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Abstract

In this paper we prove local results for solutions to the Ricci flow (heat
flow) whose speed (height) is bounded by § for some time interval ¢ € (0, 7).
These results are contained in chapter 7 of [16]. In [17] further results from
[16] may be found. In particular, there we construct short time solutions to
Ricci flow for a class of compact Riemannian manifolds with isolated conelike
singularities. The resulting solutions satisfy a bound of this form (the speed
is bounded by § for some time interval ¢ € (0,T)).

1 Local results for Ricci flow and reaction diffusion
equations in general

In [1], R.Hamilton introduced the Ricci flow. A smooth family of metrics
(M, g(t))ico,r) is a solution to the Ricci flow with initial value gy, or is a Ricci
flow of gq if

%g(t) — —2Ricci(g(t)) ¥ t € [0,7),

9(0) = go. (L.1)

Ricci flow has been extensively studied, and has led to many results in topology and
geometry: see for example [L],[3], [4] [5], [7], [8], [9], [12], [13] (see [2], [10] and [11]
for good expositions of the works [12],[13]).

In Theorem 6.1 (and the proof thereof) of [17], we see that for certain compact
Riemannian manifolds with cone-like singularities, it is possible to obtain a short
time solution to the Ricci flow, and also to obtain control over the curvature, volume
and diameter for some well defined time interval. This control on the curvature
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(curvature behaves like ) is global, and suffices to prove the main theorem, Theorem
6.1. there. We are, however, also interested in the local behaviour of such solutions
(see also [11] and |15] for further examples of solutions to Ricci flow whose speed is
bounded by ¢).

The following is taken directly from Chapter 7 of [16]).

Problem 1.1. For the class of solutions whose curvature is bounded by § on some
time interval [0,T): if a region is diffeomorphic to a Euclidean ball and has bounded
geometry at the curvature and C° level at time zero, does some smaller region (con-
tained in the initial region) remain bounded geometrically at the curvature and C°
level for a well controlled time interval?

In the paper [12], G.Perelman proved a local result (see [12] Section 10) in the
setting that one has a solution to Ricci flow which is compact, has bounded curvature
at each time, and for which the absolute value of the Riemannian curvature on
B(g0)(z0,70) is bounded by %, and for which B(go)(zo, 7o) is close in some C sense
to the Euclidean ball of radius ry (see Theorem 10.3 of [12] for an exact statement
of the theorem). There, the behaviour like ¢ is not assumed, but is in fact proved
in a seperate theorem, Theorem 10.1 of [12|. In Theorem 10.1 he proves that the
curvature at a point zo behaves like ¢ (for t € [0,0%%], 6 = d(n) > 0 ) under the
even weaker assumptions that the scalar curvature on B(go)(zo, 7o) is bounded from
below by —r2, and B(go)(wo, o) is close in some C sense to the Euclidean ball of
radius ro: see theorem 10.1 of [12] for an exact statement of the theorem.

Let us define more precisely what we mean by: the geometry is bounded on the

curvature and C° level.

Definition 1.2. The Euclidean n-ball of radius r > 0 U = 'B,(0) with a Riemannian
metric go 1s geometrically bounded by c if

sup “[Riem(go)| < < (1.2)
U T
1
cl <go< -1 (1.3)
C

where I is the standard metric on 'B,(0).

Clearly the set is topologically the same as a ball (per definition). Hence a
Euclidean ball with a metric g is bounded geometrically if the given Riemannian
metric gy can be compared to the standard metric I on the curvature and C° level.

In the following theorem we show that if U is a Euclidean ball of radius one,
and (U, go) is bounded geometrically by some constant ¢, and (U, g(t))cpo.r) is a
smooth solution to the Ricci flow whose curvature is bounded above by 7, then,
for a well controlled time interval, a Euclidean ball of radius r(c,n) > 0 (contained
in the initial ball with the same middle point) with the metric ¢g(¢) is bounded
geometrically by 4c.



Theorem 1.3. Let (U = IBl(O),gO) be geometrically bounded by c¢y. Define
"dist(z) = dist(1)(dU, z),

where the distance 1is taken with respect to the FEuclidean metric I. Let
(IBl+5(O),g(t))te[07T) (6 > 0) be any smooth solution to the Ricci flow satisfying
g(0) = go and

tg(t)|Riem(x, b <o, (1.4)

(1.5)

for all € 'By5(0) and for all t € [0,T). Then there exists an N = N(cq,n), such
that

““|Riem(z, t)|'dist (z) < N,

for all v € U with Idist2(x) > Nt, and t < T. In particular, (‘B (0),g(t)) is

AN
bounded geometrically by e‘cy for all t < min(ﬁ, T).

Proof. For the proof, |Riem(h)| will always refer to "[Riem(h)|. Choose N big, and
assume that the theorem does not hold. Then there must be a first time ¢, €
[0, min(T, 7)) and point zy € U where the theorem does not hold.

IdiSt2(I‘0) > Nto,
xo € U,
2
IRiem (o, fo)| dist (o) = N,

and
Riem(z, ¢)[dist’ (z) < NV () € U[0, to] with'dist’ (z) > Nt (1.6)
Let us rescale: §(z,s) := ag(x,2), for s € [0,aty], and I = al. We define:
P2 .
'dist (z) := dist?(1)(dU, x) (that is, the distance from the boundary of U to the
- P2
point x with respect to the metric I) which gives us 'dist (z) = aIdistz(x). Set
N
= ———s—,
dist™ ()

- P2

(@ is then bigger than N) and for ¢ € [0,ty], let i := at. Then 'dist (zo) = N,
~ ~ 7 2 ~ ~

and hence N = |Riem(:§0,to)|ld~ist2(a:0) = |Riem(x0,t0)|ld~ist (ro) = |Riem(xo, to)|N,

which implies that |Riem(zg,to)|] = 1. Furthermore, t, = ﬁ < 1, since
xo
Idist2(:vo) > Nty. We also have
- 2 2
IRiem(z,?)|'dist (z) = |Riem(z, )| 'dist (z) < N (1.7)

. - P2 .
for all (z,) € U0, o] which satisfy ‘dist (z) > N7 in view of the facts
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~ 2 -
(i) 'dist (z) > NI <= 'dist’(z) > Nt and
(ii) t <ty <= t <t and
(iii) equation (1.6) holds).
Now we consider two cases:
P2 . -
e case 1: 'dist (z9) > 2Niy( <= #, < 3)
P2 . .
e case 2: 'dist () < 2Nip( <= #, > 3)
P2 -
Assume case one holds. Then for y satisfying 'dist (y) > & we see that (use {p < 1)
~ 2 ~ ~
'dist (y) > Niy > Ni

for all £ < fo, and hence
~ 7 2
IRiem(y, {)| dist (y) < N,

in view of (1.7). Hence,

Riem(y,#)| < 2V <1, (1.8)

P2
in view of the assumption on y (notice that 'dist (zo) = N > £ and so y = o is
valid in (1.8): that is, |Riem(zg,%)| < 2 for all £ < #3). That is,

|Riem(y,1)| <2V i<ty Vye B%(xo).

Using the fact that

1
— < go < col
Co
we obtain that ~
I B ~
— < go < col
Co
and c
. 0
sup  [Riem(go)|(y) < .
yEB%(Z‘o)
since o = ago, and a = —%— > N and (U, go) = (*B1(0), go) is geometrically

dist? (zo)
bounded by c;. We also have |Riem(zg,%,)| = 1. This contradicts Lemma 1.4, if
N = N(cg,n) is chosen large enough.
So assume case two holds. This is equivalent to % < ty. Then, for t < %, we still
have the estimate

. - P2 N
|[Riem(y,t)| <2, Vy with "dist (y) > B



(this may be seen as follows:

- 2 N ~
dist (y) > 5 =M

since t

<
For f()

< 1y, and so, using (1.7), we obtain the estimate).
t > %, we have

\Vad

[Ricm(y, B <
in view of the assumption (1.4). W.l.o.g. ¢y > 1. Hence
IRiem(y, )| < 2¢o,Vt € [0,%0), ¥V y € Bu(x0).

Furthermore, |Riem(zg,%y)| = 1. Once again, this leads to a contradiction for N =
N(cg,n) chosen large enough, in view of Lemma 1.4. (as in case 1, we have

I -
— < go < col,
Co ‘
sup |Riem(go)| < —0, (1.9)
By (zo) N
4
and so we may apply the lemma). O

The following lemma, which is used to help prove the locality theorem above, is
a standard result from the theory of parabolic equations

Lemma 1.4. Let (M, g(t))icp,), be a complete smooth solution to Ricci flow and
(U,x0,1), U C M be isometric to to the (open) Euclidean ball By (0)of radius N,
(xog ~ 0) and centre 0. Assume that:

I

— < go < col

Co

sup |[Riem(-,t)| < ¢y V¢t €[0,7),
U

sup |Riem|(-,0) < e.

U

Then for all 0® > €% there ewists a = a(cy, c1,n) and N, = N,(0, ¢, c1,n) > 0 such
that if N > N, then

|Riem|?(zo,t) < o?exp™ V t €[0,T) (1.10)

In particular, if e < exp~®d for some & > 0 then (choose o0 = exp~®4: then N, is a
constant depending only on co, c1,n,d ) there is a N, = N,(co, c1,m,0) > 0 such that

|Riem(l’o,to)| S 52, \ to € [0, T) N [O, 1)

if N > N..



Proof. Clearly, in view of the conditions in the assumption, and the equation of
evolution for the metric, we have

1

— I <gt) < IVt T
P g(t) < caco,e1,n) IVt €1[0,T)

Set
f(,t) := [Riem[*(-, 1) — 0?(1 4 p*) exp™,

where a is to be chosen. and p(z,t) := dist(g(t))(x, x¢). Then

0 o . 0 g
af < Af+4Riem|? — ac®(1 + p?) exp™ —207 (= p)pexp™ +o? exp™ "A(p?)

ot
< °Af +4ei|Riem|? — ac?(1 + p*) exp™
+40%(n — 1)e1p? exp™ +c10? exp™ (e, n)p
< °Af + 4ci|Riem|? — goj(l + p?) exp™

for all z € By (0) for appropriately chosen a = a(n, ¢;), where here we have used
24:2
the Hessian comparison principle in order to estimate *A(p?), and the fact that all

distance minimising geodesics (in terms of g(t)) between 0 and points in /B v (0)
24:2
must lie in 7By (0) (this last fact may be seen as follows: the length of a ray from

0top e B (0) is trivially bounded from above by 02% = % For any curve
2c3 2

starting from 0 which reaches the boundary of By (0), the length is bounded from
below by éN) Using the definition of f, we get

0
af < Af 4o f 4 4e0? (1 + p?) exp™ —302(1 + p*) exp™ < 4de, f,

for appropriately chosen a = a(n,c;). Now for 02 > &2 we have f(-,0) < 0 on
By (0). Now choose N = N(o,co, c1,n) so large that f(-,1) < 0 on 832%5 (0) for

2c
all 125 € [0,7"). The maximum principle then implies that f is less than zero for all

t€0,T),forall z € By (0). Note that although p? is not smooth everywhere, using
2c

a trick of Calabi, we ma; still draw the same conclusion: see the proof of a Theorem
7.1 in [15] (essentially we define a new function p(z,t) = p(z,q,t) + p(q, xo,t) for
some appropriately chosen ¢ so that p is smooth in a small neighbourhood of (po, to)
where (po, to) is the first time and point where f(pg,tp) = 0. Thn we define:

f(-,1) = |Riem[*(-,#) — 0*(1 + p°) exp™,

and argue with f : due to the triangle inequality we have f < f and hence f <0
for t < ty. Furthermore f(xo,to) = 0, as ¢ lies on a shortest geodesic between z
and pg at time ty. Hence we may apply the maximum principle and still obtain a
contradiction. Hence f < 0. 0J



So we see that if a local region is relatively well controlled at time zero, and
the curvature behaves globally like ¢ near time zero, then we can show that a (well
defined) smaller region remains well behaved for a a well defined time interval.

The following remarks did not appear originally in [16].
Remark 1.5. Notice that the condition Idistz(x) > Nt can be removed, since if

Idistz(:z) < Nt then |Riem(:v,t)|ldist2(at) < |Riem(z,t)|Nt < coN if the conditions
of the theorem are satisfied.

Remark 1.6. 'dist’(z) = (1 — |z|)2.

2 Local results for solutions f to the heat equation
which satisfy a bound of the form f < %

The following is taken directly from Chapter 7 of [16].

In fact, the important bound which leads to the locality result (Theorem 1.3),
is the bound of the form |Riem| < ¢. The argument was a scaling argument which
used the parabolic maximum principle, and didn’t really have anything to do with
Ricci-flow. We illustrate this somewhat more precisely, by showing that a similar
result holds for the heat flow.

Lemma 2.1. Let f be a smooth solution to the heat flow on Bs(0)[0, 1] with

ftlBopy <1 Vt€[0,1], (2.1)
f(z,t) >0, Vxe By(0),te€]0,1]

sup f(z,0)(1 — |2*)* < 1 (2.3)
B1(0)

Then

sup f(z,8)(1 — [2]2)2 = 50nt) < 50m
B1(0)

for all t € [0, 1].
Proof. Set

la,t) = fla,t)((1 = [xf*)* = Mt) — M,
where M = 50n. Then [ € COO(B%(O)[O, 1]), and l(x,0) < =50, and [(-,t) < —50n <
0 on O(B;(0)) for all t € [0,1]. Hence, if there is a time and point (z,t) € B;(0)[0, 1]
where [(x,t) > 0, then due to compactness, there must be a first time ¢, and point
xo € B1(0), where [(xg,ty) = 0 (possibly there is more than one point zy, but there

exists at least one point xg). Assume that (xg, o) is such a point, and (xg, to) satisfies
(1 - |l’0|2)2 - Mto S %to Then

l(zo,t0) = f(zo,t0)((1 — |o|?)* — Mto) — M
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M
< f(fC(J’to)?to - M

M
<5 <0, (2.4)

(in view of the conditions (2.1) and (2.2) ) which contradicts the fact that [(xg,t) =
0. So we may assume, without loss of generality, that

M
(1= |zol?)? = Mt > 5 to (2.5)

Notice that this implies
2
5(1 — |zo|*)? > Mty

which further implies that
1
(1= |o[*)* = Mty > 2 (1 — |o])? (2.6)

We calculate the evolution equation for [ for such an (zo, t).

Si= Q)= Mf— A~ b)) - 29V - L)’
=A@ = MS — JSel = 40l — o) = 29,/ 9i(1 — o]’
< A() - MfHdnf =2V, fVi(1 — |z|*)?
< A0 -H T ey

M, 2Vi(F((1—|z[?)? — M) V(1 — |z]?)?
Al =5/ - (1 — [2[2)2 — M)

Vil — [2*)*Vi(d — [2]*)?

- M R ey — M) - fay
() Ry e CAN el S
O=71 oy (PR
2 — |
+8f|z| (1= 222 = 1) (2.7)
and hence, in view of the inequality (2.6),
o M 2V,IV;(1 — |z|*)?
Gl <80 -G - T e
IVIV,(1 — [2[2)2 M
R (R T R A
< g - VAV ) 0s)

(1= fa]?)? = Mt)"

As [(zg, o) is a local maximum, we obtain a contradiction (note that ((1— |zo|?)* —
Mty) > 0 due to the assumption (2.5)). O



In fact a scaled version of this lemma is true whenever we have at most polyno-
mial growth of f in ¢, as the following lemma shows.

Lemma 2.2. Let f be a smooth solution to the heat flow on Bs(0)[0, 1] with

Tt B o0 < 1

f(z,t) >0, Vze By0),tel0,1] (2.9)
sup (f(x,0) +1)7(1 = [2])? < 2 (2.10)
x€B1(0)
(p >1). Then
sup (f(x,t) +1)7((1 — |22)? = M(n,p)t) < c(n,p) Vte0,1].
x€B1(0)
Proof. 1f
ftr <1
then
(1+f)tp§2Vt§1,
and hence )
(1+ f)rt <2.
Setting i }
f=Q1+f)r,
we have
ft<e,
fz,0)(1 — |z[*)? < 2. (2.11)

Using the fact that f solves the heat equation and f > 1, we calculate

0: a 11 IV f|?
Ef_A(f)_[o(B_l) o (2.12)

Define . 3
L= fa, )((1 = [2]*)® = Mt) — M,

where M = M (n,p) is a constant to be chosen. Let (wo,%o) be a first time and point
where [ = 0. Arguing as above, we obtain

VI
/

9 - ) M.
al < A() =2(Vi)V; - ?f -

— (1 = [2[*)* — M1)

( (2.13)

=
=

where
Vi(l = [z]?)?
(1= |22 — M)

V.=



Arguing as in the previous lemma, we see that we may assume that ((1 — |z|?)? —
Mt) > 5(1—|z|*)?, and so V; can be considered to be smooth in a small neighbour-
hood of (g, ty). But the last term in the above inequality can also be estimated, as
the following calculation shows.

08{?) (1= 22)2 = MOV fV.] = C;{?) Vil((1 = [22)? - M1) )V,

—c(p)Vi((1 = |z]»)? = MOV, f. (2.14)

Remembering that we may assume that ((1 — |z[?)? — Mt) > 3(1 — |z|*)?, we get

—c(p)Vi((1 = |z[*)* = M)V, f

_ c(p) L e CHL Ly
(1~ [«])? —~Mt)vl((1 [2|*)? = MOV(f(1 = |2[*)* = Mt))
/ 22y (1 — |2]2)2
+C(p)3((1 — 2|22 — M) Vi(l = |z|7)*Vi(1 — |z[)
< —ﬁvi((l — |g;|2)2 _ Mt)vi(f((l i |a¢|2)2 B Mt))
+32¢(p) f 2.15)

Substituting this inequality into (2.14), we get

C(ij) (1= |22 — MOV,JV.F < WVl + 12e(p) ],

is a smooth vector field which is defined in a small neighbourhood (space and time)
of the point (¢, ty). Substituting this inequality into equation (2.13) we get

9 - y s
at the point (zg,to), where Z is a smooth vector field which is defined in a small
neighbourhood (space and time) of the point (z¢,to). This gives us a contradiction,

as (g, to) is a local maximum for .
U
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