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Introduction

We are concerned here with the flow of n-dimensional hypersurfaces M0 ⊂ Rn+1 by their

mean curvature vector. That is, we look for a family of hypersurfaces { Mt } which

represent a smooth flow of the surface M0 with time, such that at time t, each point pt

on the surface Mt is moving in the direction of the unit normal to Mt, with a speed equal

to H(pt), the mean curvature of the surface Mt at the point pt.

Mean curvature flow has a very real physical realization. It is a well known physical

phenomenon that if a piece of metal is heated up to such a high temperature that it

liquefies, and then allowed to cool so that it becomes solid again, then the metal will

form grains during the cooling stage (see diagram 0.1). These grains are irregular in size

and shape and so make the metal irregular and more prone to break under stress. If

we heat the metal up again, the grain boundaries begin to move, and it is known that

these boundaries evolve in such a way that after some time the grains become reasonably

uniform in size and shape, thus getting rid of a number of the structural problems that

the metal had before. It has been shown that the way these boundaries move is very well

approximated by mean curvature flow. (See diagram 0.2.)

Mean curvature flow can also be used as a tool for solving certain existence problems in

the field of Partial Differential Equations (P.D.E.). The method by which we do this gives

us a good idea as to what the resulting solution actually looks like. This is in contrast

to standard P.D.E. existence and uniqueness theorems (see for example [11]), where often

no real information as to what the solution looks like is made available.

We present this method here:

Take an initial surface M0 and evolve it via mean curvature flow. If Mt → M∞ as

t → ∞ (for some hypersurface M∞) then M∞ will have mean curvature 0 (if the flow is

smooth) and hence M∞ will be a minimal surface. Thus evolving M0, under boundary

conditions that we choose, may lead us to a minimal surface M∞ with certain desired

boundary conditions. This property of mean curvature flow is well explained by A. Stone

in Chapter 1 of [10].

In the first chapter, we see that mean curvature flow is interesting from a geometrical
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point of view, in that it reduces area as quickly as is possible via a smooth flow. (See

Theorem 1.5 of Chapter 1 for a more precise description of this property.)
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Summary of contents

We are in particular interested in the mean curvature flow of surfaces which are rotation-

ally symmetric. Our interest in the flow of such surfaces is largely a result of the paper

by G. Huisken [2] where singularities occurring under the flow are investigated using ro-

tationally symmetric surfaces. A rotationally symmetric surface M0 is a surface obtained

by rotating the graph of some function y0 : R → R around the x-axis (see diagram 0.3).

y0 is known as the “generator” function of the surface M0.

We concern ourselves mainly with the existence of solutions Mt to the flow, given

initial data M0, where M0 is a rotationally symmetric surface (Chapter 4). We are also

interested in “pinching” of such surfaces M0. We say that a barbell like surface M0

“pinches” off at time T < ∞, if, as t approaches T , the neck of the barbell pinches off

and we are left with two sphere-like shapes on either side of the neck (see diagram 0.4).

If M0 is a rotationally symmetric surface, then by symmetry of the surface M0, and

uniqueness of the flow for rotationally symmetric surfaces, Mt stays rotationally symmet-

ric while solutions Mt exist. In our main theorem (Chapter 4, Theorem 4.3) we prove

existence of solutionsMt for some short time interval t ∈ [0, T ), whenever: the initial data

M0 is a rotationally symmetric surface generated by some function y0, and M0 is smooth

(C2,α(Ω)), and M0 has height strictly bounded away from 0 (ie. infR y0 > 0). We also

show there, that if [0, T ) is the maximal time interval for which we have such solutions

Mt, and T < ∞, then infR y(·, t) → 0 as t → T (where y(·, t) is the generator of the

surface Mt), and so the evolving surface Mt pinches off as t→ T .

This existence result is much better than we can usually hope to get using the parabolic

theory, since we start off with no assumptions whatsoever on the growth of the initial

surface near ∞. Usually some sort of growth assumption near ∞ is needed in order to

obtain existence via parabolic theory.

Chapter 1 is concerned with formally introducing mean curvature flow and presenting

some of its well known properties. In particular: convex surfaces shrink to a point in finite

time under the flow, surfaces which are initially disjoint under the flow stay disjoint under

the flow, and mean curvature flow reduces area as quickly as is possible via a smooth flow
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(as mentioned above).

In Chapter 2 we define what a rotationally symmetric surface of dimension n is, and

calculate the evolution equation for rotationally symmetric surfaces evolving under the

flow:

yt =
yxx

(1 + (yx)2)
− (n− 1)

y

where y(·, t) is the generator of the surface Mt.

An interior height estimate and an interior gradient estimate for rotationally symmetric

surfaces evolving under the flow is derived in Chapter 3.

In Chapter 4 we prove existence of solutions Mt to the flow when the initial data M0

is rotationally symmetric (as explained above). To do this we use the interior height and

gradient estimates of Chapter 3.

Pinching is examined for general surfaces in Chapter 5. We present some geometrical

criteria there with the property that any initial surface M0 satisfying these criteria will

pinch off in finite time under the flow, and Mt will not have shrunk to a point when it

does so.

A certain class of surfaces known as “self-similar” surfaces are defined in Chapter 6,

and we point out there some of the interesting properties such surfaces have while evolving

under the flow.

In Chapter 7 we show that if an initial surface M0 is rotationally symmetric, and M0

has polynomial growth of order p, then Mt has growth less than or equal to polynomial

growth of order p.

The evolution equation for the gradient
√

1 + (yx)2 of a rotationally symmetric surface

evolving under the flow is calculated in Chapter 8. We also obtain there the gradient

estimate: f ≤ C
y

for some constant C < ∞ independent of t, whenever supM0
fy is

bounded initially.
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Notation

~ι1, . . . ~ιn+1: The standard euclidean basis in Rn+1.

x: The position vector ofRn+1. Given p ∈ Rn+1, x(p) = (x1(p), . . . , xn+1(p)) =
∑

j〈p, ~ιj〉~ιj

Ω: An open set of an n-dimensional hyperplane sitting in Rn+1

Di: Differentiation in Ω with respect to the hyperplane in which it sits.

M =Mn: a base Riemannian manifold of dimension n.

M0 =Mn
0 : an initial n -dimensional hypersurface sitting in Rn+1.

F0: a smooth immersion F0 : M → Rn+1, describing the initial surface M0 by

F0(M) =M0.

F = F (·, t): F is a smooth immersion F (·, t) : M0 → Rn+1 describing the surface Mt at

time t under the flow, by F (M, t) =Mt.

Mt: The surface at time t under the flow with initial data M0.

Sn: The n-dimensional unit sphere with centre 0 sitting in Rn+1.

~ν = ~ν(·, t): The outward unit normal to the surface Mt.

H = H(·, t): The mean curvature of the surface Mt.

~H = ~H(·, t): The mean curvature vector of the surface Mt. ~H is defined by ~H = −H · ~ν.
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hij = A = A(·, t): The second fundamental form of the surface Mt. We define

hij = 〈∇̂~ei~ν, ~ej〉 for a choice of unit normal ~ν, where ~e1, . . . , ~en is an orthonormal ba-

sis.

gij: The first fundamental form. gij = 〈~ei, ~ej〉.

g: The determinant of the first fundamental form. g = det(gij).

π: π(Yp) is the orthogonal projection of the vector Yp ∈ Rn+1 onto the tangent space

of Mt at p.

∇̂: gradient of the surface Mt (inherited from the space Rn+1).

∇: tangential gradient of the surface Mt (∇ = π ◦ ∇̂).

△: Laplace- Beltrami operator on the surface Mt.
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Chapter 1

Formalization of mean curvature flow

1.1 Introduction

In this chapter we present a formal definition of what it means for a surface to be evolving

under mean curvature flow. We also derive a number of important properties that surfaces

evolving under mean curvature flow have. In particular convex surfaces shrink to a point

in finite time, surfaces stay disjoint under the flow, and the flow reduces area at a rate

which is faster than the rate at which any other flow reduces area.

1.2 Formal introduction to mean curvature flow

Definition 1.1 Let F0 : Mn → Rn+1 be a smooth immersion with F0(M) = M0. If ∃
smooth immersions F (·, t) :Mn → Rn+1such that

F (·, 0) = F0, (1.1)

and
∂

∂t
F = ~H (1.2)

then we say that M0 evolves under mean curvature flow, and that the surface at time t

under this evolution is Mt = F (M, t)r.

~H is the mean curvature vector on the surface Mt,

~H(·, t) = ~H = −H(·, t) · ~ν(·, t) = −H · ~ν,

where ~ν is a choice of unit normal for the surface Mt, and H is the mean curvature of the

surface Mt. In particular, given our choice of unit normal ~ν, we give H the sign so that

△x = ~H
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is true. (That this formula is true up to the sign ofH is shown in Appendix 3, Lemma C.2.)

We shall refer to 1.2 as the evolution equation or the flow equation or the flow

problem. Note that 1.2 is equivalent up to tangential diffeomorphisms to the equation

(
∂

∂t
F )⊥ = ~H (1.3)

i.e. the surfaces we get under 1.2 and 1.3 are the same at each time.

Given some initial surface M0, it is not immediately clear that a smooth flow exists.

We break this existence problem up into two cases:

Problems:

i) Can we find solutions Mt for t ∈ [0, T ) for some maximal time interval [0, T ), for some

T <∞ (short time existence)?

ii) Can we find solutions Mt for t ∈ [0,∞) (longtime existence)?

1.3 Discussion of short time existence

Here we would like to discuss the first of the above problems — short time existence.

A question that immediately arises when considering this problem is “does a short time

existence solution imply a long time existence solution?” The answer is a categorical no.

(See Example 1 below.) Here we consider an initial surface M0 which can be written as a

graph and show that we do have short time existence. We consider this example initially

because it powerfully illustrates the link between the flow problem and the theory of

parabolic equations.

Let Ω be an open domain in Rn. Let u0 be a C2,α(Ω) function u0 : Ω → R (for some

α > 0), and let M0 = graph(u0). So here M = Rn, and F0(x) = (x, u0(x)).

Problem: Can we find a C2,α′

(Ω × [0, T )) function u, such that u : Ω × [0, T ) → R

satisfies

u(·, 0) = u0 (1.4)

and ut =
√

1 + (Du)2Di(
Diu

√

1 + |Du|2
) (1.5)

From Appendix 2 we see that if we can find such a u, and if we let F (x) = (x, u(x)),

then F satisfies equation 1.3. Hence we have solutions Mt = graph(u(·, t)) to the flow

problem for some short time interval [0, T ).

Remark: From Appendix 2, we see that the mean curvature of a hypersurface written

as a graph u (note: all hypersurfaces can locally be written as a graph relative to a suitable
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choice of co-ordinate axes) depends on the second spatial derivatives of u. So in order to

obtain a smooth solution to the flow we need u to be at least C2,α(Ω× [0, T )).

Equation 1.5 is a quasi-linear parabolic equation (i.e. it is of the form ut = Qu, where

Q is a quasi-linear elliptic partial differential operator). Let us impose the Dirichlet

boundary conditions

u(·, t) = b(·, t) (1.6)

on the boundary ∂Ω, where b is some function ∈ C2,α(∂Ω× [0, T )), along with our initial

condition u(·, 0) = u0 on Ω. Then by the theory of parabolic equations, (e.g. see [8]), 1.5

has a unique solution for some short time interval [0,T].

So this takes care of short time existence for a surface which is a graph, flowing under

Dirichlet boundary conditions.

Parabolic theory can also be used to show [3] that:

Theorem 1.1 Let M0 be a smooth compact (without boundary) initial surface. Then for

initial data M0 we have short time existence (and uniqueness) of a solution to the flow

problem.

Example 1.

Let SnR0
(z) be an n-dimensional sphere of radius R0, with centre z, sitting in Rn+1. The

surface at time t under mean curvature flow is Mt = SnR(t)(z), where R(t) =
√

R2
0 − 2nt.

So M0 shrinks to a point at T =
R2

0

2n
under the mean curvature flow. (See diagram 1.1.)

It was shown by Huisken [1] (n ≥ 2), and Gauge/Hamilton [9] (n = 1) that the

behaviour of a convex surface under the flow is the same as it is for the

sphere. That is,

Theorem 1.2 If M0 is convex, compact, smooth (without boundary) then M0 shrinks to

a point in finite time under mean curvature flow and it becomes sphere like as it does so.

(See diagram 1.2.)

This might lead one to conjecture that all smooth compact closed surfaces will shrink

to a point in finite time. This is not the case as will be shown shortly.

For the case n = 1, (i.e. M0 is a curve in the plane), non-embedded smooth closed

curves M0 can develop singularities before shrinking to a point. (See diagram 1.3.)

But Grayson [6] shows that:

Theorem 1.3 Embedded smooth, closed curves in the plane become convex in finite time

and then by Theorem 1.2 shrink to a point in finite time.

3



For n ≥ 2 ∃ embedded compact surfaces (without boundary) M0 sitting in Rn+1 such

that M0 develops a singularity under mean curvature flow at a finite time T and at time

T the surface M0 has not shrunk to a point. This fact is shown in Chapter 5.

1.4 Area reducing property of the flow

Now we wish to discuss the area of a surface which is evolving under the flow. Clearly

for convex surfaces evolving under the flow, the area is being reduced at some rate, since

after finite time a convex surface will shrink to a point under the flow (as is shown in

Theorem 1.2). We show here that mean curvature flow reduces area for any smooth initial

data M0.

Lemma 1.4 Mean curvature flow reduces area.

proof: This can be easily seen by noting that locally

|Mt| = Area(Mt) =
∫

Mt

1dut =
∫

Ω

√
gdx

(where here we have used a local co-ordinate chart (x, U ⊂ Mt), x : U → Ω ⊂ Rn to

describe the surface Mt (locally), and we have written the metric gij in terms of this

co-ordinate chart) so that

∂

∂t
|Mt| =

∂

∂t

∫

Ω

√
gdx

=
∫

Ω

∂

∂t

√
gdx

=
∫

Ω

1

2
√
g

∂

∂t
det(gij)dx

=
∫

Ω

1

2

√
ggij

∂

∂t
gijdx

=
∫

Ω

1

2

√
ggij(−2Hhij)dx

(since in [1] Lemma 3.2, it is shown that ∂
∂t
gij = −2Hhij)

= −
∫

Ω

√
gH2dx

= −
∫

Mt

H2dut

≤ 0.

So we have calculated the rate at which the area of a surface reduces as it evolves under
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mean curvature flow. In fact mean curvature flow reduces area as quickly as is possible.

That is,

Theorem 1.5 Given an initial surface M0, and a function f ∈ L2(Mt) such that

‖f‖L2(Mt) = ‖H‖L2(Mt), and such that f 6= H, then the flow given by

∂

∂t
~F = −f . . . ν (1.7)

has the property that it reduces area at a rate which is strictly less than the rate at which

mean curvature flow reduces area. i.e. if M∗
t are the surfaces we get under the flow given

by 1.7, then ∂
∂t
|M∗

t |t=0 ≥ ∂
∂t
|Mt|t=0 with strict inequality if f 6= H.

proof:

∂

∂t
|M∗

t ||t=0 = −
∫

M∗

0

fHdut

= −
∫

M0

fHdut

since by an almost identical calculation to [1] Lemma 3.2 we have that ∂
∂t
gij = −2fhij for

a surface under evolution by 1.7.

But

〈f,H〉 =
∫

M0

fHdut

≤ (
∫

M0

f 2)1/2(
∫

M0

H2)1/2

= ‖f‖2‖H‖2
= ‖H‖22

From analysis, this inequality is strict unless f = αH for some constant α. But

f = αH ⇒ ‖f‖2 = α‖H‖2
⇒ α = 1

So the inequality is strict unless f = H .

1.5 Disjoint surfaces under the flow

Here we show that two initially disjoint surfaces evolving under the flow stay disjoint.
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Theorem 1.6 IfM0 and N0 are two initially disjoint surfaces, then they will stay disjoint

under the flow or they will touch at some first time and they will do so on the boundary

of at least one of the surfaces. (If a surface is non-compact, then the boundary includes

∞.)

proof: Assume the surfaces touch at some interior point z ∈ Rn+1, at some first time T .

Now at time T we can write a small portion of the surfaceMT containing z in it’s interior,

as the graph of a function u(·, T ) defined on some hyperplane Ω. Assuming z is not on

the boundary of either surface, then we can write a small portion of NT containing z in

it’s interior, as the graph of a function v(·, T ) defined on the same hyperplane Ω. Then

for a small time interval t ∈ [T − ǫ, T ], the portion of the surfaces Mt, and Nt sitting

above Ω can be written as the graph of functions u(·, t) : Ω → R and v(·, t) : Ω → R

(respectively). Without loss of generality u < v on [T − ǫ, T ). Now as shown earlier in

this chapter the equation for flow of a surface written as a graph is:

gt = Qg =
√

1 + (Dg)2Di(
Dig

√

1 + |Dg|2
)

So both u and v satisfy this equation.

Now Qu = aij(x,Du)Diju where

aij(x,Du) =
δij(1 + |Du|2)−DiuDju

(1 + |Du|2) .

So

Qu−Qv = aij(x,Du)Dij(u− v) + [aij(x,Du)− aij(x,Dv)]Dijv

= (u− v)t

Setting w = u − v, aij(x) = aij(x,Du), and [aij(x,Du) − aij(x,Du)]Dijv = bi(x)Diw,

and Lw = aij(x)Dijw + biDiw, we see that Lw − wt = 0, and w < 0 on [T − ǫ, T ) on

the whole of Ω. The existence of the smooth functions bi can be seen by use of the mean

value theorem for functions going from Rn to R :

aij(x,Du)− aij(x,Dv) =
∫ 1

0

∂

∂t
[aij(x, tDu+ (1− t)Dv)]dt

=
∫ 1

0

∂aij(x, tDu+ (1− t)Dv)

∂pk
Dk(u− v)dt

= Dk(u− v)
∫ 1

0

∂aij(x, tDu+ (1− t)Dv)

∂pk
dt

= Dk(u− v)aijk

6



so bk = a
ij
kDijv.

Invoking the parabolic strong maximum principle, we see that w cannot achieve it’s

maximum in the interior of Ω × [0, T ]. So since w ≤ 0 on [T − ǫ, T ] then if w(x) = 0 at

time T then x must be a maximum of w on Ω × [0, T ], and so x ∈ ∂Ω. This contradicts

the fact that z is in the interior of u(Ω, T ).

1.6 Barriers

We now discuss a class of natural barriers for surfaces evolving under the flow. If M0 is

an initial surface disjoint from a surface M0, and M0 has everywhere ≥ 0 (≤ 0) mean

curvature, and if the mean curvature vectors of M0 point towards M0 then M0 will serve

as a barrier for the surface M0.

Theorem 1.7 If M0 and M0 are two initially disjoint surfaces, and M0 has ≥ 0(≤ 0)

mean curvature, and the mean curvature vectors of M0 point towards M0, then M0 will

stay disjoint from M0 under the flow, or the surfaces will touch at some first time and

they will do so on the boundary of at least one of the surfaces. (For non-compact surfaces

the boundary includes ∞.)

proof: The proof is essentially the same as for the previous theorem. The only change

that needs to be made is: we let v(·, t) = v0 where v0 denotes a portion of M0 where the

surfaces are assumed to touch at time T . Then we get the parabolic equation:

Lw − wt ≥ 0,

and w ≤ 0 on [T − ǫ, T ], and so the strong maximum principle is still valid.

1.7 The monotonicity formula

It is shown by Ecker/Huisken [5] (in Section 1 of this chapter) that if M0 is an initial

surface which does not rise too steeply (e.g. has polynomial growth), and f is function

f(~x, t) defined on Mt which does not rise to steeply (e.g. f has polynomial growth), then

we have the monotonicity formula:

∂

∂t

∫

Mt

fρdut =
∫

Mt

(
∂

∂t
f −△f)ρdut −

∫

Mt

fρ| ~H +
1

2τ
(~x− ~x0)

⊥|2dut,

where τ = t0 − t, and ρ is the ”backward heat kernel”:

ρ(~x, t) = (4πτ)−n/2 exp(
−| ~x0 − ~x|2

4τ
), t0 > t,

7



for a fixed point ( ~x0, t0). From this Ecker/Huisken then obtain the monotonicity formula:

Theorem 1.8 Suppose the function f = f(~x, t) satisfies the inequality

(
∂

∂t
−△)f ≤ ~a · ∇f

for some vector field ~a. If a0 = supM×[0,t1] |~a| < ∞ for some t1 > 0, then

sup
Mt

f ≤ sup
M0

f

∀t ∈ [0, t1].

The surfaces and functions we are going to consider will have (assumed or explicit)

polynomial growth.

8



Chapter 2

Rotationally symmetric surfaces

2.1 Introduction

In this chapter we introduce rotationally symmetric surfaces. We derive the equation

yt =
yxx

(1 + (yx)2)
− (n− 1)

y

for flow of a rotationally symmetric surface, (where y(·, t) is the generator of the surface

Mt) and a number of other evolution equations for interesting functions defined on the

surface Mt. (e.g. we derive the evolution equation for the curvature A = hij where hij

is expressed with respect to a particular co-ordinate frame { ~ei } chosen by us.) In the

last part of this chapter we show that for a particular class of initial surfaces M0, we can

derive a time independent gradient estimate for the surfaces Mt obtained under mean

curvature flow.

2.2 Formal introduction to rotationally symmetric

surfaces

Definition 2.1 A surface M0 is said to be rotationally symmetric if

M0 = f(R× Sn−1)

where f(x1, s1, . . . , sn) =

















x

y0(x)s1
...

y0(x)sn
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for some y0 : R → R.

y0 is to be thought of as the graph which generates the surface. e.g. for n = 2 we just

rotate the graph of y0 around the x-axis. (See diagram 0.3.) The mean curvature of a

rotationally symmetric surface is

H =
(n− 1)

y
√

1 + (yx)2
− yxx

(1 + (yx)2)3/2
(2.1)

(as shown in appendix 1), and the outward unit normal is given by

~ν =





















−yx√
1+(yx)2

s1√
1+(yx)2

...
sn√

1+(yx)2





















(2.2)

(also shown in appendix 1).

2.3 Mean curvature flow of rotationally symmetric

surfaces

In this section we wish to examine the behaviour of rotationally symmetric surfaces evolv-

ing under mean curvature flow. In particular we will derive the evolution equation stated

at the beginning of this chapter.

By symmetry, a rotationally symmetric surface will stay rotationally symmetric under

mean curvature flow.

In Chapter 2 we noted that the evolution equation

(
∂

∂t
F )⊥ = ~H (2.3)

is equivalent up to tangential diffeomorphisms to the mean curvature flow equation

∂

∂t
F = ~H (2.4)

If our initial surface M =M0 is rotationally symmetric, and F is a solution to 2.3 which

preserves the x1 co-ordinate, then we have

F (x1, 0, . . . , 0, y0(x1), t) = (x1, 0, . . . , 0, y(x1, t))
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for some function. y :M0 ×R → R, with y(·, 0) = y0.

y(·, t)generates the surface Mt at time t. Note that for points p = (x1, 0, . . . , 0, y, t),

x2 = 0, . . . , xn = 0 is preserved under the flow by symmetry, and uniqueness of the flow

for rotationally symmetric surfaces. Hence, ∂
∂t
F = (0, 0, . . . , 0, yt(x1, t)). Hence, by 2.2,

we have

〈 ∂
∂t
F, ~ν〉 = yt

√

1 + (yx)2)
(2.5)

But by 2.3 we have

〈 ∂
∂t
F, ~ν〉 = −H (2.6)

Hence, combining 2.5, 2.6, and 2.1, we see that

yt
√

1 + (yx)2)
=

yxx

(1 + (yx)2)3/2
− (n− 1)

y
√

1 + (yx)2

and hence we have the evolution equation for the flow of a rotationally symmetric surface:

yt =
yxx

(1 + (yx)2)
− (n− 1)

y

Existence of the flow for rotationally symmetric surfaces will be shown in Chapter 4.

2.4 Evolution equations

Now we wish to derive certain evolution equations for rotationally symmetric surfaces (of

dimension n) evolving under mean curvature flow. We do this by generalizing [1], where

in Chapter 5 (Lemma 5.1), evolution equations are derived for rotationally symmetric

surfaces of dimension n = 2 evolving under the flow. Let y0 : R → R be a smooth positive

function. Let M0 be a rotationally symmetric surface of dimension n ≥ 2 generated by

the function y0. Let ~ι1, . . . ,~ιn+1 be the standard basis in Rn+1 and let ~e1, . . . , ~en be the

local orthonormal frame on M0 such that

〈~ej ,~ι1〉 = 0 ∀j = 2, . . . , n

〈~e1,~ι1〉 > 0.

e.g. along the top ridge,

~e1 =
1

√

1 + (yx)2
(1, 0, . . . , yx)

~ej = ~ιj ∀j = 2, . . . , n.
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(the top ridge of a rotationally symmetric surfaceM0 generated by a function y0 is the set

of points {p ∈ M0 : p = (x1, 0, . . . , 0, y0(x1)) } ). (See diagram 2.1.) Clearly the vectors

~e1, . . . , ~en are orthonormal and there are n of them. They are also in the tangent space,

as can be seen by a quick examination of the definition of what a rotationally symmetric

surface is. So ~e1, . . . , ~en is a well defined local orthonormal frame. Introduce the notation

p = 〈~e1,~ι1〉y−1,

q = 〈~ν,~ι1〉y−1.

Then 〈~e1,~ι1〉 = 1√
1+(yx)2

and from 2.2 we see that 〈~ν,~ι1〉 = −yx√
1+(yx)2

. So p2 + q2 = y−2.

Also ∇iy = −δi1qy. If f is a function defined on a rotationally symmetric surface M0

such that f(p) = f(x1, y0s1, . . . , y0sn) is a constant for fixed values of x1, then clearly

∇if = δi1∇if , for the local orthonormal frame { ~ei } we have chosen. So we need only

calculate ∇1f = ~e1(f) for such functions.

The second fundamental form A = hij is defined by hij = 〈∇~ei~ν, ~ej〉. Using our choice

of { ~ei }, and the calculation of ~ν for rotationally symmetric surfaces (2.2), we calculate,

k = h11 = 〈∇ ~e1~ν, ~e1〉 = −yxx(1 + (yx)
2)−3/2

hii = p for 2 ≤ i ≤ n,

hij = 0 for i 6= j,

where here we have introduced the notation k = h11. Now evolve M0 by mean curvature

flow. As we have stated before, Mt stays rotationally symmetric. The position vector

F = ~x of the hypersurface satisfies

∂

∂t
~x = △~x = ~H = −H · ~ν (2.7)

as is shown in Appendix 3 Lemma C.2.

Define the function

y = (|~x|2 − |〈~x,~ι1〉|2)1/2 (2.8)

At time t = 0 it agrees with y0.

note: y as we have defined it here is not the same as the y defined by 2.3. y(~p, t) as we

have defined it here measures the height of a point F (~p, t) above the x1-axis at time t

under the flow for a fixed p: i.e. we take a point F0(~p) on the original surface and follow

it through time, as the surface flows, and calculate its height above the x1-axis at time

t. y(x) as defined by 2.3 measures the height of the surface at time t above x on the

x1-axis. The function y defined by 2.3 will be known as the generator function , and
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the y defined by 2.8 will be known as the height function . It should be clear by the

context which y we are talking about.

Lemma 2.1 Let y be the height function. Under mean curvature flow we get the following

evolution equations.

i)
∂

∂t
〈~x,~ι1〉 = △〈~x,~ι1〉

ii)
∂

∂t
y = △y − (n− 1)y−1.

iii)
∂

∂t
q = △q + |A|2q + q((n− 1)p2 + (n− 3)q2 − 2kp

iv)
∂

∂t
p = △p+ |A|2p+ 2q2(k − p).

v)
∂

∂t
k = △k + |A|2k − 2(n− 1)q2(k − p).

vi)
∂

∂t
H = △H +H|A|2.

proof:

i) is immediate from 2.7.

ii):

∂

∂t
y =

∂

∂t
(|~x|2 − |〈~x,~ι1〉|2)1/2

= y−1(〈~x, ∂
∂t
~x〉 − 〈~x,~ι1〉〈

∂

∂t
~x,~ι1〉)

= y−1(〈~x, ~H〉 − 〈~x,~ι1〉〈 ~H,~ι1〉)

Let α1, . . . , ~an be a Riemannian orthonormal frame on Mt. Then

△y = ~ai(~ai(y))

= ~ai(~ai((|~x|2 − |〈~x,~ι1〉|2)1/2))
= ~ai(y

−1(〈~x, ∇̂~ai~x〉 − 〈~x,~ι1〉〈∇̂~ai~x,~ι1〉))

using ∇̂~ai~x = ~ai (from Appendix 3)

= ~ai(y
−1(〈~x, ~ai〉 − 〈~x,~ι1〉〈~ai,~ι1〉))
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using ∇̂~ai ~ai =
~H and ∇̂~ai~x = ~ai (both from Appendix 3)

= −y−1|∇y|2 + y−1(〈~ai, ~ai〉+ 〈~x, ~H〉 − 〈~ai,~ι1〉2 − 〈~x,~ι1〉〈 ~H,~ι1〉)
= −y−1|∇y|2 + y−1(n + 〈~x, ~H〉 − 〈~ai,~ι1〉2 − 〈~x,~ι1〉〈 ~H,~ι1〉)

=
∂

∂t
y + y−1(−|∇y|2 + n− 〈~ai,~ι1〉2)

Now 〈bi,~ι1〉2 is independent of any orthonormal frame { bi } we care to choose (this is so

because for any orthonormal frame { bi }, 〈bi,~ι1〉bi is the projection of ~ι1 onto the tangent

space, and so 〈bi,~ι1〉2is the length of this projected vector). Hence 〈~ai,~ι1〉2 = 〈~ei,~ι1〉2,
where ~ei is our specially chosen orthonormal frame. Hence using

〈~ej ,~ι1〉 = 0∀j = 2, . . . , n,

〈~e1,~ι1〉2 = y2p2

= 1− y2q2

= 1− |∇y|2,

we see that
∂

∂t
y = △y − (n− 1)y−1.

iii): To derive iii) we infer from [1] Lemma 3.3 that

∂

∂t
〈~ν,~ι1〉 = 〈∇H,~ι1〉

= △〈~ν,~ι1〉+ |A|2〈~ν,~ι1〉

The last identity is shown in appendix 3 Lemma C.8 (the identity is shown using the

Codazzi equation). Combining this with equation ii) we get

∂

∂t
q = △q + 2y−2∇iy∇i〈~ν,~ι1〉 − 2y−3〈~ν,~ι1〉|∇y|2 + (n− 1)y−3〈~ν,~ι1〉+ |A|2q.

The result then follows from the identities∇iy = −δi1qy,∇1〈~ν,~ι1〉 = kpy, and y−2 = p2+q2.

iv):
∂

∂t
p =

∂

∂t
(y−2 − q2)1/2

(using ii) and iii))

= △p− 3y−4p−1|∇y|2 + p−1|∇q|2 + p−1|∇p|2

+(n− 1)p−1y−4 − p−1q2|A|2

−p−1q2((n− 1)p2 + (n− 3)q2 − 2kp)
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Now substituting in

∇ip = δi1q(p− k)

∇iq = δi1(q
2 + kp)

|A|2 = k2 + (n− 1)p2

y−4 = p4 + 2p2q2 + q4

∇iy = −δi1qy,

and collecting like terms, we get

= △p+ p|A|2 + 2q2(k − p).

vi):
∂

∂t
H = △H +H|A|2

was proved in [1] (Lemma 3.5).

v): Using H = k + (n− 1)p, we have

∂

∂t
k =

∂

∂t
H − (n− 1)

∂

∂t
p

then from iv) and vi) and H = k + (n− 1)p,

= △k + k|A|2 − 2(n− 1)q2(k − p). (2.9)

2.5 Gradient estimates

Now assume that M0 is a periodic surface, and that M0 has positive mean curvature.

Then applying the strong parabolic maximum principle to the evolution equation vi) for

H (and using the fact that the surface stays periodic under the flow, and hence any

maximum is an interior maximum), we see that H ≥ the minimum of its initial values.

So H stays strictly greater than 0. From the previous section, we see that yx = − q
p
. We

wish to show that yx stays uniformly bounded. Also note that since M0 lies beneath an

infinite cylinder (see Chapter 6 on self-similar solutions), and since surfaces stay disjoint

under the flow (by Chapter 1, Theorem 1.6), we see that M0 must develop a singularity

in finite time, since in finite time the cylinder collapses to the x1-axis (see Chapter 6 on

self similar solutions).
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Lemma 2.2 If n = 2, then ∃ a constant C1 depending only on M0 such that

|yx| = |q
p
| ≤ C1 (2.10)

independent of time.

proof: We calculate from [1] Lemma 5.2 the evolution equation for a general surface under

the flow)
∂

∂t
≤ △(

|A|2
H2

) +
2

H
∇iH∇i(

|A|2
H2

) (2.11)

Hence, by the strong parabolic maximum principle, |A|2
H2 ≤ the maximum of it’s initial

values. Hence |A|2 ≤ (C2)
2H2 where C2 depends only on the initial surface (i.e. it is

independent of time). Furthermore we calculate from the previous lemma that

∂

∂t
(
q

H
) = △(

q

H
) +

2

H
∇iH∇i(

q

H
) +

q

H
((n− 1)p2 + (n− 3)q2 − 2kp)

Assume n = 2. Then in view of 2.11, the last term is negative if q
H

≥ 2C2 and it is positive

if q
H

≤ −2C2. Thus (by the maximum principle again)

|q| ≤ C3H, (2.12)

with a constant C3 depending only on C2 and the maximum of q
H

at time t = 0. Note

this argument relies on the fact that for n = 2, and hence (n− 3) = −1 < 0. We cannot

use the same argument for n ≥ 3. We will comment on this at the end of the proof. So

keep assuming n = 2, and finally consider the evolution equation

∂

∂t

k

p
= △k

p
+

2

p
∇ip∇i

k

p
+ 2

q2

p2
(p2 − k2),

which also follows from the previous lemma. Now the last term on the right hand side of

the above equation is negative if k
p
≤ 1, hence (by the maximum principle)

k

p
≤ max(1,max

M0

(
k

p
)) (2.13)

So combining 2.12 and 2.13 we get

|q| ≤ C3H = C3(p + k) ≤ C4p

as desired.

Huisken then shows [2] that the upper blow-up estimate then follows from this lemma

(for n = 2):

max
Mt

|A|2 ≤ C5
1

(T − t)
∀t < T.
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(See [2] for a discussion of the blow up estimates.) (Also see Chapter 6 on self similar

solutions where it is noted that curvature blows up as t → T , and where this blow up

rate is discussed.)

Remark .

Using the maximum principle of Chapter 1, we can prove Lemma 2.2 under the weaker

assumptions that

a) M0 is an entire surface with polynomial growth,

b) infM0 H > 0 on M0,

c) the quantities |A|2
H2

|q|
H
, k
p
are bounded on M0.

Can we expect a gradient estimate for n > 2? Well, for n > 2 notice that we have

H = (n − 1)p + k, and so now, e.g. for n=3, we have twice as much curvature pulling

the surface downwards. Perhaps this means that some sort of cusp like singularity could

occur as the singularity occurs at time T on the x1-axis. This an area that has not been

investigated fully. In Chapter 8 on gradient estimates, the evolution equation for the

gradient is calculated. It is shown there that for entire rotationally symmetric surfaces

M0 which initially have C0 = supM0|yx|y < ∞, then we have the gradient estimate

|yx| ≤ C0

y
while the solution exists. This is true for all n ≥ 2. It seems possible that

some sort of interior gradient estimate could be calculated (similar to that calculated by

Ecker/Huisken in [4] where the local properties of surfaces evolving under the flow are

investigated) using this global gradient estimate, by modifying the calculation by which

it was derived.
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Chapter 3

Interior estimates

3.1 Introduction

Here we wish to prove a couple of interior estimates for rotationally symmetric surfaces

evolving under mean curvature flow. The first theorem is an interior height estimate,

derived by placing a ball above the initial surface and using the fact that surfaces stay

disjoint under the flow.

The next theorem is an interior gradient estimate for rotationally symmetric surfaces,

derived using the interior gradient estimate for graphs calculated by Ecker/Huisken in

[4]. The interior gradient estimate derived here should be compared with the gradient

estimate calculated in Chapter 8, Lemma 8.4, and the gradient estimate of Chapter 2,

Lemma 2.2.

Both of these estimates are crucial to the main existence heorem 4.3 of Chapter 4.

3.2 Interior height estimates

Theorem 3.1 Let M0 be an entire rotationally symmetric surface generated by the func-

tion y0 : R → R.

Let

h = sup
[a,b]

y0

Then for β > 0, β < |a−b|
2

, we have

sup
[a+β,b−β]×[0,β

2

2n
]

y ≤ h + β

where y is the generator function of the surface Mt.
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proof: Choose some ǫ > 0 such that β > ǫ. Choose some x1 ∈ [a + β, b − β]. Place an

n-dimensional sphere SnR0
= of radius R0 = β − ǫ and centre (x1, 0, . . . , 0, h + β) above

the point p = (x1, 0, . . . , 0, y0(x1)) on the surface M0 = rotationally symmetric surface

generated by y0. Then note that the sphere SR0 is initially disjoint from the rotationally

symmetric surfaceM0 generated by y0. By Theorem 1.6 of Chapter 1, surfaces stay disjoint

under the flow. Hence Mt and BR(t) remain disjoint under the flow, while solutions to

both flow problems exist. The sphere collapses at time T =
R2

0

2n
, so while t ≤ R2

0

2n
we have

y(x1) ≤ h + β (since the centre of the sphere has height h + β). Letting ǫ → 0, we see

that y(x1) ≤ h + β for t ≤ β2

2n
. Since x1 was an arbitrary point x1 ∈ [a+ β, b− β] we are

done.

In Chapter 4 we need an interior height estimate of a slightly different form. The

required height estimate is an easy corollary of the above theorem:

Corollary 3.2 Let y0 be a rotationally symmetric surface with boundary generated by the

function y0|[â,b̂], where â ≤ a, b̂ ≥ b. Assume that the surface evolves under mean curvature

flow in such a way that points p on the boundary on the left satisfy the condition 〈p, ι1〉 ≤ a

for all time, and the right hand boundary satisfies 〈p, ι1〉 ≥ b for all time. Let

h = sup
[a,b]

y0

Then for β > 0, β < |a−b|
2

, we have

sup
[a+β,b−β]×[0,β

2

2n
]

y ≤ h + β

where y is the generator function of the surface Mt.

proof: The proof is the same as the proof for the above theorem.

Now we prove our interior gradient estimate for rotationally symmetric surfaces evolv-

ing under the flow.

3.3 Interior gradient estimates

Theorem 3.3 Assume y > σ on the x1 - interval [a, b] and the time interval [0, T ], for

some σ > 0. Then we have the interior gradient estimate:

|yx(x1, t)| ≤ C1(n)(n+
2

σ
sup

[x1−R0,x1+R0]
|(y0)x| · sup

[x1−R0,x1+R0]
(y0))

exp[C2(n)R
−2
0 sup

[x0−R0−
√
T2n,x0+R0+

√
T2n]×[0,T ]

(y20 + T2n)]
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where R0 =
σ
2
.

proof: Choose an n-dimensional ball Bn
R0
(x0) of small radius R0 sitting in the (x1, . . . , xn)-

plane, with centre ~x0 = (x1, 0, . . . , 0) (remember the rotationally symmetric surface M0

is an n-dimensional surface sitting in Rn+1). If we choose R0 = σ
2
, then for any given

t ∈ [0, T ] the portion of the surface Mt which lies above Bn covers the whole of Bn (when

projected onto Bn) and hence can be written as the graph of a function u(·, t) : Bn → R.

u is defined by u(x1, . . . , xn) =
√

y(x1)2 − x22 − . . .− x2n.

Hence

D1u(x1, . . . , xn) =
y(x1)yx(x1)

√

y(x1)2 − (x2)2 − . . .− (xn)2

and

Diu(x1, . . . , xn) =
−xi

√

y(x1)2 − x22 − . . .− x2n

for 2 ≤ i ≤ n.

In particular

D1u(x1, 0, . . . , 0) = yx(x1),

and

Diu(x1, 0, . . . , 0) = 0.

Now the gradient estimate for graphs derived by Ecker/Huisken in [4] (Theorem 2.3) is

√

1 + |Du(x0, t)|2 ≤ C1(n) sup
BR0

(x0)

√

1 + |Du0|2

exp[C2(n)R
−2
0 ( sup

BR0
(x0)×[0,T ]

(u(x, t)− u(x0, t)))
2]

Put

c0 = C1(n) sup
BR0

(x0)

√

1 + |Du0|2.

Then since ~x0 = (x1, 0, . . . , 0) we have the estimate

|yx(x1, t)| ≤ c0 exp[C2(n)R
−2
0 ( sup

BR0
(x0)×[0,T ]

(u(x, t)− u(x0, t)))
2]

Remembering that R0 =
σ
2
, we have

1
√

y2 − (x2)2 − · · · − (xn)2
≤ 1

σ2 − (σ
2
)2

≤ 2

σ
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Hence

sup
BR0

|Diu0| ≤ 1

for i = 2, . . . , n, and

sup
BR0

|D1u0| ≤
2

σ
sup

[x1−R0,x1+R0]
|(y0)x| · sup

[x1−R0,x1+R0]
(y0)

Hence

c0 ≤ C1(n)(n +
2

σ
sup

[x1−R0,x1+R0]
|(y0)x| · sup

[x1−R0,x1+R0]
(y0)) (3.1)

Now

( sup
BR0

(x0)×[0,T ]
(u(x, t)− u(x0, t)))

2 ≤ 2 sup
[x0−R0,x0+R0]×[0,T ]

y(·, t)2

≤ sup
[x0−R0−

√
T2n,x0+R0+

√
T2n]×[0,T ]

y20 + T2n

by the interior height estimate of the previous theorem. Hence

|yx(x1, t)| ≤ C1(n)(n+
2

σ
sup

[x1−R0,x1+R0]
|(y0)x| · sup

[x1−R0,x1+R0]
(y0))

exp[C2(n)R
−2
0 sup

[x0−R0−
√
T2n,x0+R0+

√
T2n]×[0,T ]

(y20 + T2n)]

as required.
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Chapter 4

Short time existence

4.1 Introduction

In this chapter we derive the main result of this essay. That is: if M0 is a rotationally

symmetric surface generated by a function y0 : R → R, then under the assumption that

infR y0 is bounded away from 0, we have solutionsMt generated by some y(·, t) for as long
as infR y(·, t) is bounded away from 0. This is a better result than that which can usually

be obtained by parabolic theory, since here we make no assumptions about the growth

near ∞ (usually such existence results obtained via parabolic theory do require some sort

of growth assumption near ∞). The catenoid barriers used here were a suggestion of

Huisken.

4.2 Short time existence

Let M0 be an entire rotationally symmetric surface generated by a positive function

y0 : R → R. We wish to show that there exist solutions Mt to the flow problem for some

maximal short time interval [0, T ).

Assume that y0 ∈ C2,α(R) and that infR y0 > δ, for some δ > 0, and some α > 0.

Firstly let us restrict our attention to the x1 -interval [−m,m]. Remember the parabolic

evolution equation for a rotationally symmetric surface is

yt =
yxx

1 + (yx)2
− (n− 1)

y
(4.1)

(as derived in Chapter 2 on rotationally symmetric surfaces). We look for a solution

ym(x, t) to this equation, defined on the x1-interval [−m,m] and some short time interval
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[0, Tm], for some Tm > 0. Then Mm
t = rotationally symmetric surface generated by

ym(·, t) is a solution to the flow on [−m,m]× [0, Tm]

Theorem 4.1 Assume that y0 ∈ C2,α(R), and that min[−m,m] y0 > δ, for some δ > 0,

some α > 0.

Then equation 4.1 has a unique solution y = ym ∈ C2,α′

([−m,m] × [0, Tm]) for some

0 < α′ < α, and some Tm > 0, satisfying the boundary conditions

ym(m, t) = ym0 (m), (4.2)

ym(−m, t) = ym0 (−m) (4.3)

and initial conditions

y(·, 0) = y0 on [−m,m] (4.4)

.

proof: The proof follows from the Theory of parabolic equations. e.g. See [10] Theo-

rem 2.3.0. Modifying the proof there to suite our particular evolution equation 4.1 we are

done.

In fact

Proposition 4.2 We can choose a T such that each solution ym of the above theorem is

defined on some time interval [0, T ], for some T > 0 where T is independent of m

proof: Initially assume n = 2. We will prove this theorem by constructing barrier surfaces

B0,C0 and Dm0 as follows:

First let [0, Tm) be the maximal time interval for which we have a solution ym to 4.1

,satisfying the specified boundary (4.2,4.3) and initial conditions (4.4).

Let gl,λ : R → R be the function defined by

gl,λ(x) = λ cosh((
x− l

λ
))

for some l ∈ R, λ > 0. Let Gl,λ be the rotationally symmetric surface generated by the

function gl,λ. H = 0 everywhere on Gl,λ as can be seen by appendix 4. Now if we choose

λ very small, the surface will become steep very quickly as we move away from the base-

point x1 = l, and it’s height at the base point x1 = l will be very small: the height at the

base point l is h = λ cosh((n− 1)( l−l
λ
)) = λ cosh(0) = λ.

To construct the barrier B0, we are going to cut off a portion of the surface Gl,λ for some

l ∈ R, some λ > 0.

Likewise we will construct the barrier C0 by cutting off a portion of the surface Gl′,λ′ for
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some l′ ∈ R, some λ′ > 0.

Our third barrier Dr0 will be the infinite cylinder of radius r0 =
δ
2
.

Now we go ahead and construct these barriers rigorously.

Let Dr0 be the 2 dimensional infinite cylinder of radius r0 = δ
2
. (i.e. the 2-dimensional

rotationally symmetric surface generated by the constant function y = δ
2
.) Evolving Dr0

under the flow, we see that at time t the surface is Dr(t), where Dr(t) is the infinite cylinder

of radius r(t) =
√

r20 − 2t (Dr(t) collapses to the x1 axis at time t =
r20
2)

). Now initiallyMm
0

(= the rotationally symmetric surface generated by y0|[−m,m]) is disjoint from the surface

Dr0 , since by assumption infRy0 = δ > 0, and we chose r0 =
δ
2
. Thus, since surfaces stay

disjoint under the flow (by Theorem 1.6 of Chapter 1), we see that the surface Mm
t (=

rotationally symmetric surface generated by ym(·, t)) will stay disjoint from Dr(t) under

the flow, while both solutions Mm
t and Dr(t) exist. (Note: they cannot touch at the

boundary since Mm
t has fixed boundary under the flow, and Dr(t) is a shrinking towards

the x1 axis.)

Let t1 =
3(r0)2

8
. If Tm ≥ t1 ∀m then we are done. So assume t1 > Tm for some m. Fix

this m. Let σ = r0
2
. Then on the time interval [0, t1] we have

ym ≥ σ, (4.5)

since at time t1 =
3(r0)2

8
, we have

r(t1) =

√

(r0)2 −
3(r0)2

4
=
r0

2
,

and ym(·, t) ≥ r(t1) on the interval [0, t1]. (The last statement is true since

a) the surfaces Mm
t and Dr(t) stay disjoint under the flow, and hence

b) ym(·, t) ≥ r(t), and hence

c) ym(·, t) ≥ r(t1) for t ≤ t1 since r(t) is strictly decreasing.)

Now we construct B0 and C0.

First choose λ so that 0 < λ < σ. Let xλ,σ be the unique point in R− such that

gλ,0(xλ,σ) = σ

Such an xλ,σ exists since

gλ,0(x) = λ cosh(
x

λ
)

grows exponentially as we go from 0 → −∞, and at 0,

gλ,0(0) = λ < σ

24



The derivative of g is

gλ,0x (x) = sinh(
x

λ
)

Hence, choosing x ≤ xλ,σ (remember xλ,σ ≤ 0) we have

|gλ,0x (x)| = | sinh(x
λ
)|

=

√

cosh2(
x

λ
)− 1

≥
√

cosh2(
xλ,σ

λ
)− 1

=

√

σ2

λ2
− 1

Hence choosing λ > 0 small enough we have

|gλ,0x (x)| ≥ sup
[−m,m]

|(y0)x| (4.6)

∀x ≤ xλ,σ. Now let xλ,y0(−m) be the point on the x1 axis such that

gλ,0(xλ,y0(−m)) = y0(−m).

Such an xλ,y0(−m) exists since

gλ,0(0) = λ < σ < inf
R

y0

and gλ,0 grows exponentially as we go from 0 → −∞. Clearly xλ,y0(−m) < xλ,σ Now we

are in a position to choose l. Choose

l = −xλ,y0(−m) −m

Then (−m−l)
λ

= xλ,y0(−m)

λ
, and so

gλ,l(−m) = λ cosh(
(−m− l)

λ
) (4.7)

= λ cosh(
xλ,y0(−m)

λ
) (4.8)

= gλ,0(xλ,y0(−m)) (4.9)

= y0(−m) (4.10)

Now we choose our barrier B0 to be the rotationally symmetric surface generated by the

function gλ,l on the interval [xλ,σ,−∞). Note that
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a) this generator function gλ,l|[xλ,δ,−∞) has gradient everywhere negative and less than

− sup[−m,m] |(y0)x| by 4.6, and

b) it has mean curvature 0 everywhere, and

c) it is disjoint from the rotationally symmetric surface Mm
0 generated by y0|[−m,m],

except at the left hand side boundary of Mm
0 where the two surfaces meet.

Hence by Theorem 1.6 of Chapter 1, the surface Mm
0 stays disjoint from B0 on the

time interval [0, Tm) under the flow, since Mm
0 has fixed boundary under the flow and

inf [−m,m] y
m > σ on [0, Tm). Using the barrier B0 we see that |ymx (−m)| is bounded by

|gλ,rx (−m)| ≤ k(m) <∞ on any time interval that a solution ym exists.

Similarly we construct a barrier Gλ′,r′ so that |ymx (m)| is bounded by |gλ′,r′x (m)| ≤ k(m)

<∞ on any time interval that a solution ym exists. (See diagram 4.1.)

Now, by the flow equation 4.1, we see that ymx satisfies the equation

ymxt = ymtx =
(ymx )xx

1 + (ymx )
2
− 2(ymxx)

2ymx
(1 + (ymx )

2)2
+

ymx
(ym)2

(4.11)

⇒ (letting ψ = ymx e
−t

σ2 )

ψt = a · ψxx + b · ψx + c · ψ (4.12)

where

a =
1

1 + (ymx )
2
,

b =
−2ymxxy

m
x

(1 + (ymx )
2)2
,

c =
1

(ym)2
− 1

(σ)2
≤ 0

(since 1
(ym)2

− 1
σ2

≤ 0 on [0, Tm) by 4.5). Now equation 4.12 is a uniformly parabolic

equation, and c ≤ 0, so we can apply the parabolic maximum principle to it to obtain the

inequality

sup
[−m,m]×[0,Tm)

|yx| ≤ e
Tm

σ2 sup
P

|g| (4.13)

≤ C(T ) sup
P

|ymx | (4.14)

≤ C(T )k(m) (4.15)

(where P is the parabolic boundary: P = {−n}× [0, Tm)∪{n}× [0, Tm)∪ [−m,m]×{0})
The last inequality follows since at m and −m the barriers B0 and C0 stop the gradient of

y getting worse than k(m), and also, k(m) satisfies k(m) > sup[−m,m] |yx| by construction.

So the equation 4.1 is strictly parabolic on [−m,m]×[0, Tm), so by the theory of parabolic
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equations, we see that ym can be extended to the time interval [0, Tm+σ) for some σ > 0.

(e.g. See [8].) But [0, Tm) maximal, so we have a contradiction. Hence Tm ≥ t1 ∀m.

For n > 2 there is strong numerical evidence that a rotationally symmetric catenoid like

surface exists, which becomes vertical if we move a finite distance from the origin in the

x1 direction. By rescaling this surface (in the same way that we rescaled our surfaces Gλ,l,

by varying λ) we can use it as the barrier B0 (likewise for C0). The same argument then

follows through for n > 2.

Having obtained a common time interval for which the surfaces exist, we have done

most of the hard work.

Now we show that there is a solution y to 4.1, defined on the whole of R for some

short maximal time interval [0, T ), which satisfies the initial condition y(·, 0) = y0. We

do this via the Arzela-Ascoli theorem. This result is the main result of this essay.

Theorem 4.3 ∃ a solution y to 4.1 (defined on the whole of R) for some maximal short

time interval [0, S), and infR y(·, t) → 0 as t→ S if S <∞.

proof: Let ym be the ym of Theorem 4.1. Extend each ym in a C2,α way to the whole of

R.

Let k be a fixed integer, k > 8
√
T2n, where T is the T of the above theorem. We will be

concerned with the compact interval [-k,k].

Let d = k
8
. From Chapter 3 Theorem 3.2 we see that

sup
[−k+d,k−d]×[0, d

2

2n
]

ym ≤ C0( sup
[−k,k]

y0, d).

Note: d2

2n
≥ T , by choice of d, and stipulation on k. Also from that chapter, we have the

interior gradient estimate:

|ymx (x1, t)| ≤ C1(n, σ, R0 =
σ

2
, T, sup

[k−R0,k+R0]

|(y0)x)|, sup
[k−R0,k+R0]

(y0))

on the interval [−k, k]× [0, T ]. Then using the evolution equation for ym:

ymt =
ymxx

1 + (ymx )
2
− (n− 1)

ym
,

and remembering that ym ≥ σ = r0
2

= δ
4
on the time interval [0, T ], we see that ym is

strictly parabolic on the interval [−k, k], with ellipticity constant λ = min[−k,k]×[0,T )
1

1+(ymx )2

≥ 1
1+C2

1
> 0 independent of m and t ∈ [0, T ]. Hence by the standard induction argument

on i in C i,α we have that ym is C∞([−k, k]× [0, T ]). Now since we have a uniform height
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estimate on [−k + d, k − d] for each ym independent of m, we can use parabolic theory

(e.g. see [8]) to obtain the interior estimates:

‖ym‖C2,α([−k+2d,k−2d]×[0,T ]) ≤ C2(C0, σ, n, ǫ, λ, T )

The Schauder theory (see [8]) then gives us

‖ym‖Cj,α([−k+2d,k−2d]×[0,T ]) ≤ C(C0, σ, n, ǫ, λ, T, j)

Hence ym is a bounded set (for example) in C4([−k + 2d,m − 2d] × [0, T ]). Hence,

by the Arzela-Ascoli theorem (e.g. see [11] Lemma 6.36), ∃ a subsequence ym′ of ym

such that ym′ converges in C3([−k + 2d, k − 2d] × [0, T ]) to some function y say. Then

since the evolution equation for ym′ contains terms of at most order 2, we see, letting

m′ → ∞, that y satisfies the same evolution equation as ym on [−k + 2d, k− 2d]× [0, T ].

Clearly y is C∞([−k + 2d, k − 2d] × [0, T ]). Now let us consider the interval [−2k, 2k].

Repeating this argument, only using ym′ in place of ym, we obtain a subsequence ym′′

which converges to some y in C3([−2k+2d, 2k− 2d]× [0, T ]). y agrees with the previous

y on [−k + 2d, k − 2d]× [0, T ]), and satisfies the evolution equation 4.1.

Continue in this way out to∞. Now take a diagonal subsequence ~ai given by: α1 = y1′,

α2 = y2′′, ... Then clearly the function y = limm→∞ ~am satisfies the flow equation and

satisfies the initial conditions y(·, 0) = y0. The flow lives for at least [0, T ]. Once the

flow has begun it is analytic, and so there is always only one possible extension to the

flow. Hence the flow lives for some maximal time interval [0, S). Note that we can al-

ways extend the flow for some short time interval past a time t if infR y(·, t) > 0, by just

repeating the argument we have used here. So the flow lives always while it is bounded

away from 0. So we are done.
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Chapter 5

Pinching

5.1 Introduction

We say a barbell like surface “pinches” off under mean curvature flow, if, at some finite

time, the surface pinches off somewhere along it’s neck, leaving a sphere-like shape on

either side of it’s neck when it does so. (See diagram 0.4.) In this chapter we present

geometrical criteria that ensure that an initial surface satisfying these criteria will pinch

off in finite time under the flow.

First we construct a barrier surface (suggested by Ecker) which we know will pinch off

in finite time (under mean curvature flow). Then we see that a barbell-like surface which

can be placed inside this barrier surface will also pinch off in finite time as long as it has

large enough bubbles on either side of its neck.

5.2 Pinching criteria

First we construct our barrier surface M∗
0 . Let M

∗
0 be the rotationally symmetric surface

given by:

M∗
0 = {~x ∈ Rn+1 : (x2)

2+· · ·+(xn+1)
2 = ǫ+(x1)

2(n−1−β)} for some (n−1) ≥ β > 0.

Then ǫ = |~x|2 − (n− β)(x1)
2 on M∗

0 .

Now

(
∂

∂t
−△)(|~x|2 − (n− β)(~x1)

2 + 2βt)

= (
∂

∂t
−△)(|~x|2)− (

∂

∂t
−△)(n− β)(~x1)

2 + (
∂

∂t
−△)2βt)

(see appendix 3: ( ∂
∂t
−△)(|~x|2) = −2n and ( ∂

∂t
−△)~x = 0)
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= −2n− (n− β)(2x1(
∂

∂t
−△)x1 − 2|∇x1|2) + 2β

= −2n + 2(n− β)|∇x1|2 + 2β (5.1)

Also |∇x1|2 ≤ 1 (from appendix 3), so 5.1 ≤ 0.

Hence, (by the monotonicity formula of Chapter 1), on M∗
t we have

|~x|2 − (n− β)|x1|2 + 2βt ≤ supM∗

0
(|~x|2 − (n− β)|x1|2

= ǫ

In particular at x2 = · · · = xn+1 = 0, we have x21 ≤ ǫ − 2βt, so that (n − β)x21 ≤ 0 at

t = ǫ
2β
, and hence the surface M∗

0 must have pinched off by t = ǫ
2β
. (Note: In the chapter

on short time existence, it is shown that the only way a rotationally symmetric surface

can develop a singularity under the flow is if it pinches off. i.e. infR → 0 as t→ T , where

T is the blow up time.) Now let M0 be an initial closed surface, and let Vt = volume of

solid contained in Mt, V
∗
t = volume of solid contained in M∗

t . Assume M0 ⊂ int(V ∗
0 ).

Then if we can put a ball BR0 of radius R0 on either side of the neck of M∗
0 such that

each BR0 ⊂ int(V0) and such that
R2

0

2
> ǫ

2β
, then M0 will pinch off in finite time under

the flow. This can be seen as follows: First note that surfaces stay disjoint under the flow

(see Chapter 1 Theorem 1.6). So each

BR(t) ⊂ int(Vt) ⊂ int(V ∗
t ) (5.2)

But M∗
t pinches off at a finite time T ≤ ǫ

2β
. So Mt must develop a singularity at a time

S ≤ T ≤ ǫ
2β

by 5.2. But the balls blow up at a time
R2

0

2n
> ǫ

2β
, so a portion of each ball

must still be alive at time S. i.e. Mt has not shrunk to a point at time S. If the surface

M0 is also

a) {smooth, embedded, simply connected } (e.g. a rotationally symmetric surface)

then it seems almost certain that the singularity that occurs at time S is due to “pinch-

ing”. i.e. I am conjecturing that generally, for initial surfaces M0 satisfying condition (a),

the only singularities that can occur under the flow are due to pinching or the surface

shrinking to a point, and since we have excluded the last possibility for the M0 we are

presently considering, M0 must have pinched off at time S.

Grayson [7] uses a similar argument: Choose r > 0, l > πr
2
. Let ∂D be the 2-

dimensional rotationally symmetric surface generated by

f(x) =







r cosh( (|x|−l)
r

) , if |x| > l

r , otherwise
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after mollifying at the point x = l. Then any smooth surface M0 ⊂ D (such that M0

has bounded height - i.e. |x3| is bounded) which contains a ball of radius R0 (such that
R2

0

4
> 2lr2

2l−πr ) on either side of the neck will develop a singularity in finite time and it will

not have shrunk to a point at that time
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Chapter 6

Self-similar solutions

6.1 Introduction

In this chapter we wish to examine what sort of similarity a surface might maintain under

the flow. We examine a number of the different ways a solution Mt to the flow might be

“self - similar” and present examples of such “self-similar” flows were appropriate. In the

last part of the chapter we define a very special kind of “self-similar” flow and present

there some interesting properties and examples of such flows.

6.2 Self-similar flows in general

LetM0 be an initial surface. Assume for the moment thatM0 is compact. Let us consider

the two cases of short time existence and long time existence separately.

short time existence:

Mt exists for some short maximal time interval [0, T ). It is shown in [2] that the curvature

blows up as t→ T . i.e.

max
Mt

|A|2 → ∞

as t→ T . So how fast is |A|2 blowing up? Well in [2] it is shown that U(t) = maxMt
|A|2

is Lipschitz continuous, and

U(t) ≥ 1

2(T − t)
(6.1)

So we have a lower bound for this blow-up rate. As we mentioned before at the end of

Chapter 2, in [2] it is shown that for n = 2, periodic rotationally symmetric surfaces

satisfy the blow up rate

U(t) ≤ C0

2(T − t)
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So in this case we have an upper and lower bound for the blow up rate. This blow up rate

is also the blow up rate for convex surfaces. Now, in order to see what sort of singularity

occurs at t = T , it is first necessary to locate a point in Rn+1 where a singularity occurs

at t = T (there could be many such points) - call such a point a blow up point. Then we

translate the surface so that, without loss of generality, 0 ∈ Rn+1 is this blow up point.

Then at each time t we wish to magnify the surface (around this blow up point 0) in

a way that will ensure that the resulting magnified surfaces converge to some limiting

hypersurface as t → T . Well we now make this method rigorous. An obvious candidate

for a blow up point would be:

Definition 6.1 We say that ~x0 ∈ Rn+1 is a blow-up point, if there is p ∈ Mn such that
~F (p, t) → ~x0 as t→ T and |A|(p, t) becomes unbounded as t→ T .

But do such ~x0 exist? Well, note that if we assume the blow up rate of the curvature also

satisfies the upper bound

U(t) = max
Mt

|A|2 ≤ C0

2(T − t)
(6.2)

(from now on assume that this blow up estimate is satisfied for the solutions Mt we are

considering) then

|~F (p, t)− ~F (p, s)| ≤
∫ t

s
| ~H(p, τ)|dτ

≤ C[(T − s)1/2 − (T − t)1/2]∀p ∈Mn, 0 ≤ s < t < T

Thus ~F (·, t) converges uniformly as t → T , and so such ~x0 do exist (else U(t) would be

bounded by a constant independent of t, contradicting the lower bound 6.1) and so our

definition is a good one.

Now we will rescale our surfaces so that the resulting surfaces have the property that

|A|2 doesn’t blow up, and this natural choice of rescaling turns out to be the right one.

i.e. we define the rescaled immersions

~̃F (p, s) = (2(T − t))−1/2 ~F (p, t),

where s(t) = −1
2
log(T − t) is a new time parameter. The resulting rescaled surfaces

M̃s = ~̃F (·, s)(Mn) are then defined for −1
2
log T ≤ s <∞ and satisfy the equation

∂

∂s
~̃F (p, s) = ~̃H(p, s) + ~̃F (p, s),

where ~̃H is the mean curvature vector of M̃s. (This choice gives |Ã(·, t)|2 ≤ C0, indepen-

dent of time t, where Ã(·, t) is the curvature on M̃t.)

33



Huisken then shows that for a given sequence sj → ∞, ∃ a sub-sequence sjk such that

M̃sjk converges smoothly to an immersed non-empty limiting surface M̃∞, and that each

limiting hypersurface M̃∞ obtained in this way satisfies the equation

~̃H = 〈 ~X, ~ν〉 (6.3)

Natural open questions are the uniqueness of M̃∞, and the number of solutions to 6.3.

Using the fact that periodic surfaces with positive mean curvature satisfy the blow up

rate 6.2, we may use the argument sketched here to obtain a limiting hypersurface M̃∞.

Huisken then shows that an entire rotationally symmetric surface satisfying 6.3 must be

an infinite cylinder of radius 1 (see end of this chapter where the infinite cylinder of radius

r is introduced). It is also shown in [2] that ifM is a compact (without boundary) surface

with positive mean curvature, which satisfies 6.3 then M is a sphere of radius
√
n.

Long time Existence We have solutions Mt for t ∈ [0,∞). There are a number of

things to look for as t → ∞. Firstly does Mt converge to a limiting hypersurface M∞

as t → ∞. If not, can we follow the procedure given for the short time existence case to

show that rescaled surfaces M̃t converge to some M̃∞ as t → ∞? If not let us look for

other classes of self-similar solutions -

i) translating self similar solutions: There are symmetrical surfaces which move via

translation under the flow. e.g. see diagram 6.1.

ii) rotating self similar solutions There is a family of curves M0 sitting in the plane

such that Mt is a rotation of M0 ([3]). e.g. see diagram 6.2

6.3 A special self-similar flow

Here we will consider the particular class of self-similar solutions given by the following

definition.

Definition 6.2 Given an initial surface M0
n ⊂ Rn+1, we say that M0 has a “self-similar

solution” to the mean curvature flow problem, or that M0 is “self-similar”, if the surfaces

Mt we obtain under the flow satisfy Mt = c(t)M0, for some c : [0, T ) → R.

e.g. Mn
0 = SnR0

(0) - the n-dim sphere sitting in Rn+1 with centre 0. Then Mn
0 has a

self-similar solution as shown in Example 1.1, Chapter 1 with

c(t) =

√

1− 2n

R2
0

t

=
√
1− kt
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where k = 2n
R2

0
= 2H(p0)

〈p0,~ν(p0)〉Rn+1
, where H(p0) is the mean curvature of any point p0 on the

initial surface M0, and ~ν(p0) is the outward unit normal of the initial surface M0 at this

point p0.

Without loss of generality assume that H(p0) 6= 0 for some p0 on the original surface M0.

For if H = 0 everywhere on the original surface then the solution is trivial: Mt =M0.

Lemma 6.1 If H(p0) 6= 0 for some p0 ∈ M0, and Mn
0 ⊂ Rn+1 has a “self-similar

solution” under the flow, then

i) ∃p0 ∈M0 such that 〈p0, ~ν(p0)〉 6= 0, and

ii) k = 2H(p0)
〈p0,~ν(p0)〉Rn+1

is a constant ∀p0 ∈M0 such that 〈p0, ~ν(p0)〉 6= 0 (i.e. k is independent

of such p0) and

iii) c(t) =
√
1− kt and

iv) H(p0) = 0∀p0 such that 〈p0, ~ν(p0)〉 = 0

We will need a preliminary lemma to prove the above lemma:

Lemma 6.2 If M is a hypersurface, and M̃ is the hypersurface defined by

M̃ = cM

for some c > 0, then

H̃(p̃) =
1

c
H(p)

, where H̃ denotes the mean curvature on the hypersurface M̃ , and p̃ = cp.

proof: Let (x, U) be a local co-ordinate chart on M . Then (x̃, Ũ) is a co-ordinate chart

for M̃ , where

x̃(p̃) = x(p)

,

Ũ = cU

Calculate gij:

g̃ij(p̃) = 〈 ∂
∂x̃i

(p̃),
∂

∂x̃j
(p̃)〉 = c2gij(p)

Hence

g̃ij(p̃) =
1

c2
gij(p)

Calculate h̃ij :

h̃ij(p̃) = 〈 ∂ν̃
∂x̃i

(p̃),
∂

∂x̃j
(p̃)〉
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Then using the fact that

ν̃(p̃) = ν(p)

, we see that

h̃ij(p̃) = chij(p)

Hence

H̃(p̃) = g̃ijh̃ij

=
1

c
gijhij

=
1

c
H

Now we prove the first lemma stated.

proof: Let p0 be an arbitrary point in M0. Then follow p0 through time under the flow

given by Mt = c(t)M0- i.e. put p(t) = c(t)p0. By our definition of what a self-similar

solution is we see that:

〈p′(t), ~ν(p(t))〉 = −H(p(t))

But p′(t) = c′(t)p0, and ~ν(p(t)) = ~ν(p0), So

〈p′(t), ~ν(p(t))〉 = 〈c′(t)p0, ~ν(p0)〉
= c′(t)〈p0, ~ν(p0)〉

⇒ c′(t)〈p0, ~ν(p0)〉 = −H(p(t))

= −H(p0)

c(t)
(6.4)

(by the above lemma)

So since by assumption ∃p0 such that H(p0) 6= 0, then by 6.4

〈p0, ~ν(p0)〉 6= 0

for this p0. Hence we have proved i).

Still using this p0, we see from 6.4 that we have

c′(t) =
−H(p0)

〈p0, ~ν(p0)〉c(t)

By the theory of O.D.E ’s, this equation together with the initial condition c(0) = 1 has
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a unique solution. Put c(t) =
√

1− 2H(p0)t
〈p0,~ν(p0)〉 .

Then

c′(t) =
1

2
(
−2H(p0)

〈p0, ~ν(p0)〉
)

1
√

1− 2H(p0)t
〈p0, vecν(p0)〉

=
−H(p0)

〈p0, ~ν(p0)〉c(t)

as required, and c(0) = 1 as required. Note

c
′

(0) =
−H(p0)

〈p0, ~ν(p0)
6= 0 (6.5)

since H(p0) 6= 0 for our special choice of p0.

Now let p̂0 be any point on M0 with 〈p̂0, ~ν(p̂0)〉 6= 0. Then by 6.4, and following the exact

reasoning above for p0, we see that

c(t) =

√

√

√

√1− 2H(p̂0)t

〈p̂0, ~ν(p̂0)〉

Since p̂0 was an arbitrary point on M0 satisfying 〈p̂0, ~ν(p̂0)〉 6= 0, we have proved ii) and

iii).

To prove iv) note that c
′

(0) 6= 0 (by 6.5) Hence by 6.4 we have that

H(p̂0) = 0∀p̂0 such that 〈p̂0, ν(p̂0)〉 = 0. Hence we are done.

Remark1:If M0 is a surface with properties i), ii) and iv),

then Mt =
√
1− ktM0 is a solution to the flow problem, since

〈 ∂
∂t
p(t), ~ν(p)〉 = 〈 ∂

∂t
(
√
1− ktp0), ~ν(p0)〉

= 〈−1

2

kp0

c(t)
, ~ν(p0)〉

= −H(p(t))

where the last identity follows by considering the two cases

i) 〈p0, ~ν(p0)〉 = 0

and

ii) 〈p0, ~ν(p0)〉 6= 0

(and using the fact that H(p0) =
H(p(t))
c(t)

). Hence the problem of finding non-trivial self-

similar solutions is a Differential Geometry one:
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M0 self similar and ∃p0 ∈M0 such that H(p0) 6= 0 ⇐⇒ M0 satisfies conditions i), ii), and

iv) and ∃p0 ∈M0 such that H(p0) 6= 0

Remark 2 Surfaces stay disjoint under the flow (Theorem 1.6, Chapter 1). For this

reason general self-similar solutions are particularly important, as we can use them as

barriers for other surfaces under the flow.

e.g. ifM0 has a self-similar solution, then often we know explicitly how the surface behaves

under the flow (e.g. SnR0
) and we can calculate explicitly a blow up time T for the surface.

Then ifM0 is a surface such that the volume ofM0 is contained in the volume ofM0 then

M0 must blow up at or before the time that M0 blows up at under the flow (i.e. at or

before time t = T).

Here we present a number of self-similar flows:

Example 1: CR0 The infinite cylinder of radius R0 dimension n.

Let M0 be the rotationally symmetric surface generated by the function y = R0, for some

constant R0 > 0. Then the surface at time t under the flow is the infinite cylinder of

radius R(t) =
√

1− 2(n− 1)t. (See diagram 6.3.)

Example 2: SnR0
(z) The n-dimensional sphere of radius R0, centre z. Then the surface

at time t under the flow is SnR(t)(z), where R(t) =
√

R2
0 − 2nt. (See diagram 1.1.)

Example 3: The catenoid surface C0 generated by the surface y = cosh. Then the

surface at time t under the flow is C0. (See diagram 6.4 and appendix 4.)

Example 4: Angenent [12] shows that there is torus T0 which has a self similar solution.

(See diagram 6.5.)
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Chapter 7

A-priori height estimates

7.1 Introduction

Here we aim to prove a-priori height estimates for rotationally symmetric surfaces evolving

under mean curvature flow analogous to those proved for entire graphs by Ecker/Huisken

in [5]. In particular we wish to show that if the initial surface M0 is generated by the

positive function y0, and (y0)
2 ≤ c(c0+ (x1)

2)p, then y2 ≤ c(c0+ x21 +αt)p (where y is the

generator of the surface Mt).

7.2 An a-priori height estimate

For convenience sake we first prove a Lemma.

Lemma 7.1 Let ψ = c0 + (x1)
2 + αt

Then ( ∂
∂t
−△)ψ = −2|∇x1|2 + α

proof:

(
∂

∂t
−△)ψ = 2x1((

∂

∂t
−△)x1)− 2|∇x1|2 + α (7.1)

(( ∂
∂t
−△)x = 0, from appendix 3 Lemma C.5) (7.2)

= −2|∇x1|2 + α (7.3)

Now we prove the desired height estimate.

Theorem 7.2 Assume

(y0)
2 ≤ c(c0 + (x1)

2)p
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for some p ≥ 0. Then

y2 ≤ c(c0 + (x1)
2 + 2t)p

proof: Let α = 2. By Lemma C.4 of appendix 3 we have that |∇x1|2 ≤ 1. Hence by the

lemma above,

−(
∂

∂t
−△)ψ = 2|∇x1|2 − 2 ≤ 0 (7.4)

by assumption (y0)2

ψp ≤ c.

Now

(
∂

∂t
−△)(y2ψ−p)

= y2(
∂

∂t
−△)ψ−p + ψ−p(

∂

∂t
−△)(y2)− 2∇i(y

2)∇i(ψ
−p)

= y2(−pψ−p−1(
∂

∂t
−△)ψ − p(p+ 1)ψ−p−2|∇ψ|2)

+ψ−p(2y(
∂

∂t
−△)y − 2|∇y|2) + 4ypψ−p−1∇iy∇iψ

(then by 7.4 above, and the evolution equation for y calculated in Chapter 2)

≤ −p(p + 1)y2ψ−p−2|∇ψ|2 − 2(n− 1)ψ−p

−2ψ−p|∇y|2 + 4pyψ−p−1∇iy∇iψ

We estimate the last term by Young’s inequality:

4pyψ−p−1∇iy∇iψ

≤ p2y2ψ−p−2|∇ψ|2 + 4ψ−p|∇y|2

≤ p(p+ 1)y2ψ−p−2|∇ψ|2 + 2ψ−p|∇y|2 + 2(n− 1)ψ−p

(since |∇y| = | yx√
1+(yx)2

| ≤ 1)

and hence we obtain

(
∂

∂t
−△)(y2ψ−p) ≤ 0

Then using the monotonicity formula of Chapter 1 we see that y2ψ−p ≤ c ∀ time, and so

we are done.
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Chapter 8

Evolution of the gradient for a

rotationally symmetric surface

8.1 Introduction

Let M0 be an entire rotationally symmetric surface generated by a positive function y0.

Here we wish to derive estimates for the gradient y(·, t)x of the rotationally symmetric

surface Mt (where y(·, t) is the generator function of Mt, and Mt is the surface at time t

under the flow (for initial data M0)).

To do this we must calculate the evolution equation for yx under the flow.

First we prove a number of lemmas about the Laplacian △ of a function on a Riemannian

manifold, which will be useful in this calculation.

8.2 Preliminary lemmas

Lemma 8.1 Let g1, g2 be two functions defined on a Riemannian manifold M . Then for

a local orthonormal frame { ~ei } we have

△(g1g2) = g1△g2 + g2△g1 + 2∇ig1 · ∇ig2

proof: Choose a local orthonormal Riemannian frame { ~ai } on M (so ∇~ai ~ai = 0,

〈~ai, ~aj〉 = δij). Then

△(g1g2) = ~ai(~ai(g1g2))− (∇~ai ~ai)(g1g2)

(by definition)

= ~ai(~ai(g1g2))
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= ~ai(g1~ai(g2) + g2~ai(g1))

= g1~ai(~aig2) + ~aig1 · ~aig2
+g2~ai(~aig1) + ~aig2 · ~aig1
= g1△g2 + 2∇ig1 · ∇ig2 + g2△g1

(Note: the term 2∇ig1 · ∇ig2 is independent of any orthonormal frame {ei} we care to

choose, since for an orthonormal frame {ei} we have

∇ig1∇ig2 = ~ei(g1)~ei(g2)

= 〈dg1, dg2〉

) and so we are done.

Lemma 8.2 Let g be a function defined on a Riemannian manifold M . If g 6= 0 locally,

then for a local orthonormal frame { ~ei } we have

△g−1 = −g−2△g + 2g−3|∇g|2

proof: Choose a local orthonormal Riemannian frame { ~ai } on M (so ∇~ai ~ai = 0,

〈~ai, ~aj〉 = δij).

Then

△g−1 = ~ai(~ai(g
−1))−∇~ai ~ai(g

−1)

= ~ai(~ai(g
−1))

= ~ai(−g−2~aig)

= 2g−3~aig · ~aig − g−2~ai(~aig)

= 2g−3|∇g|2 − g−2△g

and so we are done.

So now we are in a position to calculate the evolution equation of yx.

8.3 Evolution of the gradient

In fact we will calculate the evolution equation of the function

f =
√

1 + (yx)2
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We choose to concentrate on the function f rather than yx, since f is a more geometrical

quantity. This can be seen as follows:

Consider the top ridge of a rotationally symmetric surface M . The top ridge of a ro-

tationally symmetric surface M is the set of points { p ∈ M : p = (x1, 0, . . . , y(x1)) },
where y is the generator of the surface M . We see by appendix 1 (where ~ν is calculated

for rotationally symmetric surfaces in terms of the generator y and the derivatives of y)

that f =< ν, ι1 > on this top ridge. Hence f is a geometrical measure of the slope of the

surface M . Given a point p on the surface M , we may rotate the surface so that p lies

on the top ridge, so the quantity f =
√

1 + (yx)2 is just as geometric no matter where we

are on the rotationally symmetric surface M .

So now we will calculate.

We use the orthonormal frame {~ei} calculated in Chapter 2. We use the notation of

that chapter here. Note then that

f =
√

1 + (yx)2 =
1

py

where p is defined in Chapter 2.

Lemma 8.3 The function f =
√

1 + (yx)2 satisfies the following evolution equation under

mean curvature flow:

(
∂

∂t
−△)f = −fk2 − 2k2(yx)

2f + (n− 1)(yx)
2f−1y−2

where k is as defined in Chapter 2.

proof: From the lemmas above we calculate.

△f = △(
1

py
)

= p−1△(y−1) + y−1△(p−1) + 2∇i(p
−1)∇i(y

−1)

= p−1(2y−3|∇y|2 − y−2△y) + y−1(2p−3|∇p|2 − p−2△p)
+2∇i(p

−1)∇i(y
−1)

= 2y−3|∇y|2p−1 − y−2p−1△y + 2p−3y−1|∇p|2 − p−2y−1△p
+2p−2y−2∇ip∇iy

Now
∂

∂t
f =

∂

∂t
(
1

py
) = − 1

yp2
∂

∂t
p− 1

y2p

∂

∂t
y
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(using the evolution equations for p and y calculated in Chapter 2)

= −y−1p−2(△p+ |A|2p+ 2q2(k − p))

−y−2p−1(△y − (n− 1)y−1)

= −y−1p−2△p− y−1p−1|A|2

−2y−1p−2q2(k − p)− y−2p−1△y
+(n− 1)y−3p−1

Hence

(
∂

∂t
−△)f = −y−1p−1|A|2 − 2y−1p−2q2(k − p)

+(n− 1)y−3p−1 − 2y−3|∇y|2p−1

−2p−3y−1|∇p|2 − 2p−2y−2∇ip∇iy

Then using

q2 = y−2 − p−2,

and

|A|2 = k2 + (n− 1)p2

(see Chapter 2 where these two facts are shown) we see that

(
∂

∂t
−△)f = −y−1p−1k2 − (n− 1)y−1p− 2y−3p−2k + 2y−3p−1

+2y−1k − 2y−1p+ (n− 1)y−3p−1

−2y−3|∇y|2p−1 − 2p−3y−1|∇p|2 − 2p−2y−2∇ip∇iy

Now substituting in

p = f−1y−1

we see that

(
∂

∂t
−△)f = −fk2 − 2f 2y−1k + 2y−1k

−2|∇y|2fy−2 − 2f 3y2|∇p|2 − 2f 2∇ip∇iy

+(n+ 1)y−2f − (n+ 1)f−1y−2 (8.1)

Now we explicitly calculate the gradient terms in the above formula.

∇iy = δi1yxf
−1 ⇒

−2|∇y|2fy−2 = −2(yx)
2f−1y−2 (8.2)
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and

∇1p = ∇1(y
−1f−1)

= −f−1y−2∇1y − y−1f−2∇1f

= −f−1y−2yxf
−1 − y−1f−2yxyxxf

−2

= −f−2y−2yx + y−1f−1kyx

(Note here we have calculated ∇if = −δi1kyxf .)

⇒ |∇p|2

= f−4y−4(yx)
2 − 2f−2y−2yxy

−1f−1kyx

+y−2f−2k2(yx)
2

= f−4y−4(yx)
2 − 2f−3y−3(yx)

2k

+y−2f−2k2(yx)
2

⇒ −2f 3y2|∇p|2 = −2(yx)
2f−1y−2 + 4(yx)

2ky−1

−2k2(yx)
2f (8.3)

and hence also,

−2f 2∇ip∇iy

= −2f 2(y−1kyxf
−1 − f−2y−2yx)(yxf

−1)

= (−2fy−1kyx + 2y−2yx)(yxf
−1)

= −2y−1k(yx)
2 + 2y−2(yx)

2f−1 (8.4)

So substituting in 8.2, 8.3, and 8.4 into 8.1 we have that

(
∂

∂t
−△)f = −fk2 − 2k2(yx)

2f + (n− 1)(yx)
2f−1y−2 (8.5)

this is the evolution equation for the gradient.

Note that as n increases, this evolution equation gets worse - i.e. the positive term

(n− 1)(yx)
2f−1y−2 increases. This is due to the fact that for e.g. n =3 we have twice as

much downwards curvature (p) acting on the surface under the flow, and so the gradient

should change at a faster rate. We conjecture that this term could (for certain initial ro-

tationally symmetric data M0) cause the gradient to blow up (approach ∞) in finite time

for n > 2. Geometrically this suggestion as backed up by the existence of rotationally

symmetric catenoid surfaces for n > 2, which become vertical a finite distance from the
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origin along the x-axis (see the note at the end of appendix 4 where the catenoid surfaces

of dimension n¿2 are discussed). In Chapter 2 it was shown that, for n = 2, if a) M0 is

an entire surface with polynomial growth,

b) infM0 H > 0 on M0,

c) the quantities |A|2
H2

|q|
H
, k
p
are bounded on M0, then we have a time independent gradient

estimate. It was also pointed out there, that the argument we used to obtain this gradient

estimate breaks down for n > 2. Perhaps this term (n− 1)(yx)
2f−1y−2 is just too big for

n > 2, and as a result we will not obtain a time independent gradient estimate under the

assumptions a),b),c).

8.4 A height dependent gradient estimate

We now wish to obtain a gradient estimate depending on the height of the surface above

the x1-axis, independent of n, for rotationally symmetric surfaces.

Lemma 8.4 If C0 = supM0
yf <∞,

then

yf < C0

∀ time t that the flow exists. Hence we have the estimate

f <
C0

y

∀ time t that the flow exists.

proof: We calculate the evolution equation for yf and then use the monotonicity formula

(see appendix 5)

(
∂

∂t
−△)(fy)

= f(
∂

∂t
−△)y + y(

∂

∂t
−△)f − 2∇if∇iy

= −f(n− 1)y−1 + y(−fk2 − 2k2(yx)
2f

+(n− 1)(yx)
2f−1y−2)− 2∇if∇iy

(using ∇1f = −yxkf ,
∇1y = yxf

−1 )

= −f(n− 1)y−1 − yfk2 − 2yk2(yx)
2f

+(n− 1)(yx)
2f−1y−1 + 2(yx)

2k

46



= −f(n− 1)y−1 − yfk2 − 2yk2(yx)
2f

+(n− 1)fy−1 − (n− 1)f−1y−1 + 2(yx)
2k

= −yfk2 − 2yk2(yx)
2f − (n− 1)f−1y−1 + 2(yx)

2k

Now note

∇1(fy)

= f∇1y + y∇1f

= yx − yyxkf

Hence

a · ∇1(fy)− 2(yx)
2f−1y−1 + 2(yx)

2k = 0

where a = 2yxf
−1y−1. Hence

(
∂

∂t
−△)(fy) = −yfk2−2yk2(yx)

2f−(n−1)f−1y−1+a ·∇1(fy)−2(yx)
2f−1y−1+4(yx)

2k

Estimating the last term by Young’s inequality:

4(yx)
2k ≤ 2(yx)

2fk2y + 2(yx)
2f−1y−1,

we finally obtain

(
∂

∂t
−△)(fy) ≤ −yfk2 − (n− 1)f−1y−1 + a · ∇1(fy) ≤ a · ∇1(fy).

Hence by the monotonicity formula (see Chapter 1) we have fy ≤ C0 as required.

47



Appendix A

Notes on rotationally symmetric

surfaces

Let y : R → R generate the rotationally symmetric surface M . We wish to calculate the

mean curvature of this rotationally symmetric surface M in terms of it’s generator y, and

the derivatives of y. To do this we choose a local co-ordinate map for M defined in terms

of y, and calculate the metric gij, and the second fundamental form hij of the surface M

with respect to this co-ordinate chart. Then we use the formula H = gijhij to calculate

the mean curvature of the surface M .

Let f̂ : R× Sn−1 → Rn+1 be the function defined by

f̂(x, s1, . . . , sn) =

















x1

y(x)s1
...

y(x)sn

















for some y : R → R. Then M = f̂(R × Sn−1) ⊂ Rn+1 is the n-dimensional rotation-

ally symmetric surface sitting in Rn+1, generated by the function y. A differentiable

structure is given to M by composing f̂ with charts from the differentiable structure for

Sn−1. e.g. for points on the top ridge of the surface (the top ridge is the set of points {
p ∈M : p = (x1, 0, . . . , 0, y(x1))}) we have

f(x, s1, . . . , sn) =























x

y(x)s1
...

y(x)sn−1

y(x)
√

1− s21 − · · · − s2n−1
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is (the inverse of) a local co-ordinate map. Now we calculate:

D1f =























1

s1y
′(x)
...

sn−1y′(x)
y′(x)

√
S























D2f =





























0

y(x)

0
...

0
−y(x)s1√

S





























. . .

Dnf =





























0

0

0
...

y(x)
−y(x)sn−1√

S





























where S = 1− s21 − · · · − s2n−1 = s2n.

case 1 j, i 6= 1:

gij = Dif ·Djf =
y2(δijs

2
n + si−1sj−1)

s2n

case 2 i = 1, j 6= 1 or i 6= 1, j = 1:

gj1 = g1j = D1f ·Djf = sj−1y
′(x)y(x)− y(x)sj−1y

′(x) = 0

case 3 i = j = 1

g11 = D1f ·D1f = 1 + s21y
′(x)2 + · · ·+ s2n−1y

′(x)2 + s2ny
′(x)2 = 1 + y′(x)2

ν =
D1f × · · ·∂nf
|D1f × · · ·Dnf |

=





















−y′√
1+(y′)2

s1√
1+(y′)2

...
sn√

1+(y′)2
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Now hij = Diν ·Djf . So calculate:

case 1 i, j 6= 1:

hij =
y(s2nδij + si−1sj−1)

√

1 + (y′)2 · s2n
case 2 i = 1, j 6= 1 (or i 6= 1, j = 1)

h1j = hj1 =
−sj−1y

′y′′y + ysj−1y
′y′′

(1 + (y′)2)3/2
= 0

case 3 i = j = 1

h11 =
−y′′

√

1 + (y′)2

Calculations give g−1 is defined by:

case1 i = j = 1:

g11 =
1

√

1 + (y′)2

case 2 i = 1, j 6= 1 (or j = 1, i 6= 1)

g1j = gj1 = 0

case 3 i, j 6= 1

gij =
1

y2
(δij − sisj)

Then H =
∑

eigen values of hij with respect to gij

= hii (A.1)

= gijhij (A.2)

=
(n− 1)

y
√

1 + (y′)2
− y′′

(1 + (y′)2)3/2
(A.3)

Note: Define

ỹ = λy(
x

λ
),

for some λ > 0. Then

ỹ′(x) = (λy(
x

λ
))′ (A.4)

= y′(
x

λ
) (A.5)
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ỹ′′(x) (A.6)

= (y′(
x

λ
))′ (A.7)

=
1

λ
y′′(

x

λ
) (A.8)

And so H̃ (the mean curvature of the rotationally symmetric surface generated by ỹ), is

H̃(x) =
(n− 1)

ỹ(x)
√

1 + (ỹ′(x))2
− ỹ′′(x)

(1 + (ỹ′(x))2)3/2
(A.9)

=
(n− 1)

λy(x
λ
)
√

1 + (y′(x
λ
))2

− y′′(x
λ
)

λ(1 + (y′(x
λ
))2)3/2

(A.10)

=
1

λ
(

(n− 1)

y(x
λ
)
√

1 + (y′(x
λ
))2

− y′′(x
λ
)

(1 + (y′(x
λ
))2)3/2

) (A.11)

This is in fact true for hyper-surfaces in general, as is shown in Chapter 6, Lemma 6.2.

i.e. if M̃ = cM for some c > 0, then H̃(p̃) = H(p).
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Appendix B

Notes on graphs

Let u be a C2(Ω) function u : Ω → R for some hyperplane Ω ⊂ Rn+1. We wish to calculate

the mean curvature of the surface M = graph(u) in terms of u and it’s derivatives. To do

this we define a co-ordinate chart for M in terms of u and calculate the first and second

fundamental form (gij and hij) of M in terms of this co-ordinate chart. We then use the

formula H = gijhij to calculate the mean curvature of the surface M .

f : Ω → Rn+1, the graph of the function u, is given by

f(x) =





x

u(x)





f−1 is a co-ordinate chart for the surface f(Ω). We calculate:

Dkf =









































0
...

0

1

0
...

0

Dku









































where the 1 is in the kth spot. Calculate

gij = Dif ·Djf = δij +Diu ·Dju
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and

ν =
D1f × · · · ×Dnf

|D1f × · · ·∂nf |
=





















−D1u√
1+|Du|2
...

−D1u√
1+|Du|2

1√
1+|Du|2





















(B.1)

hij = Diν ·Djf =
−Diju

√

1 + |Du|2

gij =







1− (Diu)2

1+|Du|2fori = j

−DiuDju

1+|Du|2 fori 6= j

And so H =
∑

Eigenvalues of hij with respect to gij

= hii

= gijhij

= −Di





Diu
√

1 + |Du|2



 (B.2)

How do graphs act under the flow? Well as mentioned in Chapter 1 the equation

∂

∂t
~F = ~H (B.3)

is equivalent up to tangential diffeomorphisms to

(
∂

∂t
F )⊥ = ~H (B.4)

i.e. the surfaces we get under B.3 and B.4 are the same at each time. Now assume M0 is

an initial surface that can be written as the graph of a function u0 ∈ C2,0(Ω), u0 : Ω → R,

for some hyperplane Ω. If ~F is a solution to B.4 (with Mn = Ω, F0(M = Ω) = M0)

which preserves the x-co-ordinate, then F (x, t) = (x, u(x, t)) for some function u defined

on Ω × [0, T ), u(·, t) : Ω → R. So ∂
∂t
~F = (0, ut(x, t)). Using the calculation of ν above

(B.1) we see that

〈 ∂
∂t
~F , ν〉 = ut

√

1 + |Du|2
(B.5)

But from B.4 we have that

〈 ∂
∂t
~F , ν〉 = −H (B.6)
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So using the calculation of H above (B.2), and B.5 and B.6 we see that

ut =
√

1 + |Du|2Di(
Diu

√

1 + |Du|2
)

This is the equation for the flow of a graph. Evolution of graphs has been extensively

studied in [5] (where entire graphs are studied) and [4] (where interior estimates for

surfaces are calculated using graphs to represent the surface locally).

54



Appendix C

Technical lemmas

As usualMn is an n-dimensional surface sitting in Rn+1, ~x is the position vector in Rn+1.

Lemma C.1 If ~x is the position vector in Rn+1, then

∇~Yp
~x = ∇̂~Yp

~x = ~Yp

for any vector ~Yp ∈ TpM .

proof: Choose α : R → Rn+1 such that: α(t) ∈M , and α(0) = p, and α′(0) = ~Yp. Then

∇̂Yp~x =
∂

∂t
(~x(α(t)))|t=0

=
∂

∂t
α(t)|t=0

= α′(0)

= ~Yp

∇Yp~x = π(∇̂Yp~x),

where π(Yp) is projection of the vector Yp onto the tangent space at p. So we are done.

Lemma C.2 If {~ai} is a local Riemannian orthonormal frame on M ,

(i.e. gij = 〈~ai, ~aj〉 = δij, and Γlij = 0), then

∇̂~ai ~ai =
~H = −Hν (C.1)

proof: Since the frame is Riemannian, we have Γlij = 0, and so

〈∇̂~ei ~ai, ~aj〉 = Γjii = 0
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Hence

∇̂~ai ~ai = 〈∇̂~ai ~ai, ~ν〉~ν

Then note that

0 = ~ai〈~ai, ~ν〉
= 〈∇̂~ai ~ai, ~ν〉

+〈~ai, ∇̂~ai~ν〉
⇒ 〈∇̂~ai ~ai, ~ν〉

= −〈~ai, ∇̂~ai~ν〉

So

∇̂~ai ~ai = −〈~ai, ∇̂~ai~ν〉~ν
= −hii~ν
= −gijhij~ν
= −H~ν
= ~H

Note: Mean curvature, H , as is defined generally in Differential Geometry is not given a

sign. Here we give H the sign so that the above formula C.1 is true. So for a choice of

unit normal ~ν, given our definition of hij = 〈~ai, ∇̂ ~aj~ν〉, we see that H = gijhij .

Lemma C.3

△~x = ~H (C.2)

proof: Choose a local orthonormal Riemannian frame {~ai}ni=1 on M . Then using the

previous two lemmas where appropriate

△~x = ∇̂~ai∇̂~ai~x−∇~ai ~ai~x

= ∇̂~ai∇̂~ai~x

(since the frame is Riemannian ⇒
∇~ai ~ai = Γjii ~aj = 0)

= ∇̂~ai ~ai

= ~H

(from the above lemma)).

56



Lemma C.4

(
∂

∂t
−△)|~x|2 = −2n (C.3)

proof: Choose a local orthonormal Riemannian frame {~ai}ni=1 on M . Then

∂

∂t
|~x|2 =

∂

∂t
〈~x, ~x〉

= 2〈 ∂
∂t
~x, x〉

= 2〈 ~H, x〉

Using the previous lemmas where appropriate, we see:

△|~x|2 = ~ai(~ai|~x|2)
= ~ai(~ai〈~x, ~x〉)
= ~ai(2〈~ai, ~x〉)
= 2〈∇̂~ai ~ai, ~x〉+ 2〈~ai, ∇̂~aix〉
= 2〈 ~H, ~x〉+ 2〈~ai, ~ai〉
= 2〈 ~H, ~x〉+ 2n

So ( ∂
∂t
−△)|~x|2 = −2n.

Lemma C.5

|∇xj |2 ≤ 1 (C.4)

proof: Let { ~ei } be a local orthonormal frame.

|∇xj |2 =
∑

i

(~ei(x
j))2

=
∑

i

(~ei〈~x, ιj〉)2

=
∑

i

〈~ei, ιj〉2

= |π(ιj)|2

where πp(~Y ) is projection of the vector ~Y ∈ Rn+1 onto the tangent space of M at p. So

we are done.

Lemma C.6

(
∂

∂t
−△)~x = 0 (C.5)
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proof:
∂

∂t
~x = ~H,

and

△~x = ~H

from a previous lemma.

Lemma C.7 Let { ~ei } be a local frame on M . Then we have

∇̂~ei~ν = hik ~ek (C.6)

proof:

0 = ~ei〈~ν, ~ν〉
= 2〈∇̂~ei~ν, ~ν〉

⇒ 〈∇̂~ei, ~ν〉 = 0

Hence ∇̂~ei~ν lies in the tangent space of the surface M . Hence

∇̂~ei~ν = 〈∇̂~ei~ν, ~ek〉~ek
= hik ~ek

(by definition).

Lemma C.8 Let {~ai} be a local Riemannian orthonormal frame on M . Then we have

∇̂~ai ~ak = −hik~ν (C.7)

proof:

∇̂~ai ~ak = 〈∇̂~ai ~ak, ~ν〉~ν +∇~ai ~ak

In a Riemannian orthonormal frame the last term is 0 (since all the Christoffel symbols

are 0). Also, see that

0 = ~ai〈 ~ak, ~ν〉
= 〈∇̂~ai ~ak, ~ν〉

+〈 ~ak, ∇̂~ai~ν〉
= 〈∇̂~ai ~ak, ~ν〉+ hik

⇒ 〈∇̂~ai ~ak, ~ν〉 = −hik
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Hence

∇̂~ai ~ak = −hik~ν

Lemma C.9

〈∇H, ι1〉 = △〈~ν, ι1〉+ |A|2〈~ν, ι1〉 (C.8)

proof: As usual let { ~ai } be a Riemannian orthonormal frame. Then

△〈~ν, ι1〉 = ~ai(~ai(〈~ν, ι1〉))
= ~ai(〈∇̂~ai~ν, ι1〉)

( then using Lemma C.6

= ~ai(〈hik ~ak, ι1〉)
= 〈∇̂~ai(hik ~ak), ι1〉
= 〈~ai(hik) ~ak, ι1〉+ 〈hik∇̂~ai ~ak, ι1〉
= 〈∇i(hik) ~ak, ι1〉+ 〈hik(−hik~ν), ι1〉

(since by Lemma C.7,

∇̂~ai ~ak = −hik~ν ,

and also ∇i(hjk) = ~ai(hjk)

since the frame is Riemannian)

= ∇i(hik)〈 ~ak, ι1〉 − (hik)
2〈~ν, ι1〉

= ∇i(hik)〈 ~ak, ι1〉 − |A|2〈~ν, ι1〉
(using the Codazzi equations: ∇ihjk = ∇jhik)

= ∇k(hii)〈 ~ak, ι1〉 − |A|2〈~ν, ι1〉

Now

∇H = ∇k(H) ~ak

= ∇k(g
ijhij) ~ak

= gij∇k(hij) ~ak + hij∇k(g
ij) ~ak

= ∇k(hii) ~ak

So we are done.
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Appendix D

Catenoid surfaces

In this appendix we present the well known family of catenoid minimal surfaces of dimen-

sion 2. Each catenoid surface in the family is rotationally symmetric, has mean curvature

0 and hence remains stationary under mean curvature flow. Catenoid surfaces behave

exponentially as we go out towards ∞ on the x-axis. They can be explicitly described as

follows.

Let f0 : R → R be the function defined by

f0 = r cosh(
x

r
)

for some r > 0. Let M0 be the rotationally symmetric surface generated by rotating f

around the x1 - axis.

Now

f0x = sinh(
x

r
)

and

f0xx =
1

r
cosh(

x

r
)

so that

−H ·
√

1 + (f0x)
2 =

f0xx
1 + (f0x)

2
− 1

f
(D.1)

=
1
r
cosh(x

r
)

1 + sinh2(x
r
)
− 1

r cosh(x
r
)

(D.2)

=
cosh(x

r
)

r cosh2(x
r
)
− 1

r cosh(x
r
)

(D.3)

= 0 (D.4)
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So f = f0 is a solution to the evolution equation for a rotationally symmetric surface:

ft =
fxx

1 + (fx)2
− 1

f

(calculated in Chapter 2 “Rotationally Symmetric Surfaces”). Numerically it has been

shown that for dimension n > 2 there is also a family of rotationally symmetric catenoid

like surfaces with mean curvature 0. It has been shown that for n > 2 each catenoid

surface becomes vertical at finite distance from the origin.
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