfies 

ftf < 9al3VaVpf - ^/2 + cot + L for all (*, t) € M x [0, T].        (4.2) 

Let XQ be fixed in M, and fi = B(h)(xQ,r) a ball of radius r in M, where here 
we have used the notation B(h)(xo,r) to make clear that the ball B(h)(xQ1r) 
is calculated in terms of the metric h. That is 

ft = B(h)(xo,r) = {x G M : dist(h,x,xo) < r} . 

For fixed XQ, we use the background metric h and the Hessian comparison 
principle to construct a time independent cut off function 77 satisfying 

fl(x) =l\/xeB{h)(xQ,r), (dl) 
TI(X) =0VxeM- B(h)(xo, 2r), (d2) 

0 < r](x) < IVx G M, (d3) 
^iVr?!2 <c1(

1-)rl, _ (d4) 
VaV^ry > -C2(supM Riem, i)^ = C2{ko, p). (rf5) 

(see [Sh] Theorem 1.1). Note that the constants ci and C2 decrease (get 
better) as r increases. Note also that the function is C00 almost everywhere, 
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and Lipschitz everywhere. If we mollify the function 77 then we obtain a 
C00 function satisfying the same properties, but for slightly different balls 
(B(h)(xQ,r-e) and B(h)(xo, 2r + e)) and slightly different constants (ci +£, 
C2 + e). 

Using (d3) in equation (4.2) we get 

&(fv) <   9aPVaVp(fr,) - ±-tfr) - 2^VQ/V^ - f^Va%V    ( 

+c{n,r,h) + ^, for all x €..fi,t € [0,5]. l     j 

In this proof a large number of constants depending on n, /i, r appear. To 
simplify the proof we use a small c to denote a constant c = c(n, /i, r). We 
often rewrite algebraic expressions involving c and other constants simply as 
c. For example |c2 + c4 would be turned into c. 

Let us assume that (a;o,to) is an interior point of B(h)(xo,2r) x [0,T] 
where the supremum of (fr})(x,t), for (x,t) € B(h)(xo,2r) x [0,T] is ob- 
tained. Since (fri)(xoyto) is a maximum of the function /r/(-,to), we get 

-2<^Va/V/w   = -2^iVa(/r?)V^ + 2g«P{j\Vri\2 

at the point (^0,^0)7 which implies 

-2g^VafVpr, < cf, (4.4) 

at (so, to), in view of (d4). Substituting inequality (4.4) and (d5) into (4.3), 
we obtain g(fv)(x0,to) < ga^aV^fV) - TL-fr] + cf + c+ §, at (so,to), 
which implies that 

0<|(/^o,*0)<-I^AH-c/ + c+§> (4.5) 

in view of the fact that ^(fv)(xo,to) > 0, and ga0VaVfi{fT])(xo,to) < 0, at 
the maximal point (a;o,to). Multiplying equation (4.5) by r}(xo) we get 

^(/^(schto) - ctfnXxo,*) - (M^OiM < C) 

which implies 

(fv)(xo,to)(—(fri)(xo,to) - c - -) < c, 

that is {fv)(xo,to) < c(n,h), in view of the fact that to < 5 = S(n,ko). 
This implies that supB(ft)(x0ir)/(a;,t) < max(supB(fc)(iBO|2r)/(ar,0),c) = c, 



1050 Miles Simon 

since f(x, 0) = 0. Using 1 + e(n) fairness and the definition of / we obtain 
the result. 0 

We have now obtained the important a priori parabolic estimates and 
the a priori interior gradient estimate. To obtain further interior estimates 
we may apply the above techniques and those of Shi. 
Lemma 4.2. Let g(t),t G [0,5] be a C(X){D) x [0,5] solution to the h flow, 
for some h which is 1 + e{n) fair to g(t), for all t G [0,5], e{n) as in lemma 
24 Then 

sup      V^l   <  -TT-r for allte [0,5],z G {1,2,...}, 
B(h)(xo,r) tP{hn) 

where p(i, n) is an integer and B(h)(xo, r) denotes a ball of radius r contained 
in D. 
Proof : Whenever we write |T| for some tensor T in the following calcula- 
tion, we shall mean |: the modulus of the tensor taken with respect to the 
metric h. We calculate similar to Shi ([Sh], Lemma 4.1, equation (4),(5),...) 
using the evolution equation (1.5) for h flow, that 

flVV = ^ViVi|V%|2-2^Vi(V
m,)Vi(V%) 

+2 ]P VV1 * V^ff * V Riem(/i) * V™g 
i+j+k=mii,j,kil<m 

+2 ^2 V'g"1 * V^g"1 * V g * V g * Vmff, 

for all xG ft, foralUG [0,5], 

where here T* 5, (T and 5 are tensors), refers to some trace with respect to 
the metric h which results in a tensor of the appropriate type (in the above 
formula the tensor product should result in a function). Using the fact that 
h is C00 and 1 + 6 fair to g(x, £), we get 

+2c(n, h) Ei+j+k^iJAKm IVdl VdlVm0| 

+2£wfe+^-KM,;,fe,Krn+i(l + ^\V 9\\V 9\\V9\\V g^gl 
for all x € ft, for all t € [0, S\. 

(4.6) 
We will prove interior gradient bounds by induction in m. Assume that we 
know already that 

1 Vgf < ^y for ail x £ n, t e [0, T], i e {1,2,..., m - 1} , 
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where p(z, n) is an integer. We show that this implies a similar bound for 
| V g\2. We will write c(n,h:m) simply as c, to simplify readability of the 
proof (as in the proof of Theorem 4.1). Combining the evolution equation 
(4.6) with our induction hypothesis, we obtain 

|1VV < ^ViVi|V^I2-2^Vi(V
m,)Vi(V

m,) 

+c £ IV.IIV.IIV^IIV^IIV^I, 
i-\-j~t-k-\-l=m+2,m<i,j,kil<m-\-l 

which implies 

+^|Vm
5| + c|Vm

5|2 + cfrm
9\H\v29\ + |V5|2) 

CIV^.IIV^HV,!, 

where q = q(n,p,m) is some integer. In what follows we shall freely replace 
powers of q by q. For example 2g2 will be replaced by q. Since m > 2, we 
may use our induction hypothesis on the gradient terms of order one and 
two, and the Cauchy-Schwarz inequality to obtain, 

+#ivv + ^ivm+1
5i2 + #. (4-7) 

Finally, substituting 

29«VJ(V
m

9)V,(Vm
g) > ^"iv^v 

into (4.7), we get 

d 
,tlVV < ^V^iVV - (T^lV    si2 

-^l^7  5l   + ^ for a11 x e fi, for all t 6 [0,5]. 

Similarly 

liv-1.,!^ < 9«viv,|V"'"1
9i2 - (nby'ivv+^ 



1052 Miles Simon 

in view of the induction hypothesis. Following Shi ([Sh], Lemma 4.2 equation 
(80)) we define 

#M) = (a+Tvm-V)1VV, 
where a is a constant to be chosen later. In view of the previous two evolution 
equations we get 

-        2(1+6)  I V    ^        2(l+e)  I V        9\   -r      tv 

-2^V/|Vm-1
5pV/|Vm,p, 

(4.8) 
where here it is clear that we have used our inductive assumption (and not 
that of Shi) and the Cauchy-Schwartz inequality. The last term satisfies 

^viv^pv/ivv < 2(i+£)''ivm,i2hivm-1,rivm+1,i 
1        h.hrn    4        c h.hm+l   .o 

where we have used our inductive assumption on the term | v g\ and the 
Cauchy-Schwartz inequality. Substituting this inequality into (4.8) we get 

9   ,    ^    iah^, K—    ,       ,0 a sh.hrn+l     9 1 h.hrn    A      c(l + tt  ) -^ < ^V^H-C--^-^) |V    .l2-^^^^ |V 5|4+-V^' 
(4.9) 

where here it is clear that we have used our inductive assumption (and not 
that of Shi), and (1 + e) fairness to obtain upper and lower bounds for the 
metric g(x,t) in terms of h (as in Shi). We now modify ^ to our purposes. 
We consider the new function w defined by 

w = to+1(2c(l + e)i-« + iV"" V)| VV, 

where q and c are the constants appearing in equation (4.9) (the constant 
q = q(n,p,m) is now fixed!). That is we have chosen a to be a constant 
depending on t (who's time derivative we must therefore calculate), and 
multiplied the whole function by a power of t. Note that this function is 
zero at time zero and hence must attain a maximum at some time bigger 

than zero. Without loss of generality we may assume   | V g\2 < a(t), for all 
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i £ {1,... ,ra}.  Also note that in (4.9) we then get that (^ - 2M+g)) < 0 

and c^ tq
a ' < jjgj. In view of these two inequalites and (4.9), we get 

d 
-w 

=   ^V.V^-—i- ^ = H-^t^ti, 3 4(l+£)ig+l(a(i) + |Vm-1
5|2)2 t 

where the last equality follows from the definition of w. Hence 

a£^     ^9    Vi VjW      48(l+e) ^+ia2(t) +     t    ^ + t*9 (A m) 

in view of the fact that a(t) = ct~q, and h\ V ^|2 < a(t). Now, as in the 
estimate of the first derivative of #, we multiply w by a cut off function 77 
and calculate the evolution equation of wq. Using (4.10) and dl - d5 as in 
the estimate of the first derivative of g, we get 

|M) < fP^friiwri) - ^-Wrj + ^-^(rM + cw + £. 

At an interior point (XQ, to) of O x [0, T] which is a maximum of w we argue 
as in the proof of lemma 4.1 to get 

(^)(xo^o)(-2^"1(^)(^0,to)-(9+l)) <C, 
C2 

from which we obtain {^(XQ^Q) < -§^. Using the definition of w and the 
0 

above inequality, we get 

t^(4ct-« + iV"1"1^2)! W < £, for all x G Br(Xo),t e [0,T], 

which implies the desired result. 0 
Theorem 4.3. Let g(t),t E [0,5], /&' &e as m Theorem 4.2.  Then 

Bap\Vg(x9t)\2<^^ 
x€M t 

where B% = max(A;o, h, &2, • •.', ki), kj as in definition 1.1. 
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Proof : We derive this corollary from Theorem 4.2 and a scaling argument. 
Let g(-,t) = ^g(x,Rt) for some constant R > 0, and h(-) = RH')- Then 
h is 1 + e fair to p(a;,t) and ff(-,t),t G [0, ^] solves hflow. Without loss of 
generality we assume that S < 1. For a given to G [0,5], let i? = to < 1. 

Then the ki < ki, where ki = sup^JV2Riem(/i)|2. Hence by lemma 4.2 we 
get 

1v*5|2|(Xji) < c(n,kQ,..:,ki) <c(n,ko,...,ki). 

But 

= Ri\Vg\2(x,R), 

from which the result follows. 0 

5. Existence of entire solutions. 

Lemma 5.1. Let go be a C00(M) metric and h a metric on M which is 
1 + e(n) fair to go, e(n) as in lemma 2.4- There exists a T = T(n:ko) and 
a family of metrics <?(£),£ G [0, T] in C00(M x [0,T]) which solves h flow, h 
is (1 + 2e) fair to g(-,t) for t G [0,T]; and 

Proof : If M is compact, then we obtain the result using Theorems 3.1 and 
4.2. Let {Di} , i G {1,2,..., oo} be a family of compact sets which exhaust 
M, Di = B(go)(xo, i), where B(gQ)(xoi i) is the ball of radius i for some fixed 
arbitrary #0, with respect the metric given by go- Let g(': £), t G [0, T] be the 
solutions obtained to the Dirichlet problem oft Di with boundary data go. 
Using the interior estimates (Theorem 4.2) and Arzela-Ascolii Theorem, we 
may let i -» oo and take a diagonal subsequence to obtain a limit #(•,£),£ G 
(0, T] which solves h flow for t > 0 and satisfies the interior estimates. As the 
initial data is smooth, as is the solution for t > 0, we see that g(^t),t G [0, T] 
solves h flow. 0 
Theorem 5.2. Let go be a complete metric and h a complete metric on 
M which is 1 + £(n) fair to go, s(n) as in Lemma 2.4- There exists a 
T = T(n,fto) and a family of metrics g(t),t G (0,T] in C00(M x (0,T]) 
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which solves h flow for t e (0,T],h is (1 + 2e) fair to g(t) for t e (0,T]; and 

limsup/l|3(-,t) -5o(-)l = 05 
*^0 xew 

sup 
xeM 

|VV < <*(".*»»• ••'**), for allte^ni e {1,2,...}, 

where Q' is any open set satisfying fi' CC ri; where ft is any open set on 
which go is continuous. 
Remark. In particular, if M is compact, and go is continuous then g{',t) -} 
go(-) uniformly on M as t —> 0. 
Proof :   Let  {a9o}aG^ be a sequence of smooth metrics which satisfy 
liniQ^oo {^o}  — 9o, where the limit is uniform in the C0 norm.   It fol- 
lows then that h is (1 + §) fair to ag0 for all a > N for some TV € N. We flow 
each metric ag0 by h flow (using Lemma 5.1) to obtain a family of metrics 
#(•, £), t e [0, T], T = T(n, ko) independent of a which satisfy 

|V(sM))|2<|, for all* e (0,31, 

independently of a, for all a > N. We then obtain a limiting solution g(x, t) 
, £ 6 (0,T) via g(x,t) = lima_>00

<^(x,i), which is defined for all £ E (0,T). 
This limit is obtained using the Theorem of Arzela-Ascolii (is uniform on 
compact subsets of M), and it may be necessary to pass to a sub-sequence 
to obtain the limit. It remains to show that the metrics #(•,£)|n' uniformly 
approaches #()(•)In' as t approaches zero. As a first step we obtain estimates 
on the rate at which g(-,t) —> goi'^t) as t —>• 0 if go{') is smooth. 

Let e > 0 be given. Arguing as in [Sh] Lemma 2.2, we see from (66) and 
(68) in the proof of Lemma 2.2, and using (l + e(n)) fairness that g^ satisfies 

J^' < g^VaVpgV + c(h, n)^ - S4*', 

where S^ is a positive tensor obtained from the square of Vg (the last term 
in [Sh] Lemma 2.2 , equation (68)). Since S^ is positive, we get 

^{9ii-lii)<9afiVaVp{gii-n+c(h,n){a
ii-lil)+^ 

(5.1) 
for any time independent tensor llK Fix x$ in Q!\ and fix a co-ordinate chart 
around XQ, if) : U -± M, XQ £ U CC ft. Define the (0,2) tensor / by 

l(V,W)(x) = Vi(x)Wj(x)hqp(xo)gq
Q
i(xo)hpj(x)1 
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where on the right hand side we have used our fixed co-ordinate chart to 
help us define this tensor. That this is a well defined tensor (for example 
linearity) follows from the definition. Notice that the right hand side in the 
above definition *is dependent* on the coordinate chart. That is we have 
used our fixed co-ordinate chart to help us define this tensor. Also notice 
that l^(xo) = glJ(xo). By definition of I , we get 

h\g^(x) - /«(*)'!    <   h\gij(x) - g^(xo)\ + ^(xo) - hqp(xo)g£(xoWi(x)\ 

<    I. 
(5.2) 

for all x G B(h)(xo,r) C U for some small r = r(go^ h, e) > 0, where the last 
inequality follows from the continuity of g^ and the continuity of h10. This 
gives us that 

(1 - 2e)h <1<(1 + 2e)h, (5.3) 

for all x G B(h)(xo, r), in view of (5.2) and the fact that h is (1 + e) fair to 

We also have that 

sup    fc|VV/|<c(/i,n,!7), (5-4) 
B(h)(xo,r) 

as a consequence of the definition of /, the inequality (5.3), and the fact that 
U C Q is some fixed compact set. Substituting (5.4) into (5.1) and using 
(5.3) we get 

^-t(9ij - lij) < 9af3VaVp(9ij - lij) + c{h,n, U){g^ - fl) + c(h, n, U)^, 

and hence 

for all x G B{h)(xQ,r). Define the tensor / to be /# = e-ct{(g^-l^-cth^). 
We construct a cut off function 77, as in the proof of Lemma 4.1, for the ball 
S(/i)(rz;o,r), with rj = 1 on B(h)(xoJ |) and 77 = 0 on dB(h)(xo,r). Using 
the properties of 77, as in the proof of lemma 4.1, we see that 

yt(vfij) < 9af3VaVp(rin + Cifo/tf) - 2Var,V^r,) + c^, 

which combined with the fact that / is bounded gives 

ft(rifij - Cih'H) < g^VaVM't - ah'h), 
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where ci = ci(^,n, /i, U). Using the maximum principle and the fact that 
Vfij - cihijt = -ciWH < 0 on dB(h)(x0,r), we get that r/(-)/y(-,t).- 
cih^(-)t < r)fli(-,0) < |/iu for all x G 5(/i)(xo,r), where the last inequality 
follows from (5.2), and the definition of /. This implies that /ZJ(-, t) < (cit + 
^)h^ for all x G B(h)(xo, |) and for all t G [0, S] in view of the fact that 77 is 
equal to one on B(h)(xo^ §). Substituting t < ■£- into the above inequality, 
we get f^(-it) < eh1* for x G B(h)(xo, §), for all t < ^-. Substituting the 
definition of/ into this inequality, we see that (g^—Pi) < ect(eJrct)h1^ which 
implies that (gij-lij) < 2s/^', for all x in B(h)(xo: |), for all t < T(c,cue). 
Substituting the inequality (5.2) into the above inequality, we get that 

9ij - goij = (gij - lij) + (lij - goij) < ZeW, (5.5) 

for all x in B(h)(xo, §), for all t < T(c,ci,s). 
Notice that this argument applies to each solution ag(-,t) defined at the 

beginning of the proof. That is, agij < "gji + SehV for all x G B(h)(xo, r-f), 
for all t < T(n,Uih,j^,s), where here we write ra, as ra may possibly 
depend on a. In the estimate (5.2) we see that ra > 0 is chosen so that 

for all x G B(h)(xo,ra). But then for x G B(h)(xo,ra), f3 > a we get 

YsoW - ^ijW\ < Ytfix) - aglJ(x)\ + Ytfix) - °rHx)\ 
+h\alij{x)-PliJ(x)\ 

if a, /3 are chosen large enough, due to the continuity of /i, the definition 
of / and the fact that ag0 —>> go in O as a —> oo. So we see that we may 
choose r > 0 independent of a. Hence we obtain (5.5) for the metric #(•, t) = 
lima^00

ag(-,t). 
Let (f) be the function defined in (2.15). Arguing similarly to Shi, we see 

that (f) satisfies 

j^ < S^VaV/^ + co(h,n) - ^|V5|2, 

as shown in [Sh] (§4, equation (19)), where we use (1 + £(n)) fairness as Shi 
does. Arguing as above, but for (j) instead of gli, we see that there exists a 
S = S(n, h, O', #o5 £) > 0 such that 

0M)<0M) + 3e, (5.6) 
for all t G [0, S], for all x G fi'. Using the inequalities (5.5) and (5.6) we see 

that supn, h\gQ(.) - g(.,t)\ < c(n)e^T, for all t G [0,5], for all x G fi'. 0 
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6. Applications to metrics with 'curvature bounded from 
above and below'. 

Assume that our initial metric go is a 'metric with bounded curvature' on 
a compact manifold M, in the sense of Aleksandrov ([Al], see [BN] for a 
good overview). Such metrics are locally C1'0*, and using a Theorem of 
Nikolaev, we may approximate go by a family of smooth Riemannian metrics 
whose sectional curvatures are bounded from above and below by constants 
which approximate the bounds for go. Furthermore the bounds from above 
and below for Ricci curvature and curvature operator of the approximating 
metrics are approximately the same as those for g^. We state this more 
precisely. 
Lemma 6.1. Let g be a 'metric with bounded curvature' on a manifold M, 
with curvature K(g) 

C < K{g) < C 

in the sense of Aleksandrov. We may approximate g by smooth Riemannian 
metrics, {!7}aGN so that 

C'--<KC9)<C+-, 
a a 

and 

lim |ag - g\c^(Q) -> 0, lim "Xg - fl|c°(M) -► 0 (6.1) 

for open Q, C M whose closure is compact. Furthermore if the curvature 
satisfies 

B'g   <   Ricci(g) < Bg, 

(B'G   <   n{g) < BG,) 

then 

(B' - -fg < RicciCg) < (B + -)ag, (6.2) 
a a 

{{B> _ Ifo < n{
a

g) <{B + 1)^). (6.3) 
a a 

Proof: The approximation is achieved by mollifying or regularising g . Here 
we use Sobolev averaging and a partition of unity (Nikolaev used De Rham 
regularisation to obtain the estimates for the sectional curvatures: see [Re]). 
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Let {Us} be a locally finite cover by co-ordinate neighborhoods of M, and 
Us C Ust for some co-ordinate chart Us/. For x G Us C L^/ define 

J\z\<l a 

where here ^ is small enough so that x - ^z G Us^ for all z G JBI(O) (which 
then means that gij(x — ^z) is well defined for this fixed co-ordinate system, 
(Usi,il))). Prom work of Berestovskij [Be] we know that (M,^) is actually a 
manifold (and not just a metric space) and that g is continuous. Nikolaev 
[Ni] then used these facts to prove that locally g G W2^. It then follows (see 
Berestovskij, NikolaevfBN]) that g has a second derivative except on a set 
of measure zero Si C M. Hence we have the formula 

ibha^p) = 'a{£-*ib9-){p)>for allpeM      (6-4) 

where here we have used g G W2,p in order to make sense of the right hand 
side. The local formula for the Riemannian curvature tensor of a metric g is 
given by 

+(g~l *dg* dg)ijkh 

where the last term is a product of two first derivatives of g and the inverse 
of g. Since the first derivatives of g are continuous (as is g itself) we obtain, 
in view of (6.4) and (6.5) 

R(S'ag)ijkl{p) = S,\Vi{g)ijkl){p) ± eijkiip), for all p G M, 

where eijki is a tensor, |e| goes to zero as a —> oo. Using the partition 
of unity {[7S,77S}, we construct our approximating metric g — rf^g. From 
construction (6.1) is true, and 

R( flOijiM = 1[R(ff)yfez) ^ c£ijku (6.6) 

where the constant c = c(?7i,... ,7/iv) comes from taking first and second 
derivatives of the unity functions r)s. The estimates (6.2) and (6.3) then 
follow simply by taking traces with respect to # of (6.6), in view of (6.1). 0 

If the dimension of X is three, and (X, go) is a space with curvature 
bounded from above and below with Ricci(go) > 0, then we may use the 
hflow to flow go and so obtain a family g(t), t G (0,T) of smooth metrics 
all of which satisfy Ricci(g(t)) > 0. 
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Theorem 6.2. Let go be a complete metric with bounded curvature on a 
manifold M3 of dimension three, —kQ<K<k^ such that 

Ricci((7o) > 0 

in the Aleksandrov sense. Then there exists a metric h which is 1 + e(n) 
fair to go (e(n) as in lemma 2.4), a T(n,h,ko) > 0; and a family of smooth 
Riemannian metrics g(x,t)^t G [0,T] such that g(xyt),t E (0,T] solves h 
flow, g(-:t) —> go(') uniformly on compact subsets of M as t \ 0, and 

0 < Ricci(0(a;,t)) < c2(ko,n,5,h) for allt G (0,T]. 

Proof : Let g^, be the approximating metrics for go (obtained from lemma 
6.1), and let h be g^ a metric which is 1 + e(3) fair to all ^Q for a big 
enough.Also let g{x,t),t G [0,T] denote the corresponding solutions to the 
hflow, and g(x,t),t G (0,T] the limit (as a ->• oo) solution. Note that each 
agQ satisfies supM | v(^Q)! ^ ci5 from (6.1), and hence we see, arguing as in 
the proof of lemma 4.1 (but without multiplying our test function by time 

t) that supMx[o5T) I v(I?)! ^ ci- Calculating the evolution equation of the 

function t(a+ | V(g)|2) | V CQ)]
2
 
as m the proof of lemma 4.2, and arguing 

as in the proof of lemma 4.2, we get that supMxro)ri  | v  (ag)\ < -^=, in view 

of the fact that | v(g)|2 is bounded. 
This then implies that the tensor V(ag) — g^(r^(ag) - Tl£(h)) satisfies 

SUPMX[O,T]
h\V{g)\ <C3, 

supMx[05T] lRiem(£)| + h\\7V(g)\ < ^. ^i) 

We wish to calculate the evolution of the curvature tensor of the metrics "g 
For a fixed point p, let (j) : B£(p) x [0,s] —» M be a time dependent local 
diffeomorphism satisfying the equation 

|^(^t)  = (<f>t * v)(Mp),t) = v(Mp),t), 
v(p,t)   =(9%k-rjk)(p,t), 
<t>(p,0)        =Id(p), 

and define g(t) = (^*g)(t). As explained in the introduction, g(t) satisfies 
the Ricci flow equation (1.1). Also 

Ricciij(^(i))(p) = RicciijifcJityip) = Ricda0(g(t))((Pt{p))-^-r(j)a-^-j(f>0, 
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which gives us that 

= (f Riccia/3(5(t))(<Mp)) + ^Ricciai8(5(t))(^(P))^^(p)'»)^r^^7^ 

= ARicciig)^ + e(Ricci(^))y + (VsRicciy)Fs 

+Ricciy VjV' + RiccijjVjV', 
(6.8) 

where in order to obtain the last equality we have used the fact that g(t) 
satisfies the Ricci flow equation (1.1) (as explained in the introduction) and 
here 6 is a quadratic term coming from the curvature evolution equation. In 
dimension three, the evolution of the Ricci curvature for a family of metrics 
g evolving by Ricci flow is given by 

—Ricci(^) = "ARicci(^) + 0(Ricci(£)), 

where 0(Ricci) is a quadratic in the Ricci curvature (See [Ha 1]). More specif- 
ically, if we choose co-ordinates around XQ for given to so that Ricci;j(a;o, to) 
is diagonal, with values Riccin = A < Ricci22 = // < Ricci33 = i/, then 

0(Ricci)ii = (A* - i/)2 + A(/i + i/ - 2A) > RRn - 3gklRlkRlh (6.9) 

and similarly 

0(Ricci)y > RijR - IgURikRji. 

Clearly 6 satisfies the conditions of Theorem 7.3 and so, in view of (6.7) and 
the initial conditions and (6.9), we may apply the corollary 7.4 to the tensor 
iV = Ricci(a#(t)) whose evolution equation is given by (6.8), to obtain 

Ricciftfot)) > --, for all t £ [0,T"], 

where T" = ^(3, k0). Similarly we may apply Theorem 7.3 to the function 
N = *|Riem(a0)|2 to obtain supMx[05r„] 

fc|Riem(^)|2 < c(3,fco,/i). Letting a 
go to infinity gives us the result. <0 

Hence, if M is compact, we may apply the result of Hamilton ([Ha 2]) to 
obtain M is diffeomorphic to a quotient of one of the spaces Ss or S2 x R1, 
or R3 by a group of fixed point free isometrics in the standard metric. 

When the dimension of M is two we obtain a similar result by examining 
scalar curvature and arguing as in the theorem above. Note that in dimension 
two, the scalar curvature evolves according to the equation j^R = AR + R2. 
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Theorem 6.3. Let go be a complete metric on a manifold M2, 

-ko    <   K{g0)<0 

(0   <   K(g0)<ko) 

in the sense of Aleksandrov. Then there exists a metric h which is 1 + e(n) 
fair to go (s(n) as in Lemma 2.4), & T(n,ko) > 0, and a family of smooth 
Riemannian metrics g(x,t),t G [0,T] such that g{x,t),t G (0,T] solves h 
flow, #(•,£) —> g{){') uniformly on compact subsets of M as t \ 0; and 

-c2{ko,h)    <    R(g{x,t)) < 0 for all t G (0,T] 

(0   <   R{g{x,t)) < c2{ko,h) for allte (0,T]). 

We can actually slightly weaken the hypothesis of 'curvature bounded from 
above' for Theorem 6.2 to a uniform Lipschitz condition on the initial se- 
quence of metrics. 
Definition 6.4. Let M be a three dimensional manifold, and g be a locally 
Lipschitz complete metric on M. We say that Ricci(^) > 0; if there exists a 
family {ag}ae{i 2 ...} of smooth metrics on M which satisfy Ricci(Q!^) > —^; 

andlim^oosup^l^-gl = 0, andg\Y(ag)-T{g)\ < k for alia G {1,2,...}, 
where k is some constant which does not depend on a, and T(g) refers to the 
Christoffel symbols of g. 
Theorem 6.5. Let M3 be a three dimensional manifold and go be a complete 
locally Lipschitz metric on M which satisfies Ricci(go) > 0; in the sense of 
definition 6.4- Then there is a solution g(x^t)^t G (0, T] to h flow of go for 
some smooth metric h and some T = T(A;o), and it satisfies Ricci(g(:r,£)) > 
0 for all t G (0, T] in the usual smooth sense. 
Proof : The proof is the same as for the case of bounded curvature from 
above (theorem 6.2), except that we use the family agQ coming from the 
definition 6.4, and not the family ag0 constructed in the proof of theorem 
6.2 (which come from lemma 6.1). 0 

We now examine the evolution equation of the curvature operator 71. 
In [Ha 3], Hamilton uses time dependent isomorphisms u(t) : (TM, go) —> 
(TM, g(t)) to examine the evolution of the curvature operator. In particular 
if (M, gij (t) is a solution to the Ricci flow, then the pull back of the curvature 
operator is 

n(t)(<i>,i>) = R(t)abcd<!>abTpcd, 

where R(£)abcd = Riem^t))^/^^^^, and the pull back of the metric is 
9ab — ^LW^W^j W> and the isomorphisms u(t) are chosen so that g^ has 
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zero time derivative, and hence gab is independent of t. That is 

—ui = giiRjku
k

a. 

The evolution of TZ is then derived in [Ha 3] to be 

—n = An + n2 + K#K, 

where TZ2 is the square of the curvature operator, # is the operator given 
by TftNap = CaC^T^N^Q, and ca77? are the structure constants given by 

Theorem 6.6. Let go be a metric with bounded curvature on a manifold 
M, — A;Q < K < A;Q, such that 7l(go) > 0 in the Aleksandrov sense. Then 
there exists a metric h which is l + s(n) fair to go (s(n) as in Lemma 2.4), a 
T(n,ko) > 0; and a family of smooth Riemannian metrics g{x1t)1t G [0,T] 
such that g(x, t),t E (0, T] solves h flow, g(-,t) —)> go{>) uniformly on compact 
subsets of M as t\0, and 

0 < n(g{x,t)) < c2(ko,n,h) for allte (0,T]. 

The same result is achieved if we replace the curvature operator (in the 
above hypotheses) by the scalar curvature. 
Proof : We argue as in Theorem 6.2. Notice that we obtain initially 
that supMx[0)T] |Riem(Q(7)| < c(k,n) which implies that sup^^xjo^j Xi{x^t) < 

cf(k, n), for all i G 1,2,..., n^n~ ' where A^ are the eigenvalues of the cur- 
vature operator TZ. Then the evolution equation for TZ fulfills the conditions 
of corollary 7.5. In particular the tensor a appearing in Theorem 7.1 (which 
is needed for corollary 7.5) will be a matrix coming from the eigen values 
of TZ and then supMx[0)T] 9\a\ < c(k,n). We may apply corollary 7.5 to the 
family of solutions ff(a;,t),t G [0,T], and then take the limit as a -> oo to 
obtain the result. 0 

For completeness we mention the following results which are proved using 
the same techniques as above. Let M4 be a four manifold and 1 denote the 
isotropic curvature on this manifold (see [Ha 5]). 
Theorem 6.7. Let go be a metric with bounded curvature on a compact 
real four manifold MA , -k$ < K < kfi, such that X(go) > 0 in the weak 
Aleksandrov sense. Then there exists a metric h which is 1 + 6(4) fair to go, 
a T(ko) > 0, and a family of smooth Riemannian metrics g(x,t),t G (0, T] 
such that g(x,t),t G (0,T] solves h flow, g(',t) ->► go{') uniformly on compact 
subsets of M as t \ 0, and 

0 < I(g(x,t)) < c2(ko,h) for allte (0,T]. 
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Proof: In four dimensions one can decompose the real two forms A2 into the 
direct sum of A+ and Al- Then the curvature operator defined on A2 ® A2 

decomposes as a block matrix 

n = A    B 
B1   C 

The manifold has non-negative isotropic curvature if and only if ai + 0,2 > 0 
and C1+C2 > 0, where ai and 0,2 are the two smallest eigenvalues of A and ci, 
C2 are the two smallest eigenvalues of C. The ordinary differential equation 
for the evolution of a (c is the same) under Ricci flow is (see [Ha 5], proof 
of Theorem 1.2) 

— (ai + 02) > a2 + al + 2(ai + 0,2)0,3 + 61 + 62 a-e- * ^ I0^ T]5 a-e- x€M, 
(Jo 

where 61 and 62 are the two smallest eigenvalues of B (we ignore the lapcaian 
term for the moment). We consider the function f(x,t) — ai(x,t) + 02(0;,£) 
and note that it satisfies the ODE 

-QJ > 203/ a.e. , 

where supMx[o5r] \as\ < k < 00. We may argue then as in Theorem 6.2 to 
show that if f(xy0) > 0 in the Aleksandrov sense then go can be evolved by 
hflow for some h to obtain g(x, t), t € [0, T], and /(rr, t) > 0 for all t £ [0, T], 
where f(x,t) = ai(x,t) +a2(rr,t) and ai(x,t),a2(x,t) are the two smallest 
eigen values of A(x, t), where A(x, t),B(x, t),C(x, t) are the curvature opera- 
tor matrices (as above) for the metric g(x, t). Similarly we obtain ci +C2 > 0. 

0 
We now show that the theorems of Hamilton for manifolds with non- 

negative Ricci curvature in three dimensions, and non-negative curvature 
operator in n-dimensions can be epsilon improved. To do this we argue by 
contradiction and apply Cheeger's finiteness Theorem([Ch]), and Gromov's 
compactness Theorem (see [Pe] for an exposition), The argument here was 
inspired by the argument given in Berger [Ber 1], where it is shown that 
there as a 6 < j such that any compact, even dimensional manifold which is 
S pinched is either homeomorphic to an n-dimensional sphere or is isometric 
to one of the symmetric spaces of rank one ( the complex projective space 
CPn, the quaternion projective space i?Pn, or the Cay ley projective space 
CaP2). This is an epsilon improvement on the \ pinched rigidity Theorem 
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(which is the same result for i pinched manifolds). See Berger [Ber 2], 
Klingenberg [Kl] and Ranch [Ra] for the Sphere Theorem, rigidity Theorems 
and their generalisations. 
•Theorem 6.8. Let M(n,ko,d,v) be the set of (Mn,g) such that Mn is an 
n-dimensional compact manifold and g is a metric with curvature K(M,g) 
bounded from above and below which satisfies 

—ko < K(M,g) < kQrvol(M\g) > v,diam(M,g) < d. 

There exists an £i(3, fco, cf, v) > 0, e2{nyko,d,v) > 0; and £3(4, A;o,d,v) > 0 
with the following properties. If (M3,g) is an element of .M(3, fco? d, v) and 
satisfies Ricci(g) > —£.ig; then there exists a smooth Riemannian metric 
g' on M3 where (M3^') has non-negative Ricci-curvature. If {M^g) is 
an element of M{n^k^drv) and satisfies TZ(g) > —S2G{g), then there ex- 
ists a smooth Riemannian metric g1 on M where (M, g1) has non-negative 
curvature operator. //(M4,g) is an element of .M'(4, /CQ,d,v) and satisfies 
Z(g) > —^3, then there exists a smooth Riemannian metric gf on M4 where 
(M4,^') has non-negative Isotropic curvature. If (Mrg) is an element of 
M(n,koyd,v) and satisfies R(g) > —£4, (scalar curvature), then there exists 
a smooth Riemannian metric gf on M where (M^g') has non-negative scalar 
curvature. 
Proof : All of these results are proved in the same way using Gro- 
mov's compactness result and Cheeger's finiteness Theorem for manifolds 
in Minykojdyv). We prove the Ricci curvature result here. Fix ko,d and v. 
Assume, to the contrary that there is no such £1 > 0. Then we have for i £ 
{1, 2,...}, manifolds Mi with metrics gi such that (Mf, gi) G .M(3, ko, d, v), 
and Ricci(^) > — i, but there is *no* smooth #/ on M'i such that gi has 
non-negative Ricci curvature. By Cheeger's finiteness Theorem, after taking 
a sub-sequence if necessary, we may assume that Mi =■ M. By Gromov's 
compactness Theorem, gi —>■ g in C1,a for some g G M(3rkord,v) which 
satisfies Ricci(^) > 0 on M in the sense of Aleksandrov. We may flow this 
metric g using hflow (Theorem 6.2) to obtain a metric gf on M which is 
smooth and has non-negative Ricci curvature: a contradiction. 0 

7. Non-compact tensor maximum principles. 

For scalar parabolic equations on non-compact manifolds there exist already 
versions of the maximum principle. For example Ecker and Huisken [EH] 
prove a maximum principle for a scalar function on a non-compact manifold 
which is evolving by a very general heat flow like equation (with a back 
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ground metric which may depend on time), as long as the function satisfies 
a priori various spatial growth conditions and the metric satisfies a priori 
various spatial and temporal growth conditions. It is well known that for 
non-compact manifolds the maximum principle may be violated if at some 
fixed time the function has very large (bigger than exponential) growth in 
space. Here we prove a maximum principle for tensors which evolve parabol- 
ically (that is we consider a system of equations) on non-compact manifolds. 

For the proof below we introduce the notation S2 to be the set of two 
by two symmetric matrices. 
Theorem 7.1 Non-compact Tensor Maximum Principle. Let (Mn,g) 
be a smooth complete Riemannian manifold (non-compact or compact), 
and N(t),t G [0,T]  be a family of symmetric two tensors on M evolving 
according to the evolution equation 

&JVy (-, t)    = 9(t)AN(; t)y + VsNiji; t))Ws + f Ny + F*Nkj + HNij), 
Ntj^O)       =No(-)ij, 

(7-1) 
where NQ is a covariant two tensor satisfying NQ > 0; W is a covariant three 
tensor, and (j) : S2 -¥ S2 satisfies <f>(P)ij > a^a^PkiPpq — g^PikPij, where a* 
is some smooth symmetric contravariant two tensor for each i £ {1,..., n}; 

and /, Wj F are smooth tensors (functions) on M whose type is indicated in 
equation (7.1). Assume also that 

sup   Ricci(<7(£)) > —A;, (a) 
Mx[0,T] 

sup   9|a| + 9dg\ + 9\N\ + |/| + 9\F\ + \W\ < k, (b) 
Mx[0,T] oz 

where k is a constant.   Then the solution N(t),t E [0,T]; to the equation 
(7.1) satisfies N(t) > 0. 
Remark./^   is   often   the   case   that   if  in   condition   (b)   we   replace 
SU

PMX[O Tl 1^1  ~ ^ with snpM\No\  < k then the smoothing properties of 
flows will ensure that this bound exists for all t E [0,T]. 
Remark. There is an earlier weaker version of the non-compact maximum 
principle for tensors in [Ha 6J. 
Proof :  We prove the result initially for the simpler evolution equation 
■7ftN >g AN, as the more general case is merely a minor adjustment of this 
argument. 
Step 1. All metrics are equivalent. Condition (b) implies that 

-kg >Q-t9> -kg, (7.2) 
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which   implies   that   all   metrics   g{t)^t     G     [0,T]    are   equivalent: 
dk n T)9° — ^(') — c(kiniT)go.   Similarly if 7 : [a,b] —»- M is a smooth 
curve in M and /(t)(7) is the length of 7 with respect to g(t), then 

R'(*)(7)  = m /7 y/giTrsi'Trs-r)** * -«(*)(7) for ail t e [O5T]5    (7B3) 

-i(*)(7)    < W(*)(7) for all t € [0, T] dt 

We define p(x,t) = (iz5t(g'(t))(rz;,rro), Po(^) — di5t(go)(^7^o) where #0 is 
some fixed arbitrary point in M. Then p2(p,t) is Lipschitz continuous in t 
for p ^ CfiAt(g(t))(a;o), and we get 

e-2ktpl <p2< p2
0e

2kt for all t G [0, T] 
^(p2) > -fcnp2 for  a.e. t G [0,T] l     j 

in view of (7.3). Without loss of generality we may assume T = 1. As 
many constants appear in this proof, we shall often use a small c to denote 
a constant depending on fc, n. For example it is understood that 5c(fc, n) + 
c2(A;,n) may be replaced by c(k,n) without any harm. This implies that 
^n)Po{') < p(-,t) < c2{k,n)po{-). 
Step 2. Compactification of the problem. Let 

Nij(;t) = Niji-rf + eEij^t), (7.5) 

where JS is defined by Eij = ^^gij, where b{x,t) = (1 + /3t)(l + p2(x,t)), 
and where /? = ^(fc, n) is a constant to be determined later. In view of the 
fact that E > 0 we get NQ = NQ + e^o > 0. Since supM |iV| < k, we have 

-cg<N < eg, for all t G [0, T]. (7.6) 

Choose R = iJ(e, &, n) so large that ep > ^f for all x G M - ^(50)^(^0)5 for 

all ^ e [0,T]. Substituting this inequality and (7.6) into the definition of N, 
we get 

2c 
> -cgij + e—p2(x,t)gij 

> 0 for all t € [0,T], for all x G M - BR{go)(xo). 

Step 3. Evolution of N. From the definition of N we get 

§-tN   =ftN + e{3(l + ?),&*>*) g + e2§iPp{l + pt^tig + ee^t) fag 
>§-tN + ec»(*.*)(_c + f3)(l+ p^g, for a.e. < e [0, ^] 

(7.7) 
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in view of (7.2) and (.7.4) and the fact that 1 + pt < 2 for all t G [0, js]. Also 

from the definition of N we get 

AiV   =   AN + e{Aeb(xti)g 

=   AN + e((l + l3t)A(l + p2) + (1 + ^)2| Vp2|2)ff 

=   AiV + ee6^'*) ((1 + pt)2pAp + 2(1 + fit)\ Vp|2 

+(l + (3t)Hp2\Vp\2)g. 

We use the following facts from Geometry:  (i) ^Vpl2 = 1 for all x G M — 

Cut{t)(xo), (ii) gAp < {n-l)k^f^, for all x G M-Cut(t)(xo), where (i) is 
true for any smooth complete Riemannian manifold (M,g), and (ii) is true 
under the extra assumption that Ricci(#) > — kg. Substituting (i) and (ii) 
into the calculation of the Laplacian of N we get 

AN <AN + ec{k, n)(l + p2)eb^^g    for all x G M - Cut(t)(xo), 
for all t E [0, ^]. l     j 

Subtracting (7.8) from (7.7) we get 

(^ - A)N > (^ - A)N + 6(1 + p2)6^)(-2c + 0)0. 

Choose 0 > 2c. Assume that at some first time to > 0, N(to) ^0. Then due 
to the compactification of the problem (see step 1), there exists some po G 
BR(XO) and a vector Vp0 such that N(to)(vp0^Vp0) = 0. We see that if po £ 
M — Cut(t)(xQ) then we may argue as in the proof of the compact maximum 
principle for tensors ([Ha 1], Theorem 9.1) to obtain a contradiction. If 
Po G M — Cut(t)(xo) then we must use a trick of Calabi ([Ca]). Let 7 : 
[0,5] be a geodesic with (respect to the metric g{to) ) going from XQ to 
Po G Cut(to)(xo), and let q = 7(7*) for some very small r G (0,5). Then 
q is not a point in the cut locus of XQ with respect to the metric g(t) for 
every t G [to — ef,to + e'] for e' > 0 small. Then we define a new function 
9p{x,t) — dist(g(t))(xo,q) + dist(g{t))(q,x). Notice that qp(x,t) > p(x,t), in 

view of the triangle inequality and hence, defining qN = N + se^1^t^l+ p ^g, 
we get 9N > N > 0 for all t G [0,£o), anci also qN(poito)(vp0jVp0) = 0 due to 
the definition of 9N. Using the same argument we used for N, we also get 

(— - A)qN{', t) > 0, for all t G [to - e7, ^0 + £% 

in a small neighbourhood of po G M in view of the fact that qp(x, t)—p(x^ t) < 
2r for t near to, and a; in a small neighbourhood of po G M, and the fact that 
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r G (0,5) was chosen small. But the tensor qN('r) 'ls smooth in space and 
time in a small neighbourhood of (xo, to) e M x [0, T], and so we may argue 
as in the proof of the compact maximum principle for tensors to obtain a 
contradiction. Hence N{',t) > 0 for all t G [0, p-], for all x G M. Letting 
e -+ 0 gives us that iV(-,t) > 0 for all t G [0, ^], for all x G M. Iterating 
this argument we obtain N(-,t) > 0 for all t G [0, T]. 
Step. 4 The general case. For the general case we argue as above to obtain 

(<>.->vA)N..    >   £(/3-c(A;,n))(l + pV(a;'t)^ + VsiVij(.,t)-^ 

+fNij + F<?Njk + <j>{N)ih 

which we then rewrite as 

(&-'(tk)Jvy 
= e(/3 - c{k, n))(l + pV^'Sj + Vfc(iV + eE)^^^ + f{N + e^)^- 

+^fc(iV + e£)iJfc - «/fc'(iVifc + eE^Nfi + afafNkpNlq 

-eVkEijW* - efEij - sEikN^1 - eF?Ejk, 
> e(/3 - c)(l + fte^gij + VfeiV^PFfc + /% 

+if iVj-fc + afafNkpNlq, for all t G [0, ^], 
(7.9) 

in view of (b) and the definition of N and E. Let VpQ be an arbitrary non- 
zero vector of length one. Then in orthonormal co-ordinates at £>o for which 
g and N are diagonal, we have, 

{afafN^N^y) = akl{v)a™{v)NkpNlq = {akl{v))2NkkNu. 

For fixed A;,/ we see that either (case 1) (a(v)kl)2NkkNii > 0 or (wlog) (case 
2) Nkk < 0, Nu > 0. In case 2, we get 

(akl(v))2NkkNu   = {akl{v))2{Nkk + eEkk)Nu-e{akl{v))2EkkNu 

= (a^iv^N^Nu-eia^iv^EkkNu 

> -eia^iv^EkkNu 

> -Ec(k, n)(l + p2)^*^ga for all t G [0, to], 

in view of (b) and the fact that N > 0 for all t G [0, to]-   Taking the sum 
over all k and /, and substituting this inequality into (7.9) we get 

(| - "^Nij > s(/3 - c)(l + (?)***$gu + VkNijW" + fNij + F?Njkt 

for all t G [0, to]. The result follows using the argument at the end of step 
3. 0 
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Corollary 7.2. Let {Mn,g) be a non-compact smooth Riemannian manifold, 
and iV(t),t G [0,T] be a family of symmetric two tensors on M evolving 
according to the evolution equation (7.1) in the Theorem above. Assume 
that NQ satisfies No > sgoij- Assume that all the conditions of the theorem 
above are satisfied, (except for No > 0). Then 

Nijit) > -2ee<1+M<K;(i), for all t e [0,T], (7.10) 

where ft = I3(n,k). 
Proof : The argument is essentially contained in the proof above.  Fix an 
arbitrary XQ € M, and define N = N + 2eE as above.  Then No > 0 since 
JVo + egoij > 0.   we argue as before to obtain N > 0 for all t G [0,T].   In 
particular at x = XQ where p{x) = 0 we get (7.10). As XQ was arbitrary, the 
proof is finished. 0 
Theorem 7.3. Let N(t),t G [0,T] be as in thm. 7.1, with all the conditions 
of the theorem being satisfied. Assume that in place of condition (a) and (b) 
we have 

sup   Ricci(cKi)) > —^, (a7) 
Mx[0,T] vt 

9\ d   ,.,,„,.,„.,„,. ,„r, .   k SUP   J$ + 9||75l+1iV| + |/| + |F| + |W|<^. (6') 
Mx[0,T] Vt Ot Vt 

Then the solution N{t),t G [0,T] satisfies N{t) > 0. 
Proof : The proof is the same as the proof of Theorem 7.1, with some small 
changes. Wherever in the proof we use (a) or (6) to estimate we must now 
use (a') and (&'). To compensate, we define a modified E, 

Eij = e^^gij, where 

b{x,t) = (l + (3Vi){l + P
2{x,t)), 

where /3 is as in the theorem above, and set N = N + eE. Then all the esti- 
mates carry through. Note that although at time zero, N(',t) is not smooth 
in t, this causes no problems, as §-tN(-,t) > 0 for all t G {0,T(e)] implies 
§-tN(-,t2) > 0 for all t G (0,T2(e)], and N(;t2) is smooth. Hence N(.,t2) > 
0 for all t G [0,T2{e)], which implies N(>,t) > 0 for all t G [0,^)]. We 
then argue as before. 0 
Corollary 7.4. Let N(t),t G [0,T] be as in Corollary 7.2. Assume that in 
place of (a),(b) we have (a7) and (b').  Then 

iV(% > -2£e(1+^)g(^)zj, for allte [0,r], 
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where ft = /3(n,k). 
Proof : The corollary follows by making the modifications to the proof of 
corollary 7.2 mentioned in the proof of Theorem 7.3. 0 
Corollary 7.5.   Let (M,g(t)) be as in Theorem 7.1, and Tl{t) : A2(M) ® 
A2(M) -» R, satisfy 

7e(-,o)     =^o(-), 

where f,W,(j) are as above, and supM \TZ\ < -j=, where G(t) is the operator 

defined as in (1.8).  Then TZ(^0)ai3 > —EGoap, implies that 

n(.,t)ap > -eeW^GWap, for allte [0,T], 

where /3 = c(n, k). § 
Proof : The proof is as in Corollary 7.2 with some minor changes. In the 
proof we replace E by E = eb^x^G(x,t), where b(x, t) is as in Corollary 7.2. 
Note that as the metric G{t) is compatible with g(t), Ap2 =9 Ap2, and 
so on. 0 
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