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The diffraction of light is considered for a plane screen with an open bounded aperture. The
corresponding solution behind the screen is given explicitly in terms of the Fourier transforms
of the tangential components of the electric boundary field in the aperture. All components of the
electric as well as the magnetic field vector are considered. We introduce solutions with global
finite energy behind the screen and describe them in terms of two boundary potential functions.
This new approach leads to a decoupling of the vectorial boundary equations in the aperture in
the case of global finite energy. For the physically admissible solutions, that is, the solutions with
local finite energy, we derive a characterisation in terms of the electric boundary fields.

1. Introduction

This paper deals with the classical diffraction problem for electromagnetic waves passing a
bounded aperture in an ideally conducting plane screen. We treat the problem within the
exact theory, that is, we consider the corresponding solutions of the time harmonic Maxwell
equations that fulfil the correct boundary conditions on the screen.

The problem of diffraction of electromagnetic waves by an infinite slit has been
treated by the Fourier method in the papers [1, 2]. In [1] especially representations of the
solutions that fulfil a certain energy condition have been given in terms of distributional
electric boundary fields satisfying special regularity properties. In [2] mapping properties
of the corresponding boundary operators between Sobolev spaces have been studied. These
Sobolev spaces have been chosen such that the corresponding diffraction solutions satisfy the
correct physical energy condition.
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While the slit problem treated in [1, 2] can be decoupled into two scalar problems by
considering two kinds of polarisations of the electromagnetic field, in the case of a bounded
aperture such a decoupling is not possible in general. However, for the latter case we derive
a new kind of decoupling of the vectorial system which can be performed if and only if the
condition of global finite energy in part (b) of Definition 2.5 is fulfilled, see Theorem 3.2.

Finally we study the condition of local finite energy which covers all physically
admissible solutions. Here we give a characterisation of solutions with local finite energy
in terms of a regularity property of the electric boundary fields, see Theorem 4.1. This is done
in a self-contained way by using the Paley-Wiener theorem for distributions defined on the
bounded aperture as well as a special contour integration method in the Fourier domain.

2. Electromagnetic Diffraction by an Aperture in a Plane Screen

We start with an informal physical description of the electromagnetic diffraction problem
and fix some notations which will be used in the sequel. Then we will develop a more
general mathematical frame with boundary distributions in Sobolev spaces in order to obtain
diffraction solutions satisfying physical energy conditions.

Monochromatic light waves with a fixed wavenumber k > 0 satisfy the first-order
system of Maxwell-Helmholtz equations

ikE∗
(
x
)
+∇ × B∗

(
x
)
= 0,

−ikB∗
(
x
)
+∇ × E∗

(
x
)
= 0.

(2.1)

In the whole paper we consider a real wavenumber k > 0, although the results can be
generalised to the case of a complex wavenumber k /= 0 with Re k ≥ 0 and Im k ≥ 0. We
assume that the electromagnetic field with components ej , bj , j = 1, 2, 3,

⎛

⎝
e1(x, x3)
e2(x, x3)
e3(x, x3)

⎞

⎠ = E∗(x, x3),

⎛

⎝
b1(x, x3)
b2(x, x3)
b3(x, x3)

⎞

⎠ = B∗(x, x3), (2.2)

consists of functions defined in the upper half-space

H :=
{
x = (x, x3) ∈ R

3 | x ∈ R
2, x3 > 0

}
. (2.3)

The diffraction problem is considered for an open bounded aperture

Ω ⊂ {
(x, 0) | x ∈ R

2} (2.4)

in the screen plane x3 = 0. In the sequel we will suppress the notation of the third component
0 for the points in the screen plane, and interpretΩ as well as the screenΩc := R

2\Ω as subsets
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of R
2. For describing the whole electromagnetic field in terms of its boundary values, for the

moment we assume that these are functions, given for x ∈ R
2 by

⎛

⎝
e1,0(x)
e2,0(x)
e3,0(x)

⎞

⎠ = lim
x3↓0

E∗(x, x3),

⎛

⎝
b1,0(x)
b2,0(x)
b3,0(x)

⎞

⎠ = lim
x3↓0

B∗(x, x3). (2.5)

The screen Ωc is assumed to be an ideal conducting wall. This implies the physical
boundary conditions

e1,0(x) = e2,0(x) = 0 ∀x ∈ Ωc. (2.6)

In the general case the boundary fields (2.5) have to be replaced by appropriate distributions,
and the limit x3 ↓ 0 will be performed in the Fourier domain instead of the half-space H.

For this purpose we write again x = (x, x3), with x = (x1, x2) ∈ R
2 and fixed x3 > 0,

and assume that each field component u(·, x3) represents a tempered distribution in S′(R2)
with Fourier transform

û(ξ1, ξ2, x3) =
1
2π

∫∫

R2
u(x1, x2, x3)e−i(ξ1x1+ξ2x2)dx1dx2, ξ1, ξ2 ∈ R. (2.7)

Then we obtain from the first-order Maxwell-Helmholtz equations the following Fourier
transformed Maxwell-Helmholtz system: for all x3 ≥ 0 and fixed ξ1, ξ2 ∈ R we have

ik

⎛

⎝
ê1
ê2
ê3

⎞

⎠ +

⎛

⎜⎜⎜⎜
⎝

iξ2b̂3 − d

dx3
b̂2

d

dx3
b̂1 − iξ1b̂3

iξ1b̂2 − iξ2b̂1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠,

−ik

⎛

⎜
⎝

b̂1
b̂2
b̂3

⎞

⎟
⎠ +

⎛

⎜⎜⎜⎜
⎝

iξ2ê3 − d

dx3
ê2

d

dx3
ê1 − iξ1ê3

iξ1ê2 − iξ2ê1

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎝
0
0
0

⎞

⎠.

(2.8)

Here we have replaced the partial derivative with respect to x3 by the ordinary derivative
d/dx3.

We define

C :=
1
k

⎛

⎜⎜⎜⎜
⎝

∂2

∂x1∂x2
−
(

k2 +
∂2

∂x2
1

)

k2 +
∂2

∂x2
2

− ∂2

∂x1∂x2

⎞

⎟⎟⎟⎟
⎠

. (2.9)
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With the two-dimensional Laplace operator Δ we have

C2 = −
(
k2 + Δ

)(1 0
0 1

)
. (2.10)

For the action of C in the Fourier domain we obtain multiplication by the matrix

Ĉ(ξ) :=
1
k

( −ξ1ξ2 −(k2 − ξ21
)

k2 − ξ22 ξ1ξ2

)
, ξ = (ξ1, ξ2) ∈ R

2. (2.11)

We replace (2.8) with the ordinary differential equations

d

dx3

(
ê1
ê2

)
= −iĈ

(
b̂1
b̂2

)

,
d

dx3

(
b̂1
b̂2

)

= iĈ

(
ê1
ê2

)
, (2.12)

and the two algebraic conditions

ê3 =
1
k

(
ξ2b̂1 − ξ1b̂2

)
, b̂3 =

1
k
(ξ1ê2 − ξ2ê1). (2.13)

For all fixed ξ ∈ R
2 we supplement the system of differential equations (2.12) by the initial

conditions

êj,0(ξ) := êj(ξ, 0), b̂j,0(ξ) := b̂j(ξ, 0), j = 1, 2, (2.14)

and put

m(ξ) :=

⎧
⎨

⎩

√
k2 − |ξ|2, |ξ| ≤ k,

i
√
|ξ|2 − k2, |ξ| > k.

(2.15)

Then the general solution of the homogeneous linear system (2.12) is

⎛

⎜⎜⎜
⎝

ê1(ξ, x3)
ê2(ξ, x3)
b̂1(ξ, x3)
b̂2(ξ, x3)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

cos(m(ξ)x3)E −i sin(m(ξ)x3)
m(ξ)

Ĉ(ξ)

i
sin(m(ξ)x3)

m(ξ)
Ĉ(ξ) cos(m(ξ)x3)E

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

ê1,0(ξ)
ê2,0(ξ)
b̂1,0(ξ)
b̂2,0(ξ)

⎞

⎟⎟⎟
⎠

(2.16)

with the 2 × 2 unit matrix E.
But the terms cos(m(ξ)x3) and sin(m(ξ)x3) are exponentially increasing for fixed

x3 > 0 and |ξ| → ∞. For avoiding that the Fourier transformed fields are also exponentially
increasing we have to require the following algebraic conditions for |ξ| > k:

m ·
(
b̂1,0
b̂2,0

)

= Ĉ

(
ê1,0
ê2,0

)
. (2.17)
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By using (2.17), for x3 ↓ 0 and |ξ| > k we can replace (2.13) with

ê3,0 = − 1
m
(ξ1ê1,0 + ξ2ê2,0), b̂3,0 = − 1

k
(ξ2ê1,0 − ξ1ê2,0). (2.18)

From the general solution and (2.17), (2.18) we obtain the following decay conditions for
x3 > 0:

êj(ξ, x3) = eix3m(ξ)êj,0(ξ), b̂j(ξ, x3) = eix3m(ξ)b̂j,0(ξ), j = 1, 2, 3. (2.19)

With x = (x1, x2) ∈ R
2, x = (x, x3) ∈ R

3 and x3 > 0 there holds the important and well-known
Sommerfeld-Weyl integral representation

Fk(x, x3) :=
eik|x|
∣∣x

∣∣ =
i

2π

∫∫

R2

eix3m(ξ)+i〈x,ξ〉

m(ξ)
dξ. (2.20)

The left-hand side in (2.20) is the singular solution of the three-dimensional Helmholtz
equation (Δ + k2)Fk = −4πδ. For this reason it is natural to require the algebraic conditions
(2.17), (2.18) also in the case |ξ| < k, such that (2.19) is generally valid for x3 > 0 and ξ ∈ R

2,
|ξ|/= k.

Distributions u ∈ D′(R2) with compact support in the screen plane are tempered, and
it follows from the Paley-Wiener theorem that û is a smooth function which has polynomial
growth on R

2. This is used in the following theorem, which results if we regard (2.17), (2.18),
and (2.19) and apply the Fourier inversion formula for x3 > 0 to each component êj(·, x3) and
b̂j(·, x3).

Theorem 2.1. Let there be given e1,0, e2,0 ∈ S′(R2) with support in the bounded region Ω. Then the
following functions ej , bj : H → C constitute a C∞-solution of the Maxwell-Helmholtz system (2.1)
in the upper half-spaceH, j = 1, 2, 3;

e1(x, x3) =
1
2π

∫∫

R2
ê1,0(ξ)eix3m(ξ)+i〈x,ξ〉dξ,

e2(x, x3) =
1
2π

∫∫

R2
ê2,0(ξ)eix3m(ξ)+i〈x,ξ〉dξ,

b1(x, x3) = − 1
2πk

∫∫

R2

ξ1ξ2ê1,0(ξ) +
(
k2 − ξ21

)
ê2,0(ξ)

m(ξ)
eix3m(ξ)+i〈x,ξ〉dξ,

b2(x, x3) =
1

2πk

∫∫

R2

(
k2 − ξ22

)
ê1,0(ξ) + ξ1ξ2ê2,0(ξ)

m(ξ)
eix3m(ξ)+i〈x,ξ〉dξ,

e3(x, x3) = − 1
2π

∫∫

R2

ξ1ê1,0(ξ) + ξ2ê2,0(ξ)
m(ξ)

eix3m(ξ)+i〈x,ξ〉dξ,

b3(x, x3) = − 1
2πk

∫∫

R2
[ξ2ê1,0(ξ) − ξ1ê2,0(ξ)]eix3m(ξ)+i〈x,ξ〉dξ.

(2.21)



6 ISRN Mathematical Physics

Proof. The calculation of the partial derivatives of ej and bj can be interchanged with
integration. This can be used to check the Maxwell-Helmholtz equations independent from
the previous representations of the Fourier-transforms êj and b̂j in terms of ê1,0 and ê2,0.

Definition 2.2. The electromagnetic field in the half-space x3 > 0 behind the screen is
completely determined by the electric boundary components e1,0, e2,0. We call ej , bj : H → C,
j = 1, 2, 3, the half-space solution determined by the boundary distributions e1,0, e2,0 ∈ S′(R2)
with compact support in Ω.

Remark 2.3. Assume that e1,0, e2,0 are smooth functions with compact support in Ω and that
E∗, B∗ is the corresponding electromagnetic field with the components given in Theorem 2.1.
Then we obtain from Fourier’s inversion formula that for all x ∈ R

2

lim
x3↓0

ej(x, x3) = ej,0(x), j = 1, 2. (2.22)

Remark 2.4. Assume again that e1,0, e2,0 are smooth functions with compact support in Ω.
Then we obtain from Theorem 2.1 and the Sommerfeld-Weyl integral (2.20) for all x ∈ R

2 and
all x3 > 0 that

b1(x, x3) = − i

2πk
∂2

∂x1∂x2

∫∫

Ω
e1,0

(
y
)
Fk

(
x − y, x3

)
dy

+
i

2πk

(

k2 +
∂2

∂x2
1

)∫∫

Ω
e2,0

(
y
)
Fk

(
x − y, x3

)
dy,

b2(x, x3) = − i

2πk

(

k2 +
∂2

∂x2
2

)∫∫

Ω
e1,0

(
y
)
Fk

(
x − y, x3

)
dy

+
i

2πk
∂2

∂x1∂x2

∫∫

Ω
e2,0

(
y
)
Fk

(
x − y, x3

)
dy.

(2.23)

Equations (2.23) involve the boundary conditions (2.6) for the electric field components
on the ideal conducting plane screen Ωc. In order to obtain a coupled system of boundary
integro-differential equations we pass for x ∈ R

2 to the limit x3 ↓ 0 and obtain

b1,0(x) = − i

2πk
∂2

∂x1∂x2

∫∫

Ω
e1,0

(
y
) eik|x−y|
∣∣x − y

∣∣dy

+
i

2πk

(

k2 +
∂2

∂x2
1

)∫∫

Ω
e2,0

(
y
) eik|x−y|
∣∣x − y

∣∣dy,

b2,0(x) = − i

2πk

(

k2 +
∂2

∂x2
2

)∫∫

Ω
e1,0

(
y
) eik|x−y|
∣∣x − y

∣∣dy

+
i

2πk
∂2

∂x1∂x2

∫∫

Ω
e2,0

(
y
) eik|x−y|
∣∣x − y

∣∣dy.

(2.24)

In general the electric boundary fields e1,0 and e2,0 are unknown distributions with compact
support in Ω, whereas b1,0 and b2,0 are given distributions in the aperture Ω. In order to
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select physical admissible solutions of the diffraction problem we need some conditions for
its electromagnetic energy content, especially in local volume elements G ⊂ H. Recall that
H := R

2 × R
+.

Definition 2.5. Let ej , bj : H → C, j = 1, 2, 3, be the half-space solution determined by the
boundary distributions e1,0, e2,0 ∈ S′(R2)with compact support in Ω.

(a) The solution is called physical admissible if and only if it satisfies the local energy
condition

1
2

3∑

j=1

∫∫∫

G

(∣
∣ej

(
x
)∣∣2 +

∣
∣bj

(
x
)∣∣2

)
dx < ∞ (2.25)

for every bounded domain G ⊂ H.

(b) The solution satisfies the stronger global energy condition if and only if

1
2

3∑

j=1

∫∫∫

Lh

(∣∣ej
(
x
)∣∣2 +

∣∣bj
(
x
)∣∣2

)
dx < ∞ (2.26)

for some h > 0, and therewith for all h > 0, with the layer

Lh := {(x1, x2, x3) ∈ H | x3 < h }.

In the following two sections we determine the solutions with global as well as those
with local finite energy in terms of an appropriate functional analytical setting for the electric
boundary fields e1,0 and e2,0.

3. The Global Energy Condition

Throughout the rest of this paper let the open aperture Ω :=
⋃κ

j=1 Ωj ⊂ R
2 be a finite union of

nonempty bounded Lipschitz domains Ωj in the screen plane, such that the compact sets Ωj

are pairwise disjoint.
ByHs(R2), s ∈ R, we denote the Sobolev space of tempered distributions h, for which

the Fourier transform ĥ is locally integrable with

‖h‖Hs(R2) :=
(∫∫

R2

∣∣∣ĥ(ξ)
∣∣∣
2(
1 + |ξ|2

)s
dξ

)1/2

< ∞ (3.1)

(cf. [3], Chapter 8.8). ‖ · ‖Hs(R2) is the norm on the Banach space Hs(R2).
For s ∈ R the Sobolev space H̃s(Ω) is given by

H̃s(Ω) =
{
h ∈ Hs

(
R

2
)
| supp h ⊂ Ω

}
. (3.2)
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Here supp h denotes the support of the distribution h in the compact setΩ. The space H̃s(Ω)
is equipped with the norm ofHs(R2), which makes it into a Banach space (cf. [4, Chapter 3]).
The Lipschitz property of ∂Ω guarantees that H̃s(Ω) is the closure of D(Ω) in Hs(R2). For a
more general result see [4, Theorem 3.29].

Theorem 3.1. Let ej , bj : H → C, j = 1, 2, 3, be the half-space solution determined by the boundary
distributions e1,0, e2,0 ∈ S′(R2) with compact support in Ω. Then the diffraction solution has global
finite energy if and only if

e1,0, e2,0, ∇ ·
(−e2,0

e1,0

)
∈ H̃−1/2(Ω) (3.3)

and ê1,0(ξ)ξ1 + ê2,0(ξ)ξ2 = 0 for all ξ = (ξ1, ξ2) ∈ R
2 with |ξ| = k.

Proof. In order to perform the energy evaluation with Parseval’s theorem we define with the
Fourier transformed electromagnetic boundary fields êj,0, b̂j,0, j = 1, 2, 3, the quantity

W0(ξ) :=
1
2

3∑

j=1

(∣∣êj,0(ξ)
∣∣2 +

∣∣∣b̂j,0(ξ)
∣∣∣
2
)
. (3.4)

It follows from a lengthy calculation with |z|2 = zz for the values z ∈ C of the Fourier
transformed boundary fields as well as from the algebraic relations (2.17), (2.18), which are
valid for |ξ|/= k, that

W0(ξ) =

⎧
⎨

⎩

|ê1,0(ξ)|2 + |ê2,0(ξ)|2 + |ê3,0(ξ)|2, |ξ| < k,

|ê3,0(ξ)|2 +
∣∣∣b̂3,0(ξ)

∣∣∣
2
, |ξ| > k.

(3.5)

With V1 := {ξ ∈ R
2 | |ξ| < k}, V2 := {ξ ∈ R

2 | |ξ| > k} we conclude from Parseval’s
theorem, (2.19) and the definition (2.15) of m(ξ) for h > 0

E(h) := 1
2

3∑

j=1

∫h

0

∫∫

R2

(∣∣ej(x, x3)
∣∣2 +

∣∣bj(x, x3)
∣∣2
)
dx dx3

= h

∫∫

V1

W0(ξ)dξ +
∫∫

V2

1 − e−2h
√

|ξ|2−k2

2
√
|ξ|2 − k2

W0(ξ)dξ.

(3.6)

Using for all ξ ∈ R
2 with |ξ|/= k the estimate

1
2

(
|ê1,0(ξ)|2 + |ê2,0(ξ)|2 + |ê3,0(ξ)|2 +

∣∣∣b̂3,0(ξ)
∣∣∣
2
)

≤ W0(ξ) ≤ |ê1,0(ξ)|2 + |ê2,0(ξ)|2 + |ê3,0(ξ)|2 +
∣∣∣b̂3,0(ξ)

∣∣∣
2
,

(3.7)
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and observing that we have uniformly in r > k for appropriate constants α, β > 0

α√
1 + r2

≤ 1 − e−2h
√
r2−k2

2
√
r2 − k2

≤ β√
1 + r2

, (3.8)

we conclude from (3.6) that E(h) is finite if and only if

e1,0, e2,0, e3,0, b3,0 =
i

k
∇ ·

(−e2,0
e1,0

)
∈ H−1/2

(
R

2
)
. (3.9)

Note that with e1,0 and e2,0 also ∇ · (−e2,0, e1,0)T has support in Ω.
Assume first that E(h) < ∞ and that ê1,0(ξ)ξ1 + ê2,0(ξ)ξ2 /= 0 for a certain ξ =

(ξ1, ξ2) ∈ R
2 with |ξ| = k. Since e1,0, e2,0 have compact support, we conclude from the

Paley-Wiener theorem that ê1,0, ê2,0 : R
2 → C are smooth and especially continuous. Thus

|ê1,0(ξ)ξ1 + ê2,0(ξ)ξ2|2 ≥ δ > 0 in a bounded domain

(ξ1, ξ2) = r
(
cosϕ, sinϕ

)
with ϕ1 < ϕ < ϕ2, k < r < k + ε, (3.10)

and hence |ê3,0|2 because of (2.18) is not integrable. Due to (3.1) this violates the necessary
condition e3,0 ∈ H−1/2(R2) in (3.9).

For showing the other direction of the equivalence stated in the theorem we assume
that

e1,0, e2,0, ∇ ·
(−e2,0

e1,0

)
∈ H̃−1/2(Ω), (3.11)

ê1,0(ξ1, ξ2)ξ1 + ê2,0(ξ1, ξ2)ξ2 = 0, (3.12)

for all ξ1, ξ2 ∈ R with ξ21 + ξ22 = k2. In order to prove (3.9) it remains to show that
e3,0 ∈ H−1/2(R2). Since e1,0, e2,0 have compact support in Ω, we obtain from the Paley-Wiener
theorem that the Fourier transforms ê1,0, ê2,0 can be continuated to entire functions. We also
denote these entire functions by ê1,0, ê2,0. We define the entire function f by

f(z1, z2) := ê1,0(z1, z2)z1 + ê2,0(z1, z2)z2. (3.13)

Using (3.12) and (2.18), it follows for example from Theorem A.1 in the appendix that |ê3,0|2
is a locally integrable function.

From the first equation in (2.18) and the Cauchy-Schwarz inequality we obtain the
estimate

|ê3,0(ξ)|2 ≤ |ξ|2
|ξ|2 − k2

·
(
|ê1,0(ξ)|2 + |ê2,0(ξ)|2

)
, |ξ| > k. (3.14)

Now e3,0 ∈ H−1/2(R2) follows from the assumption e1,0, e2,0 ∈ H̃−1/2(Ω), because |e3,0|2 is
locally integrable and |ξ|2/(|ξ|2 − k2) is bounded for sufficiently large |ξ|.
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Next we present a characterisation of the global finite energy solutions in terms of two
boundary potential functions. In the following we use the vectorial differential operator (2.9)
satisfying (2.10).

Theorem 3.2. Boundary potential functions

(a) Given are two functions u1, u2 ∈ H̃1/2(Ω), in the following called boundary potential
functions, satisfying the regularity condition

∇ ·
(−u2

u1

)
∈ H̃1/2(Ω). (3.15)

Define

(
e1,0
e2,0

)
:= C

(
u1

u2

)
. (3.16)

Then the corresponding electromagnetic field ej , bj , j = 1, 2, 3, determined by e1,0 and e2,0
according to Theorem 2.1, has global finite energy.

(b) Let e1,0, e2,0 be given such that the half-space solution in Theorem 2.1 has global finite
energy. If the setR

2\Ω is connected, then the boundary fields e1,0 and e2,0 can be represented
by two boundary potential functions u1, u2 ∈ H̃1/2(Ω) satisfying (3.15) and (3.16) in part
(a).

(c) From the assumptions of part (a), or alternatively part (b), one obtains in the distributional
sense

b1,0(x) =
i

2π

(
k2 + Δ

)∫∫

Ω
u1

(
y
) eik|x−y|
∣∣x − y

∣∣dy,

b2,0(x) =
i

2π

(
k2 + Δ

)∫∫

Ω
u2

(
y
) eik|x−y|
∣∣x − y

∣∣dy

(3.17)

on the whole screen plane R
2 with

b1,0, b2,0, ∇ ·
(−b2,0

b1,0

)
∈ H−1/2

(
R

2
)
. (3.18)

Proof. Part (a) follows in the Fourier domain by representing ê1,0, ê2,0, ê3,0 and b̂3,0 in terms of
û1 and û2 as

ê1,0 = −kû2 − ξ1
k
(ξ2û1 − ξ1û2),

ê2,0 = +kû1 − ξ2
k
(ξ2û1 − ξ1û2),
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ê3,0 = −m
k
(ξ2û1 − ξ1û2),

b̂3,0 = ξ1û1 + ξ2û2.

(3.19)

These equations and the assumptions imply that e1,0, e2,0, b3,0 ∈ H−1/2(R2), and regarding
|m(ξ)| ≤ α

√
1 + |ξ|2 uniformly in ξ ∈ R

2 for a certain constant α > 0 also e3,0 ∈ H−1/2(R2).
Since e1,0, e2,0 have compact support in Ω like u1, u2, the proof of part (a) follows from the
fact that condition (3.9) is equivalent to E(h) < ∞.

For proving part (b) we assume that the diffraction solution corresponding to
e1,0, e2,0 ∈ H̃−1/2(Ω) has global finite energy. We conclude from Theorem 3.1 and Theorem A.1
in the appendix that we obtain entire functions v1, v2 : C

2 → C by

v1(ξ1, ξ2) = +
1
k
ê2,0(ξ1, ξ2) − ξ2

k
· ê1,0(ξ)ξ1 + ê2,0(ξ)ξ2

ξ21 + ξ22 − k2
,

v2(ξ1, ξ2) = − 1
k
ê1,0(ξ1, ξ2) +

ξ1
k

· ê1,0(ξ)ξ1 + ê2,0(ξ)ξ2
ξ21 + ξ22 − k2

.
(3.20)

From (3.20) we get for j = 1, 2 that

∫∫

R2

∣∣vj(ξ)
∣∣2
(
1 + |ξ|2

)1/2
dξ < ∞. (3.21)

Thus for j = 1, 2 the inverse Fourier transform uj of vj lies inH1/2(R2).
Now we show that u1 and u2 have their support in Ω and hence, by reason of (3.21),

u1, u2 ∈ H̃1/2(Ω). To this aim we choose some R > 0 such that

Ω ⊂ BR :=
{
x ∈ R

2 | |x| < R
}
. (3.22)

Since e1,0, e2,0 are supported in Ω, we have supp e1,0, supp e2,0 ⊂ BR. Therefore we obtain
from the Paley-Wiener theorem and (3.20) that u1 and u2 are also supported in BR, because
v1, v2, as ê1,0, ê2,0, are of exponential type not larger than R.

Equations (3.20) can be resolved with respect to ê1,0, ê2,0. This gives (3.16). Together
with (2.10) it follows that in the complement of Ω there holds

−
(
k2 + Δ

)(u1

u2

)
= C2

(
u1

u2

)
= C

(
e1,0
e2,0

)
=

(
0
0

)
. (3.23)

Now we make use of the fact that the complement of Ω is connected. Since supp uj ⊂ BR

for j = 1, 2, Holmgren’s unique continuation principle, applied to the two scalar Helmholtz
equations in (3.23), implies that u1, u2 have their support in Ω.
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Finally, since vj = ûj for j = 1, 2, from (3.20)we obtain for ξ ∈ R
2

−ξ1û2 + ξ2û1 = −k ξ1ê1,0 + ξ2ê2,0

ξ21 + ξ22 − k2
. (3.24)

The asymptotic behaviour of this expression for |ξ| → ∞ shows the validity of the regularity
condition (3.15).

The convolution integrals in part (c) can be rewritten in the Fourier domain by using
the Sommerfeld-Weyl integral representation (2.20) in the limit x3 ↓ 0. The resulting relations
in the Fourier domain follow from the representations of the components b1 and b2 in
Theorem 2.1.

The validity of (3.18) is a consequence of the algebraic relations between û1, û2, b̂1,0,
and b̂2,0.

Remark 3.3. Consider the Sobolev spaces Hs(Ω) given for s ∈ R by

Hs(Ω) =
{
F|Ω | F ∈ Hs

(
R

2
)}

, (3.25)

with the restriction F|Ω of the tempered distribution F : S(R2) → C to the subspace S(Ω) of
the Schwartz space S(R2), where S(Ω) is the closure of the set D(Ω) in S(R2)with respect to
the topology of S(R2) [5], §1 in Section 5.

Hs(Ω) is a Banach space with respect to the norm ‖ · ‖Hs(Ω) given by

∥∥f
∥∥
Hs(Ω) = inf

{
‖F‖Hs(R2) | F ∈ Hs

(
R

2
)
is a continuation of f

}
. (3.26)

Themagnetic boundary fields in part (c) of Theorem 3.2 corresponding to global finite energy
solutions may also be reinterpreted as distributions restricted to Ω. In this case we obtain

b1,0, b2,0, ∇ ·
(−b2,0

b1,0

)
∈ H−1/2(Ω). (3.27)

In general the conditions (3.27) are weaker than the conditions (3.18) in Theorem 3.2, and we
assume that they are fulfilled for diffraction solutions with local finite energy.

The conditions (3.27), where b1,0 and b2,0 are considered only in the apertureΩ, reflects
the physical fact that b1,0 and b2,0 are only prescribed in Ω. Namely, b1,0 and b2,0 are the
tangential magnetic components of the incoming electromagnetic wave in the aperture Ω.

4. The Local Energy Condition

In this section we derive the following characterisation for the diffraction solutions of local
finite energy.
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Theorem 4.1. Let be e1,0, e2,0 ∈ S′(R2) and supp e1,0, supp e2,0 ⊂ Ω. Let ej , bj : H → C, j =
1, 2, 3, be defined as in Theorem 2.1. Then the diffraction solution ej , bj , j = 1, 2, 3, has local finite
energy if and only if

e1,0, e2,0, ∇ ·
(−e2,0

e1,0

)
∈ H̃−1/2(Ω). (4.1)

For proving Theorem 4.1 firstly we formulate the subsequent Lemma 4.2. Then, using
this lemma, we give the proof of the theorem. Afterwards we prove the lemma.

In the sequel we will make use of the following notations. For r > 0 we define the open
ball Br by

Br :=
{
x ∈ R

2 | |x| < r
}
. (4.2)

For r > 0 and h > 0 the open cylinder Zr,h is defined by

Zr,h :=
{
x = (x, x3) ∈ R

3 | x ∈ Br, 0 < x3 < h
}
. (4.3)

Lemma 4.2. Let be e1,0, e2,0 ∈ S′(R2) and supp e1,0, supp e2,0 ⊂ Ω. Let ej , bj : H → C, j = 1, 2, 3,
be the diffraction solution given in Theorem 2.1. Let be R′ > 0 with Ω ⊂ BR′ and let be R > R′ and
H > 0. Then one has the following equivalences and implications.

(a) ej ∈ L2(ZR,H) ⇔ ej ∈ L2(R2 × (0,H)) for j ∈ {1, 2}.
(b) b3 ∈ L2(ZR,H) ⇔ b3 ∈ L2(R2 × (0,H)).

(c) ej ∈ L2(R2 × (0,H)) ⇔ ej,0 ∈ H̃−1/2(Ω) for j ∈ {1, 2}.
(d) b3 ∈ L2(R2 × (0,H)) ⇔ b3,0 ∈ H̃−1/2(Ω).

(e) e1,0, e2,0 ∈ H̃−1/2(Ω) ⇒ e3 ∈ L2(ZR,H).

(f) e1,0, e2,0,∇ · ( −e2,0
e1,0

) ∈ H̃−1/2(Ω) ⇒ b1, b2 ∈ L2(ZR,H).

Proof of Theorem 4.1. Let there be given e1,0, e2,0 ∈ S′(R2) with support in Ω and let ej , bj , j =
1, 2, 3, be defined as in Theorem 2.1.

Firstly, we assume that the diffraction solution ej , bj , j = 1, 2, 3, has local finite
energy and show the validity of (4.1). Since the diffraction solution has local finite energy
especially we have e1, e2, b3 ∈ L2(ZR,H). From the parts (a) and (b) of Lemma 4.2 we find
that e1, e2, b3 ∈ L2(R2 × (0,H)). From the parts (c) and (d) of the lemma we thus obtain
e1,0, e2,0, b3,0 ∈ H̃−1/2(Ω). Now the validity of (4.1) follows from

b3,0 =
i

k
∇ ·

(−e2,0
e1,0

)
(4.4)

(cf. (3.9)).
For proving the other direction, we assume that relation (4.1) is valid. Because of (4.4)

from the parts (c) and (d) of Lemma 4.2 it follows that e1, e2, b3 ∈ L2(R2 × (0,H)). Regarding
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the other three field components, from the parts (e) and (f) of the lemma we obtain e3, b1, b2 ∈
L2(ZR,H). SinceR > R′ andH > 0 can be chosen arbitrarily large, the diffraction solution ej , bj ,
j = 1, 2, 3, has local finite energy.

We have yet to prove Lemma 4.2.

Proof of Lemma 4.2. Let the assumptions of Lemma 4.2 be fulfilled.

Proof of Part (a)

Let be j ∈ {1, 2}. Obviously we have only to show the validity of the implication

ej ∈ L2(ZR,H) =⇒ ej ∈ L2
(
R

2 × (0,H)
)
. (4.5)

We set ε = (R − R′)/2 and R′′ = R′ + ε. For ϕ ∈ [0, 2π) we consider the rotation matrix

Aϕ =
(
cosϕ − sinϕ
sinϕ cosϕ

)
(4.6)

and define the function e
(ϕ)
j : H → C by e

(ϕ)
j (x, x3) = ej(Aϕx, x3) for x ∈ R

2 and x3 > 0. We
show that

e
(ϕ)
j ∈ L2((R′′,∞) × R × (0,H)

)
for ϕ ∈ [0, 2π), (4.7)

regardless of whether ej ∈ L2(ZR,H) or not.
From (4.7) we have

ej ∈ L2(Aϕ

((
R′′,∞) × R

) × (0,H)
)

for ϕ ∈ [0, 2π), (4.8)

where Aϕ((R′′,∞) × R) is the image of the set (R′′,∞) × R under the linear mapping Aϕ, that
is, the set (R′′,∞) × R rotated by the angle ϕ.

Since R′′ < R, by considering a sufficient number of angles ϕ, from (4.8) we find that
there is a polygon P ⊂ BR with ej ∈ L2((R2 \ P) × (0,H)). Thus

ej ∈ L2
((

R
2 × (0,H)

)
\ ZR,H

)
, (4.9)

and therefore (4.5) holds true.
It remains to prove (4.7). To this end we use a contour integration technique which

one of the authors had already used earlier in the treatment of diffraction problems [6, 7].
From the representation of ej given in Theorem 2.1 we conclude that

e
(ϕ)
j (x1, x2, x3) =

1
2π

∫∫

R

γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1dξ2, (x1, x2, x3) ∈ H, (4.10)
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where the function γϕ is given by

γϕ(ξ) = êj,0
(
Aϕξ

)
. (4.11)

By assumption, it holds that supp ej,0 ⊂ Ω ⊂ BR′ . Thus, from the Paley-Wiener theorem and
the fact that Aϕ is an orthogonal matrix it follows that

∣
∣γϕ(ξ)

∣
∣ ≤ c

(
1 + |ξ|2

)N/2
eR

′ | Im ξ|, ξ ∈ C
2, (4.12)

for some constants c > 0 and N ∈ N0.
We split the inner integral in (4.10) into one integral over the interval (−∞, 0) and one

over (0,∞). Firstly we consider the integral over (−∞, 0).
For r > 0 we define the curve ηr by

ηr =
{
reiα | π

2
≤ α ≤ π

}
. (4.13)

Let Γr be the closed contour consisting of the parts {it | 0 ≤ t < r}, ηr and (−r, 0). By Cauchy’s
theorem we have

∫

Γr
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1 = 0, (4.14)

here for nonreal values of ξ1 the functionm is defined by analytic continuation of the function
ξ1 �→ m(ξ1, ξ2), where ξ1 < 0 and |ξ|/= k, and 〈x, ξ〉 = x1ξ1 + x2ξ2.

Because of (4.12), for x1 > R′ it holds that

lim
r→∞

∫

ηr

γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1 = 0. (4.15)

From the last two equations we obtain

∫0

−∞
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1 = −

∫ i∞

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1, x1 > R′. (4.16)

Now we treat the integral over (0,∞). Let √ ∗ be the principal branch of the square
root function (branch cut (−∞, 0)). For z < 0 we set

√
z ∗ = −i

√
|z|, that is, √ ∗ is thought to

be defined on the negative real half-axis by continuation from the lower complex half-plane. In

what follows, the functionm∗ is defined bym∗(ξ) =
√
k2 − ξ21 − ξ22

∗. Regarding the integration
variable ξ2 we distinguish the two cases |ξ2| < k and |ξ2| > k.
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Firstly we assume that |ξ2| < k. We have

∫∞

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1

=
∫√k2−ξ22

0
γϕ(ξ)eix3m

∗(ξ)+i〈x,ξ〉dξ1 +
∫∞
√

k2−ξ22
γϕ(ξ)e−ix3m

∗(ξ)+i〈x,ξ〉dξ1

=
∫∞

0
γϕ(ξ)e−ix3m

∗(ξ)+i〈x,ξ〉dξ1 + 2i
∫√k2−ξ22

0
γϕ(ξ) sin(x3m

∗(ξ))ei〈x,ξ〉dξ1.

(4.17)

By contour integration analogous as in the derivation of (4.16), applied to the next-to-last
integral, eventually we get

∫∞

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1

=
∫ i∞

0
γϕ(ξ)e−ix3m

∗(ξ)+i〈x,ξ〉dξ1

+ 2i
∫√k2−ξ22

0
γϕ(ξ) sin(x3m

∗(ξ))ei〈x,ξ〉dξ1 for |ξ2| < k, x1 > R′.

(4.18)

In the case |ξ2| > k it holds that m(ξ) = −m∗(ξ) for ξ1 > 0, and contour integration
yields

∫∞

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1 =

∫ i∞

0
γϕ(ξ)e−ix3m

∗(ξ)+i〈x,ξ〉dξ1 for |ξ2| > k, x1 > R′. (4.19)

In the following, for ξ1 ∈ R or ξ1 ∈ {it | 0 < t < ∞} we set m(ξ) =
√
k2 − ξ21 − ξ22, where

the square root is chosen in the way that Rem(ξ) ≥ 0 and Imm(ξ) ≥ 0. This definition is in
accordance with (2.15). In this notation, from (4.18) and (4.19) we obtain

∫

R

∫∞

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1dξ2

=
∫k

−k

∫ i∞

0
γϕ(ξ)e−ix3m(ξ)+i〈x,ξ〉dξ1dξ2

+ 2i
∫k

−k

∫√k2−ξ22

0
γϕ(ξ) sin(x3m(ξ))ei〈x,ξ〉dξ1dξ2

+
∫

R\[−k,k]

∫ i
√

ξ22−k2

0
γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1dξ2

+
∫

R\[−k,k]

∫ i∞

i
√

ξ22−k2
γϕ(ξ)e−ix3m(ξ)+i〈x,ξ〉dξ1dξ2 for x1 > R′.

(4.20)
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Together with (4.16) we thus find

∫∫

R

γϕ(ξ)eix3m(ξ)+i〈x,ξ〉dξ1dξ2

= 2i
∫k

−k

∫√k2−ξ22

0
γϕ(ξ) sin(x3m(ξ))ei〈x,ξ〉dξ1dξ2

− 2i
∫k

−k

∫ i∞

0
γϕ(ξ) sin(x3m(ξ))ei〈x,ξ〉dξ1dξ2

− 2i
∫

R\[−k,k]

∫ i∞

i
√

ξ22−k2
γϕ(ξ) sin(x3m(ξ))ei〈x,ξ〉dξ1dξ2 for x1 > R′.

(4.21)

Now we show that each of the three addends in the right-hand side of (4.21),
considered as a function of x = (x, x3), lies in L2((R′′,∞) × R × (0,H)). Then, because of
the representation (4.10), the stated relation (4.7) is proved.

We begin with the first addend. Let A := {ξ ∈ R
2 | |ξ| ≤ k, ξ1 ≥ 0}, let χA be the

characteristic function of the set A and let ˇ denote the inverse Fourier transform. There is a
constant c > 0, which does not depend on x3 ∈ (0,H), such that

∥∥∥
[
χAγϕ sin(x3m(·))]ˇ

∥∥∥
L2(R2)

=
∥∥χAγϕ sin(x3m(·))∥∥

L2(R2) ≤ c. (4.22)

From this it follows that the first addend in the right-hand side of (4.21) is quadratically
integrable over the set R

2 × (0,H) and thus especially quadratically integrable over (R′′,∞)×
R × (0,H).

Now we come to the second addend. We define R̃ by R̃ = (R′ + R′′)/2 = R′ + (ε/2).
From (4.12) we find that there is a constant c1 > 0 with

∣∣γϕ(it, ξ2)
∣∣ ≤ c1e

R̃t for ξ2 ∈ [−k, k], t ≥ 0. (4.23)

Since for ξ2 ∈ [−k, k] and t ≥ 0 the quantity m(it, ξ2) is a real number and therefore
| sin(x3m(it, ξ2))| ≤ 1 for x3 ∈ (0,H), we conclude that

∣∣∣∣

∫∞

0
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dt

∣∣∣∣

≤ c1

∫∞

0
e (R̃−x1)tdt =

c1

x1 − R̃
for ξ2 ∈ [−k, k], x3 ∈ (0,H), x1 > R̃.

(4.24)

Thus we have

∫k

−k

∣∣∣∣

∫∞

0
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dt

∣∣∣∣

2

dξ2 ≤
2kc21

(
x1 − R̃

)2
for x3 ∈ (0,H), x1 > R̃. (4.25)
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Because the inverse Fourier transform (here with regard to the variable ξ2) is isometric on L2,
we see that

∫

R

∣
∣
∣
∣
∣

∫k

−k

∫∞

0
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dteiξ2x2dξ2

∣
∣
∣
∣
∣

2

dx2

≤ 4πkc21
(
x1 − R̃

)2
for x3 ∈ (0,H), x1 > R̃.

(4.26)

It follows that

∫H

0

∫∞

R′′

∫

R

∣∣
∣
∣
∣

∫k

−k

∫∞

0
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dteiξ2x2dξ2

∣∣
∣
∣
∣

2

dx2dx1dx3 < ∞. (4.27)

The substitution t = −iξ1 in the innermost integral now shows that the second addend in the
right-hand side of (4.21) indeed lies in L2((R′′,∞) × R × (0,H)).

Regarding the third addend, from (4.12) we find

∣∣∣∣∣

∫∞
√

ξ22−k2
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dt

∣∣∣∣∣

≤ c

∫∞
√

ξ22−k2

(
1 + t2 + ξ22

)N/2
e (R′−x1)tdt for ξ2 ∈ R \ [−k, k], x3 ∈ (0,H), x1 > R′.

(4.28)

Now let be R̃ = R′ + (ε/2) as above. By reason of

(
1 + t2 + ξ22

)N/2 ≤
(
1 + t2

)N/2(
1 + ξ22

)N/2
, (4.29)

we conclude that there are constants c2, c3 > 0 such that

∣∣∣∣∣

∫∞
√

ξ22−k2
γϕ(it, ξ2) sin(x3m(it, ξ2))e−tx1dt

∣∣∣∣∣

≤ c2
(
1 + ξ22

)N/2
∫∞
√

ξ22−k2
e(R̃−x1)tdt

=
c 2

x1 − R̃

(
1 + ξ22

)N/2
e(R̃−x1)

√
ξ22−k2

≤ c3

x1 − R̃
e−(ε/4)

√
ξ22−k2

for ξ2 ∈ R \ [−k, k], x3 ∈ (0,H), x1 > R′′.

(4.30)

This estimate corresponds to formula (4.24), used in the case of the second addend.
Continuing as in this latter case, it is seen that the third addend in the right-hand side of
(4.21) lies in L2((R′′,∞) × R × (0,H)) too.
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Proof of Part (b)

The preceding proof of part (a) is based on the fact that for j ∈ {1, 2} it holds that

êj(ξ, x3) = eix3m(ξ)êj,0(ξ) for ξ ∈ R
2, x3 > 0, (4.31)

supp ej,0 ⊂ Ω. (4.32)

The relation (4.31), which is equivalent to the representation of ej given in Theorem 2.1, has
led to (4.10).

Since the thirdmagnetic component b3 fulfills conditions which are analogous to (4.31)
and (4.32), the proof of part (b) of the lemma is completely analogous to the proof of part (a).
The condition for b3 that is analogous to (4.31) is given in (2.19); note that (2.19) also holds
for |ξ| < k. The condition supp b3,0 ⊂ Ω is a direct consequence of

b3,0 =
i

k
∇ ·

(−e2,0
e1,0

)
, (4.33)

following from the second equation in (2.18), and supp e1,0, supp e2,0 ⊂ Ω.

Proof of Parts (c) and (d)

These parts of the lemma can be proved along the lines of the proof of Theorem 3.1. For
example, with respect to ej , j ∈ {1, 2}, one has

∫H

0

∫∫

R2

∣∣ej(x, x3)
∣∣2dx dx3

=
∫H

0

∫∫

R2

∣∣êj(ξ, x3)
∣∣2dξdx3

=
∫∫

R2

∣∣êj,0(ξ)
∣∣2

∫H

0

∣∣∣eix3m(ξ)
∣∣∣
2
dx3dξ

= H

∫∫

|ξ|<k

∣∣êj,0(ξ)
∣∣2dξ +

∫∫

|ξ|>k

∣∣êj,0(ξ)
∣∣2 1 − e−2H

√
|ξ|2−k2

2
√
|ξ|2 − k2

dξ.

(4.34)

The condition (3.12), used in the proof of Theorem 3.1 because the factorm(ξ)−1 is not locally
square integrable, is not needed for the special field components e1, e2, and b3.

Proof of Part (e)

From the first equation in (2.18) and the first equation in (2.19)we obtain

ê3(ξ, x3) = − 1
m(ξ)

[ξ1ê1(ξ, x3) + ξ2ê2(ξ, x3)], ξ ∈ R
2, x3 ≥ 0. (4.35)
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Thus for (x, x3) ∈ Hwe have

e3(x, x3) = − 1
2π

∫∫

R2

1
m(ξ)

[ξ1ê1(ξ, x3) + ξ2ê2(ξ, x3)]ei〈x, ξ〉dξ. (4.36)

Now we define the function m0 : R
2 → C by

m0(ξ) = i
√
k2 + |ξ|2 (4.37)

and the function e
(0)
3 : H → C by

e
(0)
3 (x, x3) = − 1

2π

∫∫

R2

1
m0(ξ)

[ξ1ê1(ξ, x3) + ξ2ê2(ξ, x3)]ei〈x, ξ〉dξ. (4.38)

Using (4.36), we find

∣∣∣e(0)3 (x, x3) − e3(x, x3)
∣∣∣ ≤ 1

2π

2∑

j=1

(
I
(1)
j (x3) + I

(2)
j (x3)

)
, (4.39)

with

I
(1)
j (x3) =

∫∫

|ξ|<2k

∣∣∣∣
1

m0(ξ)
− 1
m(ξ)

∣∣∣∣
∣∣ξj

∣∣ ∣∣êj(ξ, x3)
∣∣dξ, j = 1, 2,

I
(2)
j (x3) =

∫∫

|ξ|>2k

∣∣∣∣
1

m0(ξ)
− 1
m(ξ)

∣∣∣∣
∣∣ξj

∣∣∣∣êj(ξ, x3)
∣∣dξ, j = 1, 2.

(4.40)

From (4.31) we see that there is a constant c1 > 0 such that

∣∣∣I(1)j (x3)
∣∣∣ ≤ c1 for j ∈ {1, 2}, x3 > 0. (4.41)

For |ξ| > 2k it holds that

∣∣∣∣
1

m0(ξ)
− 1
m(ξ)

∣∣∣∣ = O

(
1

|ξ|3
)

. (4.42)

Therefore with some constant c2 > 0 we have for j ∈ {1, 2} and x3 > 0

∣∣∣I(2)j (x3)
∣∣∣ ≤ c2

∫∫

|ξ|>2k

1

|ξ|3/2

∣∣∣∣∣
1

|ξ|1/2
êj(ξ, x3)

∣∣∣∣∣
dξ. (4.43)



ISRN Mathematical Physics 21

From this we get from the Cauchy-Schwarz inequality that

∣
∣
∣I(2)j (x3)

∣
∣
∣ ≤ c2

(∫∫

|ξ|>2k

1

|ξ|3
dξ

)1/2(∫∫

|ξ|>2k

1
|ξ|

∣
∣êj(ξ, x3)

∣
∣2dξ

)1/2

. (4.44)

Using the fact that the first integral in the right-hand side of the last expression is finite and
using (4.31), we conclude that there is a c3 > 0 with

∣
∣
∣I(2)j (x3)

∣
∣
∣ ≤ c3

(∫∫

|ξ|>2k

1
|ξ|

∣
∣
∣eix3m(ξ)

∣
∣
∣
2∣
∣êj,0(ξ)

∣
∣2dξ

)1/2

. (4.45)

Since |eix3m(ξ)| ≤ 1 for |ξ| > 2k and x3 > 0, from the assumption e1,0, e2,0 ∈ H̃−1/2(Ω) of part (e)
of the lemma it now follows that there is a c4 > 0 with

∣∣∣I(2)j (x3)
∣∣∣ ≤ c4 for j ∈ {1, 2}, x3 > 0. (4.46)

From (4.39), (4.41), and (4.46) we obtain that there is a constant c5 > 0 such that

∣∣∣e(0)3 (x, x3) − e3(x, x3)
∣∣∣ ≤ c5 for (x, x3) ∈ H. (4.47)

Thus we have

e
(0)
3 − e3 ∈ L2(ZR,H), (4.48)

since ZR,H is a bounded set.
Now we show that also e

(0)
3 ∈ L2(ZR,H). From this, together with (4.48), we get the

assertion e3 ∈ L2(ZR,H) of part (e) of the lemma.
We show that e

(0)
3 actually is square integrable over the whole of R

2 × (0,H). By
definition of e(0)3 , it suffices to prove that

∫H

0

∫∫

R2

∣∣∣∣∣

∫∫

R2

ξj

m0(ξ)
êj(ξ, x3)ei〈x,ξ〉dξ

∣∣∣∣∣

2

dx dx3 < ∞ for j ∈ {1, 2}. (4.49)

By applying the Parseval formula with respect to the variables x and ξ and using Formula
(4.31)we find that the last integral is equal to

4π2
∫H

0

∫∫

R2

ξ2j

k2 + |ξ|2
∣∣∣eix3m(ξ)

∣∣∣
2∣∣êj,0(ξ)

∣∣2dξ dx3. (4.50)
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Now we split the domain of integration with respect to ξ into the parts |ξ| ≤ k and |ξ| > k.
Due to the continuity of the integrand we have

∫H

0

∫∫

|ξ|≤k

ξ2j

k2 + |ξ|2
∣
∣
∣eix3m(ξ)

∣
∣
∣
2∣
∣êj,0(ξ)

∣
∣2dξ dx3 < ∞. (4.51)

The fact that also

∫H

0

∫∫

|ξ|>k

ξ2j

k2 + |ξ|2
∣
∣
∣eix3m(ξ)

∣
∣
∣
2∣
∣êj,0(ξ)

∣
∣2dξ dx3 < ∞ (4.52)

follows from the assumption e1,0, e2,0 ∈ H̃−1/2(Ω) similar to the lines of the parts (c) and (d).

Proof of Part (f)

From the representations of b1 and b2 in Theorem 2.1 together with (2.19) we see that for
ξ ∈ R

2 and x3 ≥ 0 there holds

b̂1(ξ, x3) = − k

m(ξ)
ê2(ξ, x3) +

ξ1
km(ξ)

[ξ1ê2(ξ, x3) − ξ2ê1(ξ, x3)],

b̂2(ξ, x3) =
k

m(ξ)
ê1(ξ, x3) +

ξ2
km(ξ)

[ξ1ê2(ξ, x3) − ξ2ê1(ξ, x3)].

(4.53)

Now the proof of part (f) proceeds along the same lines as the proof of part (e) if one takes
the last two equations as starting point, as we have used (4.35) as starting point for the proof
of part (e). The assumption ∇ · (−e2,0, e1,0)T ∈ H̃−1/2(Ω) of part (f) is needed because in the
formulas (4.53) there occur the terms

ξj

km(ξ)
[ξ1ê2(ξ, x3) − ξ2ê1(ξ, x3)] =

iξj

km(ξ)
eix3m(ξ)

[
∇ ·

(−e2,0
e1,0

)]̂
(ξ). (4.54)

5. Conclusions and Outlook

If we interpret the system (2.24) in the distributional sense, then we obtain a vectorial
pseudodifferential operator A, acting on the electric boundary fields e1,0, e2,0 and resulting
in the magnetic boundary fields b1,0, b2,0:

A

(
e1,0
e2,0

)
=

(
b1,0
b2,0

)
. (5.1)

For the electromagnetic diffraction problem b1,0 and b2,0 are distributions which are
only prescribed in the aperture Ω whereas e1,0 and e2,0 are unknown. Then the diffracted
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electromagnetic field is completely determined for x3 > 0, that is, behind the screen, by
Theorem 2.1.

We define the vectorial Sobolev-Hilbert spaces V andW by

V : =
{(

v1

v2

)
| v1, v2, ∇ ·

(−v2

v1

)
∈ H̃−1/2(Ω)

}
,

∥
∥
∥
∥

(
v1

v2

)∥
∥
∥
∥
V

: =

(

‖v1‖2H̃−1/2(Ω)
+ ‖v2‖2H̃−1/2(Ω)

+
∥
∥
∥
∥∇ ·

(−v2

v1

)∥
∥
∥
∥

2

H̃−1/2(Ω)

)1/2

,

W : =
{(

w1

w2

)
| w1, w2, ∇ ·

(−w2

w1

)
∈ H−1/2(Ω)

}
,

∥
∥
∥
∥

(
w1

w2

)∥
∥
∥
∥
W

: =

(

‖w1‖2H−1/2(Ω) + ‖w2‖2H−1/2(Ω) +
∥
∥
∥
∥∇ ·

(−w2

w1

)∥
∥
∥
∥

2

H−1/2(Ω)

)1/2

.

(5.2)

Now it is an interesting future task to prove that A : V → W is a homeomorphism. For
this purpose we want to develop a purely “intrinsic” proof, related only to the boundary
equations in the aperture and without making use of the time harmonic Maxwell equations
(2.1). For the slit diffraction problem this approach has been realised by the authors in the
paper [2].

Note that (e1,0, e2,0) ∈ V is a necessary and sufficient condition for a diffraction solution
with local finite energy, see part (a) of Definition 2.5 and Theorem 4.1.

In the case of global finite energy in Definition 2.5, part (b), we have decoupled the
vectorial boundary equations (cf. Theorem 3.2). In the future it should also be examined how
this result can be used to derive representations of the physical admissible solutions satisfying
only the condition of local finite energy.

Appendix

Theorem A.1. Let f : C
2 → C be an entire function, k > 0, and assume that f(ξ1, ξ2) = 0 for all

ξ1, ξ2 ∈ R with ξ21 + ξ22 = k2. Then one also has f(z1, z2) = 0 for all z1, z2 ∈ C with z21 + z22 = k2,
and there is an uniquely determined entire function q : C

2 → C such that for all z1, z2 ∈ C with
z21 + z22 /= k2 it holds that

q(z1, z2) =
f(z1, z2)

k2 − z21 − z22
. (A.1)

Proof. We only have to show the existence of an entire function q satisfying (A.1), since
uniqueness results by analytic continuation. By employing Taylor expansion of f with respect
to z2 we find entire functions g̃, h̃ : C

2 → C such that

f(z1, z2) = g̃
(
z1, z

2
2

)
+ z2h̃

(
z1, z

2
2

)
. (A.2)
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Now we define the entire functions g, h : C
2 → C by

g(z1, z) = g̃
(
z1, z − z21

)
, h(z1, z) = h̃

(
z1, z − z21

)
, (A.3)

and conclude for ξ1 ∈ (−k, k), ξ2 = ±
√
k2 − ξ21 that

g
(
ξ1, ξ

2
1 + ξ22

)
+ ξ2h

(
ξ1, ξ

2
1 + ξ22

)
= g̃

(
ξ1, ξ

2
2

)
+ ξ2h̃

(
ξ1, ξ

2
2

)
= f(ξ1, ξ2) = 0. (A.4)

But from the resulting two equations

g
(
ξ1, k

2
)
±
√
k2 − ξ21 h

(
ξ1, k

2
)
= 0, (A.5)

we conclude g(ξ1, k2) = h(ξ1, k2) = 0, and hence by analytic continuation

g
(
z1, k

2
)
= h

(
z1, k

2
)
= 0 ∀z1 ∈ C. (A.6)

Taylor expansion gives two entire functions g∗, h∗ : C
2 → C with

g∗(z1, z) =
g(z1, z)
k2 − z

, h∗(z1, z) =
h(z1, z)
k2 − z

. (A.7)

Finally we define the entire function q by

q(z1, z2) := g∗
(
z1, z

2
1 + z22

)
+ z2 h∗

(
z1, z

2
1 + z22

)
, (A.8)

and obtain for all z1, z2 ∈ C with z21 + z22 /= k2

f(z1, z2)

k2 − z21 − z22
=

g
(
z1, z

2
1 + z22

)

k2 − z21 − z22
+ z2

h
(
z1, z

2
1 + z22

)

k2 − z21 − z22
= q(z1, z2). (A.9)
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