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Abstract. In this paper we study the evolution of almost non-negatively curved (pos-
sibly singular) three dimensional metric spaces by Ricci flow. The non-negatively curved
metric spaces which we consider arise as limits of smooth Riemannian manifolds ðMi;

igÞ,
i A N, whose Ricci curvature is bigger than �1=i, and whose diameter is less than d0 (inde-
pendent of i) and whose volume is bigger than v0 > 0 (independent of i). We show for such
spaces, that a solution to Ricci flow exists for a short time t A ð0;TÞ, that the solution is
smooth for t > 0, and has Ricci

�
gðtÞ

�
f 0 and Riem

�
gðtÞ

�
e c=t for t A ð0;TÞ (for some

constant c ¼ cðv0; d0; nÞ). This allows us to classify the topological type and the di¤erential
structure of the limit manifold (in view of the theorem of Hamilton [10] on closed three
manifolds with non-negative Ricci curvature).

1. Introduction and statement of results

In the papers [9] and [10], R. Hamilton showed using the Ricci flow that

Theorem A ([10], Theorem 1.2). If M n, n ¼ 3ð4Þ is a closed n-dimensional Riemann-

ian manifold with non-negative Ricci curvature (non-negative curvature operator) then M 3 is

di¤eomorphic to a quotient of S3, S2 � R, or R3 by a group of fixed point free isometries

acting properly discontinuously (M 4 is di¤eomorphic to a quotient of one of the spaces S4,
CP2, S2 � S2, S3 � R1, S2 � R2 or R4 by a group of fixed point free isometries acting prop-

erly discontinuously) in the standard metric.

It is interesting to note that in order to apply the theorem for n ¼ 3 we only require
information on the Ricci curvatures (not the sectional curvatures). The theorem implies
that only certain three manifolds admit Riemannian metrics with non-negative Ricci curva-
ture. This is not the case for negative Ricci curvature, as proved by Lohkamp in [16]: he
proved that every closed manifold of dimension nf 3 admits a Riemannian metric of neg-
ative Ricci curvature.

We say that a smooth family of metrics
�
M; gðtÞ

�
t A ½0;TÞ is a solution to the Ricci flow

with initial value g0, or is a Ricci flow of g0 if



q

qt
gðtÞ ¼ �2 Ricci

�
gðtÞ

�
; Et A ½0;TÞ;

gð0Þ ¼ g0:

ð1:1Þ

In three (and four) dimensions, there are similar results to Theorem A requiring less regu-
larity of the starting metric (see Theorem B below).

Definition 1.1. Let M n be closed, g a Lipschitz Riemannian metric on M. We say
that RicciðgÞf k ðRðgÞf kÞ if there exists smooth ð igÞi AN with

(a) j ig � gjC 0ðMÞ ��!i!y
0,

(b) sup
i; j AN

gjGð igÞ � Gð jgÞjC 0ðMÞ < y and

(c) Riccið igÞf k � 1

i
ðRð igÞf k � 1

i
Þ.

Here R refers to the curvature operator.

Theorem B ([21], Theorem 1.3). Let n ¼ 3ð4Þ. The classification of Theorem A re-

mains true if we allow Lipschitz metrics with non-negative Ricci curvature (non-negative cur-

vature operator) in the sense of Definition 1.1.

In this paper we will define a Ricci flow for a larger class of almost non-
negatively Ricci curved (possibly singular) three dimensional metric spaces ðM; dÞ.
The spaces we are interested in arise as Gromov-Hausdor¤ limits of sequences

ðMi; giÞ A M n; d0; v0;�
1

i

� �
, i A N where

Definition 1.2. For n A N, d0 A Rþ, and k A R let Mðn; d0; kÞ denote the space of
smooth n-dimensional Riemannian manifolds of dimension n with diameter bounded above
by d0 and Ricci curvature not less than k. For v0 A Rþ, Mðn; d0; v0; kÞ is the set of
ðM; gÞ A Mðn; d0; kÞ which satisfy volðM; gÞf v0.

It is well known that the space Mðn; d0; kÞ is precompact in the Gromov-Hausdor¤
space. That is, given a sequence of smooth n-dimensional Riemannian manifolds

ðM n
i ; giÞi AN A Mðn; d0; kÞ;

there exists a metric space ðX ; dyÞ and a subsequence of ðM n
i ; giÞ (which we also call

ðM n
i ; giÞ for ease of reading) such that

�
M n

i ; dðgiÞ
� ��!i!y ðX ; dyÞ, in the Gromov-Hausdor¤

sense, where here dðgÞ denotes the distance function (metric) dðgÞ : M � M ! Rþ
0 arising

from the Riemannian metric g (see Appendix A). The Gromov-Hausdor¤ (space) distance
between two metric spaces is defined in Appendix A. It is a very weak measure of how close
two metric spaces are to being isometric to one another.

Definition 1.3. For n A N, d0 A Rþ, and k A R, Mðn; d0; kÞ is the closure of
Mðn; d0; kÞ with respect to the GH limit.
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It is possible that the limit space ðX ; dyÞ does not enjoy the regularity properties of
the spaces occurring in the converging sequence, as one sees in the following example.

Example 1.4. Let ðS n; giÞi AN be a sequence of spheres with Riemannian metrics,
where the metrics are chosen so that

� the sectional curvature is non-negative,

� the manifolds are becoming cone like in a fixed compact region (topologically a
closed disc) as i ! y, and stay smooth away from this region (see the remark below),

� the diameter is bounded above by 0 < d0 < y and the volume bounded below by
v0 > 0 where d0, v0 are constants independent of i A N.

Then
�
S n; dðgiÞ

�
converges in the Gromov-Hausdor¤ space to ðS n; dÞ, where d is a (non-

standard) metric on the sphere, and there exists a Riemannian metric g which is smooth
away from the tip, induces d, but cannot be extended in a C0 way to the tip. It is not pos-
sible to find a C0 Riemannian metric g which induces d.

Remark 1.5. The induced Riemannian metric on the cone

C n ¼ fðx; c2jxjÞ j x A Rng ðc2 > 0Þ

is Cy everywhere away from the tip ð~00; 0Þ of the cone, but cannot be extended continuously
to this tip for nf 2.

In [12], [27] and [28] the authors introduce other notions of ‘‘spaces with Ricci curva-
ture bounded below’’. In those papers, the spaces that one considers are metric spaces
ðX ; dÞ together with a measure m. One can measure the distance between two probability
measures m, n using the L2 Wasserstein-distance function dW :

dW ðm; nÞ :¼ inf
q

� Ð
M�M

d 2ðx; yÞ dqðx; yÞ
�1

2

;

where the infimum is taken over all couplings q of m and n. A coupling of m and n is a prob-
ability measure on M � M whose marginals (i.e. image measures under the projections) are
the given measure m and n. Let P2ðMÞ be the space of probability measures on M equipped
with the distance dW . The curvature bound from below is then defined using convexity
properties of entropy functionals. For example, one definition in Sturm [27] is as follows:
define the entropy

Entðn jmÞ :¼
Ð

M

dn

dm
log

dn

dm

� �
dm:

Then we say ðX ; d;mÞ has Ricci curvature bounded from below by K in the weak sense if for
any pair n0; n1 A P2ðMÞ with non-infinite entropy, there exists a geodesic G : ½0; 1� ! P2ðMÞ
connecting n0 and n1 such that

Ent
�
GðtÞ jm

�
e ð1 � tÞEnt

�
Gð0Þ jm

�
þ t Ent

�
Gð1Þ jm

�
� K

2
tð1 � tÞ d 2

W

�
Gð0Þ;Gð1Þ

�
;

179Simon, Ricci flow of almost non-negatively curved three manifolds



for all t A ½0; 1� (see [27] for more details). A similar definition may be found in [17],
Definition 0.7. Both of these definitions have the advantage of allowing very general
spaces (not necessarily smooth Riemannian manifolds). A further advantage is that this
condition is closed under Gromov-Hausdor¤ convergence (defined in Apendix A): if
ðXi; di;miÞ ! ðX ; d;mÞ as i ! y, and the ðXi; di;miÞ all have Ricci curvature bounded
from below by K in the weak sense, then ðX ; d;mÞ has Ricci curvature bounded from
below by K in the weak sense. This is not true in the smooth case, as the example above
illustrates (the Ricci curvature is not defined on the tip of the cone in the above example).
Furthermore, if ðX ; gÞ is a smooth Riemannian manifold, gd is the metric induced by g,
and Vg is the volume form induced by g, then: ðX ; gd;VgÞ has curvature bounded from
below in the weak sense if and only if ðX ; gÞ has Ricci curvature bounded from below in
the smooth sense.

In this paper we show that it is possible to evolve spaces ðX ; dÞ A Mðn; d0; v0; kÞ by
Ricci flow. In order to do this, we prove a number of estimates on the rate at which geo-
metrical quantities change under the Ricci flow. Many of these estimates are obtained using
the parabolic maximum principle in a smooth setting on a smooth manifold (for example,
estimate (1.6) is obtained by examining the evolution equation of the Ricci curvature). For
this reason, the setting of [17], [27] and [28] is not immediately appropriate for this paper.
In particular, the underlying spaces in that setting are not necessarily manifolds (see [18] for
results on Ricci flow in the setting of [17], [27] and [28]).

We prove Theorem 7.2.

Theorem 1.6. Let ðMi;
ig0Þ be a sequence of closed three (or two) manifolds satisfying

diamðMi;
ig0Þe d0;

Riccið ig0Þ ðsecð ig0ÞÞf�eðiÞ ig0;

volðMi;
ig0Þf v0 > 0;

where eðiÞ ! 0, as i ! y. Then there exists an S ¼ Sðv0; d0Þ > 0 and K ¼ Kðv0; d0Þ such

that the maximal solutions
�
Mi;

igðtÞ
�

t A ½0;TiÞ to Ricci-flow satisfy Ti fS, and

sup
Mi

��Riem
�

igðtÞ
���e K

t
;

for all t A ð0;SÞ. In particular the Hamilton limit solution�
M; gðtÞ

�
t A ð0;SÞ ¼ lim

i!y

�
Mi;

igðtÞ
�

t A ð0;SÞ

(see [13]) exists (after taking a subsequence). It satisfies the estimates

sup
M

��Riem
�
gðtÞ

���e K

t
;ð1:2Þ

Ricci
�
gðtÞ

�
f 0 ðsec

�
gðtÞ

�
f 0Þ;ð1:3Þ

for all t A ð0;SÞ and
�
M; gðtÞ

�
is closed. Hence, if M ¼ M 3, then M 3 is di¤eomorphic to a

quotient of one of S3, S2 � R or R3 by group of fixed point free isometries acting properly
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discontinuously. Furthermore

dGH

��
M; d

�
gðtÞ

��
; ðX ; dyÞ

�
! 0ð1:4Þ

as t ! 0 where ðX ; dyÞ ¼ lim
i!y

�
Mi; dð ig0Þ

�
(the Gromov-Hausdor¤ limit).

As a corollary we obtain the following classification theorem.

Corollary 1.7. For all 0 < v0 < y, 0 < d0 < y there exists an e ¼ eðv0; d0Þ > 0 such

that if ðM 3; gÞ is closed and ðM; gÞ A Mð3; d0; v0;�eÞ then M is di¤eomorphic to a quotient

of S3, S2 � R or R3 by a group of fixed-point free isometries acting properly discontinuously.

Proof. Assume the corollary is not true. Then there exists a sequence
ðMi;

ig0Þ A M
�
3; d0; v0;�eðiÞ

�
, i AN, with eðiÞ ! 0 as i ! 0 such that each of the Mi is not

di¤eomorphic to any of the manifolds listed in the theorem. But then we may apply Theorem
1.6 to obtain that a subsequence of

�
Mi;

igðtÞ
�

t A ð0;SÞ converges in the sense of Hamilton to
a solution

�
M; gðtÞ

�
t A ð0;SÞ. This implies in particular that Mi is di¤eomorphic to M for i big

enough. This is a contradiction. r

A scale invariant form of this corollary is:

Corollary 1.8. Let d0 be given. There exist 0 < e2 ¼ e2ðd0Þ < y such that if ðM 3; gÞ
satisfies

Ricci � vol
2
3 f�e2;

diam3
e d 3

0 � vol
ð1:5Þ

then M is di¤eomorphic to a quotient of S3, S2 � R or R3 by a group of fixed-point free iso-

metries acting properly discontinuously.

In [29], [22], [23] and [8], Fukaya, Shioya and Yamaguchi obtained similar results
(and more) for three manifolds with almost non-negative sectional curvature. For example,
in [8] Fukaya and Yamaguchi proved:

Theorem C ([8], Corollary 0.13). There exists an e > 0 such that if ðM 3; gÞ is a Rie-

mannian manifold whose diameter is not larger than 1, and has secf�e, then a finite cover-

ing of M is either

� homotopic to an S3 or

� di¤eomorphic to one of

(a) T 3,

(b) S1 � S2,

(c) Nil.
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Hence, using that the Poincaré Conjecture is correct (see Perelman’s papers [19], [20])
(that is, a homotopy S3 is homeomorphic to S3), we have a good topological classification
of 3-manifolds with sec � diam2

f�e and e small enough.

Notice that Theorem C does not require a bound from below on the volume.

Definition 1.9. If

volðMi; giÞ ��!i!y
0

for a sequence of smooth Riemannian manifolds ðMi; giÞ then we say that the sequence is a
collapsing sequence, or that the sequence collapses. If there exists a v0 > 0 such that

volðMi; giÞf v0; Ei A N;

then we say that the sequence is a non-collapsing sequence, or that the sequence does not
collapse.

The papers [29], [22], [23] and [8] use results and methods from the theory of
convergence/collapse of Riemannian manifolds, and the theory of Alexandrov spaces (not
Ricci flow).

In order to show that the Ricci-curvature of our solution is non-negative for all t > 0
(Equation (7.1)), we use the following lemma (Lemma 5.2 of this paper), which may be of
independent interest.

Lemma 1.10. Let g0 be a smooth metric on a 3-dimensional manifold M 3 which sat-

isfies

Ricciðg0Þf� e0

4
g0

ðsecðg0Þf� e0

4
g0Þ

ð1:6Þ

for some 0 < e0 < 1=100, and let
�
M; gð�; tÞ

�
t A ½0;TÞ be a solution to Ricci flow with

gð0Þ ¼ g0ð�Þ. Then

Ricci
�
gðtÞ

�
f�e0ð1 þ ktÞgðtÞ � e0ð1 þ ktÞtR

�
gðtÞ

�
gðtÞ; Et A ½0;TÞX ½0;T 0Þ

ðsec
�
gðtÞ

�
f�e0

1

2
þ kt

� �
gðtÞ � e0

1

2
þ kt

� �
tR
�
gðtÞ

�
gðtÞ; Et A ½0;TÞX ½0;T 0ÞÞ

where k ¼ 100 and T 0 ¼ T 0ð100Þ > 0 is a universal constant.

2. Methods and structure of this paper

In this paper we will chiefly be concerned with metric spaces ðX ; dyÞ which
arise as Gromov-Hausdor¤ limits of non-collapsing sequences of Riemannian manifolds
ðM 3

i ; giÞ A Mi

�
3; d0; v0 � eðiÞ

�
where eðiÞ ! 0 as i ! y. In particular, we wish to flow

such metric spaces ðX ; dyÞ by Ricci flow. As we saw in the previous section (see Example
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1.4) such limits can be quite irregular (it is possible that the limit manifold is a non-C0 Rie-
mannian manifold). Nevertheless, they will be Alexandrov spaces and so do carry some
structure (see Appendix A). In order to flow ðX ; dyÞ we will flow each of the ðM 3

i ; giÞ and
then take a Hamilton limit of the solutions (see [13]). The two main obstacles to this proce-
dure are:

� It is possible that the solutions
�
Mi; giðtÞ

�
are defined only for t A ½0;TiÞ where

Ti ! 0 as i ! y.

� In order to take this limit, we require that each of the solutions satisfy uniform
bounds of the form

sup
Mi

��Riem
�
giðtÞ

���e cðtÞ; Et A ð0;TÞ;

for some well defined common time interval ð0;TÞ (cðtÞ ! y as t ! 0 would not be a
problem here). Furthermore they should all satisfy a uniform lower bound on the injectivity
radius of the form

inj
�
M; giðt0Þ

�
f sðt0Þ > 0

for some t0 A ð0;TÞ.

As a first step to solving these two problems, in Lemma 3.4 of Section 3 we see that a
(three dimensional) smooth solution to the Ricci flow

�
M; gðtÞ

�
t A ½0;TÞ cannot become sin-

gular at time T as long as Riccif�1, the diameter remains bounded (by say d0) and the
volume stays bounded away from zero (say it is bigger than v0). Furthermore, a bound of
the form ��Riem

�
gðtÞ

���e c0ðd0; v0Þ
t

; Et A ½0;TÞX ½0; 1�

for such solutions is proved: that is, the curvature of such solutions is quickly smoothed out.

In Theorem 4.1 we present an application of the proof of 4.1. Notice that [19], Pro-
position 11.4, for the three dimensional case implies Lemma 4.1. Perelman’s method of
proof is somewhat di¤erent from that used in Lemma 4.1.

Section 5 is concerned with proving (for an arbitrary three dimensional solution to the
Ricci flow) lower bounds for the Ricci curvature of the evolving metric, which depend on

� the bound from below for the Ricci curvature of the initial metric,

� the scalar curvature of the evolving metric.

One of the major applications is (see Lemma 1.10): if ðM; g0Þ satisfies Ricciðg0Þf�e0 (e0

small enough) and the solution satisfies R
�
gðtÞ

�
e

c0

t
for all t A ð0;TÞ then

Ricci
�
gðtÞ

�
f�2c0e0; Et A ð0;T�ÞX ð0;TÞ

for some universal constant T� ¼ T� > 0.
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In Section 6, we consider smooth solutions to the Ricci flow which satisfy

Ricci
�
gðtÞ

�
f�c0;ð2:1Þ ��Riem

�
gðtÞ

���te c0;ð2:2Þ

diamðM; g0Þe d0:ð2:3Þ

In Lemma 6.1, well known bounds on the evolving distance for a solution to the Ricci flow
are proved for such solutions.

We combine this lemma with some results on Gromov-Hausdor¤ convergence and a
theorem of Cheeger-Colding (from the paper [4]) to show (Corollary 6.2) that such solu-
tions can only lose volume at a controlled rate.

In Section 7 we show (using the a priori estimates from the previous sections) that a
solution to the Ricci flow of ðX ; dyÞ exists, where ðX ; dyÞ is the Gromov-Hausdor¤ limit
as i ! y of

�
Mi; dðgiÞ

�
where the ðMi; giÞ satisfy

RicciðgiÞf�eðiÞ;

volðMi; giÞf v0;

diamðMi; g0Þe d0:

More explicitly we prove Theorem 1.6.

The theorem which is essential in constructing such a solution is (Theorem 7.1 of this
paper):

Theorem 2.1. Let M be a closed three (or two) manifold satisfying

diamðM; g0Þe d0;

Ricciðg0Þ ðsecðg0ÞÞf�eg0;

volðM; g0Þf v0 > 0;

ð2:4Þ

where ee
1

10c2
and c ¼ cðv0; d0Þf 1 is the constant from Lemma 3.4. Then there exists an

S ¼ Sðd0; v0Þ > 0 and K ¼ Kðd0; v0Þ such that the maximal solution
�
M; gðtÞ

�
t A ½0;TÞ to

Ricci-flow satisfies T fS, and

sup
M

��Riem
�
gðtÞ

���e K

t
;

for all t A ð0;SÞ.

Appendix A contains definitions, results and facts about Gromov-Hausdor¤ space,
which we require in this paper.
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In Appendix B we define C-essential points, and d-like necks, and consider discuss
0-like necks in the three dimensional case.

A proof of the (well known) Lemma 6.1 is contained in Appendix C.

Appendix D is a description of the notation used in this paper.

3. Bounding the blow up time from below using bounds on the geometry

An important property of the Ricci flow is that:

If certain geometrical quantities are controlled (bounded) on a half open finite time
interval ½0;TÞ, then the solution does not become singular as t % T and may be extended
to a solution defined on the time interval ½0;T þ eÞ for some e > 0. We are interested in the
question:

Problem 3.1. What elements of the geometry need to be controlled, in order to guar-

antee that a solution does not become singular?

In [9], it was shown that for ðM; g0Þ a closed smooth Riemannian manifold, the Ricci
flow equation

q

qt
g ¼ �2 RicciðgÞ;

gð�; 0Þ ¼ g0;

ð3:1Þ

always has a solution
�
M; gðtÞ

�
t A ½0;TÞ for a short time. It was also shown that two

such solutions defined on the same time interval must agree, if there initial values agree.
Furthermore, for each smooth, closed ðM; g0Þ there exists a maximal time interval
½0;TMaxÞ ðTMax > 0Þ for which, there exists a solution

�
M; gðtÞ

�
t A ½0;TMaxÞ to (3.1), and if

TMax < y then there is no solution
�
M; gðtÞ

�
t A ½0;TMaxþeÞ to (3.1) (for any e > 0). Such a so-

lution
�
M; gðtÞ

�
t A ½0;TMaxÞ is called a maximal solution.

Definition 3.2 (Maximal solutions). Let
�
M; gðtÞ

�
t A ½0;TÞ be a solution to Ricci flow.

We say that the solution blows up at time T if

sup
M�½0;TÞ

jRiemj ¼ y:ð3:2Þ

It was also shown in [9] that

Lemma 3.3. Let
�
M; gðtÞ

�
t A ½0;TÞ be a closed, smooth solution to Ricci flow, with

gð0Þ ¼ g0 and T < y, with

sup
M�½0;TÞ

jRiemj < y:ð3:3Þ

Then, for some e > 0, there exists a solution
�
M; gðtÞ

�
t A ½0;TþeÞ, with gð0Þ ¼ g0.
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So we see that a bound on the supremum of the Riemannian curvature (that is, con-

trol of this geometrical quantity) on a finite time interval ½0;TÞ guarantees that this solution
does not become singular as t % T . In the following lemma, we present other bounds on
geometrical quantities which guarantee that a solution to the Ricci flow does not become
singular as t % T .

Lemma 3.4. Let
�
M 3; gðtÞ

�
t A ½0;TÞ, T e 1 be an arbitrary smooth solution to Ricci

flow (M 3 closed ) satisfying

RicciðgÞf�1;

volðM; gÞf v0 > 0;

diamðgÞe d0 < y

ð3:4Þ

for all t A ½0;TÞ. Then there exists a c ¼ cðd0; v0Þ, such that

R
�
gðtÞ

�
te c

for all t A ½0;TÞ. In particular,
�
M 3; gðtÞ

�
t A ½0;TÞ is not maximal.

Corollary 3.5. Let
�
M 3; gðtÞ

�
t A ½0;TÞ be an arbitrary smooth solution to Ricci flow sat-

isfying

RicciðgÞf�1;

volðM; gÞf v0 > 0;

diamðgÞe d0 < y

ð3:5Þ

for all t A ½0;TÞ. Then there exists a c ¼ cðd0; vÞ, such that

R
�
gðtÞ

�
e c max

1

t
; 1

� �
for all t A ½0;TÞ. In particular,

�
M 3; gðtÞ

�
t A ½0;TÞ is not maximal.

The proof of the corollary is a trivial iteration argument.

Proof. Fix t0 A ½0;TÞ. We wish to show that

R
�
gðt0Þ

�
e c max

1

t0
; 1

� �
:

If t0 e 1=2 then we apply Lemma 3.4. If ðN þ 1Þ=2 > t0 fN=2 ðN A NÞ then we apply

Lemma 3.4 to the solution

 
M; g

ðN � 1Þ
2

þ t

� �!
t A 1

2
;1½ Þ

of Ricci flow (notice that
ðN � 1Þ

2
þ t ¼ t0 implies that 1 > tf 1=2). r

We now prove Lemma 3.4.
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Proof. Assume to the contrary that there exist solutions
�
Mi;

igðtÞ
�

t A ½0;TiÞ, Ti e 1 to
Ricci flow such that

sup
ðx; tÞ AMi�ð0;TiÞ

iRðx; tÞt ��!i!y
y;ð3:6Þ

or there exists some j A N with

sup
ðx; tÞ AMj�ð0;TjÞ

jRðx; tÞt ¼ y;ð3:7Þ

where iR :¼ Rð igÞ. It is then possible to choose points ðpi; tiÞ A Mi � ½0;TiÞ (or in
Mj � ½0;TjÞ: in this case we redefine Mi ¼ Mj and Ti ¼ Tj for all i A N and hence we do
not need to treat this case separately) such that

Rðpi; tiÞti ¼ sup
ðx; tÞ AMi�ð0; ti�

iRðx; tÞt ��!i!y
y:ð3:8Þ

Define

iĝgð�; t̂tÞ :¼ ci
ig �; ti þ

t̂t

ci

� �
;ð3:9Þ

where ci :¼ iRðpi; tiÞ. This solution to Ricci flow is defined for 0e ti þ
t̂t

ci

< Ti, that is,

at least for 0f t̂t > �tici. Let Ai :¼ tici. Then the solution iĝgðt̂tÞ is defined at least
for t̂t A ð�Ai; 0Þ. By the choice of ðpi; tiÞ we see that the solution is defined for
t̂t > �Ai ¼ �tici ¼ �ti

iRðpi; tiÞ ��!i!y �y. Since ti eTi e 1, we also have

ci ��!i!y
y;ð3:10Þ

in view of the fact that

tici ¼ ti
iRðpi; tiÞ ��!i!y

y:

Furthermore, letting sðt̂t; iÞ :¼ ti þ
t̂t

ci

, where �Ai < t̂te 0 we have

iR̂Rð�; t̂tÞ ¼ 1

ci

iR
�
�; sðt̂t; iÞ

�
ð3:11Þ

¼
iRð�; sÞ

iRðpi; tiÞ

¼
iRð�; sÞs

iRðpi; tiÞti

ti

s

e
ti

s

¼ ti

ti þ
t̂t

ci

��!i!y
1ð3:12Þ
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in view of the definition of ðpi; tiÞ, and 0e se ti (follows from the definition of s and the
fact that t̂te 0), and (3.10). Due to the conditions (3.4) we see that there exist l ¼ lðv0; d; nÞ,
and e ¼ eðv0; d; nÞ, such that

l f
vol
�
BrðpÞ; igðtÞ

�
r3

f e; Ere diam
�
Mi;

igðtÞ
�
;ð3:13Þ

(in view of the Bishop-Gromov comparison principle) which implies the same result for any
rescaling of the manifolds. Notice that the conditions (3.4) imply that

diam
�
M; igðtÞ

�
f d1ðn; v0Þ > 0ð3:14Þ

for some y > d1ðn; v0Þ > 0. Otherwise, assume diam
�
M; igðtÞ

�
e d1 for some small

d1, then vol
�
M; igðtÞ

�
e cðnÞ d 3

1on (Bishop-Gromov comparison principle), and hence
vol
�
M; igðtÞ

�
< v0 if d1 is too small, which would be a contradiction. Hence,

diam
�
M; iĝgð0Þ

� ��!i!y
y, in view of the inequalities (3.14) and (3.10). Now using

l f
vol
�
BrðpÞ; iĝgðtÞ

�
r3

f e0; Ere diam
�
Mi;

iĝgðt̂tÞ
�
;ð3:15Þ

we obtain a bound on the injectivity radius from below, in view of the theorem of Cheeger-
Gromov-Taylor, [5] (the theorem of Cheeger-Gromov-Taylor says that for a complete Rie-
mannian manifold ðM; gÞ with jRiemje 1, we have

injðx; gÞf r
vol
�
g;BrðxÞ

�
vol
�
g;BrðxÞ

�
þ on expn�1

;

for all re p=4). In particular, using that diamðM; gÞf d1 > 0 and jRiemje c (see [i]
below) for the Riemannian manifolds in question, we obtain

injðx; gÞf e
snþ1

lsn þ on expn�1
f c2ðd0; v0; nÞ > 0ð3:16Þ

for s ¼ min
�
ðon expn�1Þ

1
n; diamðM; gÞ; p=4

�
.

This allows us to take a pointed Hamilton limit (see [13]), which leads to a Ricci flow
solution

�
W; o; gðtÞt A ð�y;oÞ

�
, with ReRðo; 0Þ ¼ 1, and Riccif 0, o > 0 (at t ¼ 0, as ex-

plained below, the full Riemannian curvature tensor of iĝgð0Þ is bounded by cð3Þ and so
clearly each solution lives at least to a time o > 0 independent of i). More precisely:

� [i] The bound from below on the Ricci curvature, and the bound from above on the
scalar curvature imply that the Ricci curvatures are bounded absolutely by the constant 5
for i big enough. In three dimensions, bounds from above and below on the Ricci curva-
tures imply bounds from above and below on the sectional curvatures and hence on the
norm of the full Riemannian curvature tensor. This, together with the bound from below
on the injectivity radius, allows us to a take a Hamilton limit of these Ricci flows.

� [ii] In fact the limit solution satisfies secf 0, which can be seen as follows: Each
rescaled solution iĝg is defined on Mi � ½�Ai;o� where Ai ��!i!y

y. They also each satisfy
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secf�2 and jRiemje cðnÞ for all t A ð�S; 0Þ for any fixed S and all i big enough, in view
of (3.12) and Riccif�1:

Let us translate in time by S, so that these solutions are defined on Mi � ½�Ai þ S;S �
and satisfy secf�2 and jRiemje cðnÞ on ð0;SÞ (for i big enough). Without loss of gener-
ality, we assume that secf�1. We then use the improved pinching result of Hamilton [14]
(see also [15]):

Theorem 3.6. Let gðtÞ be a solution to Ricci flow defined on M � ½0;TÞ, M closed.

Assume at t ¼ 0 that the eigenvalues af bf g of the curvature operator at each point are

bounded below by gf�1. The scalar curvature is their sum R ¼ aþ b þ g, and X :¼ �g.

Then at all points and all times we have the pinching estimate

RfX ½log X þ logð1 þ tÞ � 3�;

whenever X > 0:

Notice that this estimate is also valid for the translated limit solution (defined on
½0;SÞ) as it is valid for each i and the scalar curvature and X converge as i ! y to the
corresponding quantities of the translated (by S) limit solution.

Let d > 0 be any arbitrary small constant. Assume there exists ðx; tÞ A W� S

2
;S

� �
such that Xðx; tÞf d. Then we get

logðdÞe log Xðx; tÞe Rðx; tÞ
d

� logð1 þ tÞ þ 3ð3:17Þ

e
cðnÞ
d

� log 1 þ S

2

� �
þ 3

which is a contradiction for S big enough. Hence our initial limit solution (without any
translations in time) has X ðx; 0Þe d. As d was arbitrary we get Xð�; 0Þe 0. A similar argu-
ment shows X e 0 everywhere. That is, the limit space satisfies secf 0, Et A ð�y; 0Þ.

The volume ratio estimates

l f
vol
�
BrðpÞ

�
r3

f e0; Er > 0;ð3:18Þ

are also valid for ðW; gÞ, as these estimates are scale invariant, and diamðW; gÞ ¼ y. At
this point we could apply [19], Proposition 11.4, to obtain a contradiction. We prefer
however to introduce an alternative method to Perelman in order to obtain a contradic-
tion (this method may be of independent interest). We now consider the following two
cases.

(Case 1) sup
W�ð�y;0�

jtjR ¼ y.

(Case 2) sup
W�ð�y;0�

jtjR < y.
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(Case 1) In the first case, in view of [7], Chapter 8, Section 6, we may assume w.l.o.g.
that there exists a solution

�
W; o; gðtÞt A ð�y;yÞ

�
, with

sup
W�ð�y;yÞ

jRðtÞje 1 ¼ jRð0; oÞj:ð3:19Þ

Note: we must slightly modify the argument there, by replacing Riem with R wherever it
appears. We also use the fact (as mentioned above) that jRiemje cð3ÞR in the case that
Riccif 0 (in dimension three) and that our scale invariant volume estimate (3.18) remains
true for any rescalings of our solution: these two facts ensure that in the rescaling process of
the argument in [3], Chapter 8, Section 6, an injectivity radius estimate is satisfied, and that
the limit solution is well defined.

(Case 1.1) The sectional curvature is everywhere positive.

(Case 1.2) There exists ðp0; t0Þ A W� ð�y;yÞ, and vp0
;wp0

A Tp0
W with

secðp0; t0Þðvp0
;wp0

Þ ¼ 0:

First we consider (Case 1.1).

(Case 1.1) This means W is di¤eomorphic to R3 in view of the soul theorem (see [6],
Chapter 8) and in particular, W is simply connected. We may then apply the gradient sol-
iton theorem of Hamilton [11] which implies, in view of (3.19), that

�
W; gðtÞ

�
t A ð�y;yÞ is

a gradient soliton. We may then, using the dimension reduction theorem of Hamilton,
[12], Theorem 22.3, take a Hamilton limit of rescalings of this solution, to obtain a new
solution,

�
R� N; dx2 l gðtÞ

�
t A ð�y;yÞ, or a quotient thereof by a group of fixed-point

free isometries acting properly discontinuously, where dx2 is the standard metric on R,
and

�
N; gðtÞ

�
t A ð�y;yÞ is a solution to the Ricci flow, N is a surface, and Rð�; tÞ > 0, on

N. In the case that we have a quotient of
�
R� N; dx2 l gðtÞ

�
then we notice that�

R� N; dx2 l gðtÞ
�

still satisfies (3.18) (the bound from below follows as the Riemannian
covering map f :

�
R� N; dx2 l gðtÞ

�
!
�
W; gðtÞ

�
is a Riemannian submersion, and the

bound from above follows in view of the Bishop-Gromov comparison principle) and so,
without loss of generality, we may assume that we do not have a quotient. If N is compact,
then ðR� N; dx2 l gÞ, does not satisfy the estimates (3.18), and so we obtain a contradic-
tion. So w.l.o.g. we may assume that N is non-compact. Now we break this up into two
cases:

(Case 1.1.1) sup
N�ð�y;yÞ

jtj jRðtÞj ¼ y, and

(Case 1.1.2) sup
N�ð�y;yÞ

jtj jRðtÞj < y:

First we handle

(Case 1.1.1) Once again, w.l.o.g. ([7], Chap. 8, Sec. 6), we may assume

sup
N�ð�y;yÞ

Re 1 ¼ Rðo; 0Þ:
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RðtÞ > 0, and N non-compact implies N is di¤eomorphic to R2, which is simply connected.
We may then use the gradient soliton theorem of Hamilton, [11], to obtain that ðN; gÞ is a
gradient soliton, which implies ([12], Thm. 26.3), that ðN; gÞ is the cigar ðS; cigÞ. But
ðR� S; dx2 l cigÞ do not satisfy the estimates (3.18), and so we obtain a contradiction.

(Case 1.1.2) sup
N�ð�y;yÞ

jtj jRðtÞj < y: Hamilton, [12], Thm. 26.1, implies that

ðN; gÞ ¼ ðS2 or R2; gÞ=G, where g is the standard solution on S2 or R2, and G is a finite
group of isometries acting without fixed points on the standard S2 or standard R2. ðR2; gÞ
cannot occur, since the surface should satisfy RðtÞ > 0 everywhere (the standard ðR2; gÞ is
flat). But then N is compact, and ðR� N; dx2 l gÞ, does not satisfy the estimates (3.18),
and once again we obtain a contradiction.

(Case 1.2) There exists ðp0; t0Þ A W� ð�y;yÞ, and vp0
;wp0

A Tp0
W with

secðp0; t0Þðvp0
;wp0

Þ ¼ 0:

Then the maximum principle applied to the evolution equation of the curvature operator,
implies that

�
W; o; gðtÞ

�
t A ð�y;yÞ ¼

�
R� N; dx2 l gðtÞ

�
t A ð�y;yÞ, or a quotient thereof by a

group of isometries (see [10], Chapter 9) and sup
N�ð�y;yÞ

RðtÞe 1 ¼ Rðo; 0Þ. Without loss

of generality, we may assume that we don’t have a quotient, as explained in (Case 1.1).
RðtÞ > 0, implies N is di¤eomorphic to S2=G or R2. In the case that N is di¤eomorphic
to S2=G, we obtain a contradiction, as then ðW; gÞ does not satisfy (3.18). So w.l.o.g. N is
di¤eomorphic to R2, in particular N is simply connected. We may use the gradient soliton
theorem of Hamilton [11], to get that ðN; gÞ is a soliton and it must be the cigar, in view of
Theorem 26.3 of Hamilton [12]. This leads to a contradiction as then ðW; gÞ does not satisfy
(3.18) (similarly for the covering case).

(Case 2) B :¼ sup
W�ð�y;0�

jtj jRiemðtÞj < y.

(Case 2.1) The asymptotic scalar curvature ratio A ¼ lim sup
s!y

Rs2 ¼ y. Remember

that the asymptotic scalar curvature ratio is a constant in time for ancient solutions which
have bounded curvature at each time and non-negative curvature operator. A is also inde-
pendent of which origin we choose: see [12], Theorem 19.1. Then we use the dimension-
reduction argument of Hamilton (see [12], Lemma 22.2 and the argument directly after
the proof of Lemma 22.2) to obtain a new solution ðN � R; gl dx2Þ or a quotient
thereof by a group of isometries where ðN; gÞ is a solution to Ricci flow defined on
ð�y;T � ðT > 0Þ (note, our injectivity radius estimate is still valid in view of the volume
ratio estimate (3.18) which survives into every limit). If N is compact then we obtain a con-
tradiction to (3.18). So we may assume that N is non-compact. We then consider the cases

sup
N�ð�y;yÞ

jtj jRðtÞj ¼ y; and sup
N�ð�y;yÞ

jtj jRðtÞj < y: Then, using the exact same arguments

as in (Case 1.1.1) and (Case 1.1.2), we obtain a contradiction.

(Case 2.2) The asymptotic scalar curvature ratio A ¼ lim sup
s!y

Rs2 < y. Remember

that the asymptotic scalar curvature ratio is a constant in time for ancient solutions which
have bounded curvature at each time and non-negative curvature operator. A is also inde-
pendent of which origin we choose: see [12], Theorem 19.1.
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Now we use another splitting argument of Hamilton (see [12], Theorem 24.7 for the
compact version of this argument).

(Case 2.2.1) There exists a C > 0, s.t., for all t A ð�y; 0Þ, for all d A ð0; 1Þ, there ex-
ists ðx; tÞ A W� ð�y; tÞ such that ðx; tÞ is a C-essential d-necklike point (see Appendix B).

Let fdigi AN be a positive sequence, di ��!i!y
0, and let ðxi; tiÞ be chosen so that ðxi; tiÞ

is an C-essential di-necklike point. Assume yi is a unit 2-form on Txi
W with

jRiemðxi; tiÞ � Rðxi; tiÞðyi n yiÞje dijRiemjðxi; tiÞ:

Let igðx; tÞ ¼ 1

jtij
gðx; ti þ tjtijÞ. Then

igj iRiemðx; tÞj ¼ jtijgjRiemðx; ti þ tjtijÞjð3:20Þ

¼ jtijg
��Riem

�
x; ðt � 1Þjtij

���
¼ jðt � 1Þjtij j

j1 � tj
g
��Riem

�
x; ðt � 1Þjtij

���
e

B

j1 � tj e 2B

for te 1=2. Notice that

ti þ
1

2
jtij ¼ ti �

1

2
ti ¼

1

2
ti < 0ð3:21Þ

and so igðtÞ is defined for (at least) �y < te 1=2. Furthermore,

igj iRiemðxi; 0Þj ¼ jtijgjRiemðxi; tiÞjfC > 0;ð3:22Þ

since ðxi; tiÞ is C-essential. Set

ci :¼
1

jtij
yi:

ci is then a unit two form on Txi
W with respect to giðx; 0Þ. Then

igj iRiemðxi; 0Þ � iRðxi; 0Þðci nciÞje diB:

Now taking a Hamilton pointed limit (our injectivity radius estimate is still valid) we ob-
tain a solution ð~WW; ~ggÞ, defined for te 1=2 with

~ggj gRiemRiemðo; 0Þ � ~RRðo; 0Þð ~ccn ~ccÞje 0;

where ~cc is the unit two form (at time zero it has length one) defined on
To

~WW, ~cc ¼ lim
i!y

ðFiÞ�ci, for di¤eomorphisms Fi : BiðoÞH ~WW ! Ui HW. More precisely
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this c is obtained (in coordinates) as cabðoÞ :¼ lim
i!y

qðFiÞr

qxa
ðoÞ qðFiÞs

qxb
ðoÞðciÞrsðxiÞ, where

Fi :
�
BiðoÞ; ~gg; o

�
! ðUi;

ig; xiÞHMi, FiðoÞ ¼ xi are the di¤eomorphisms occurring in the
Hamilton limit process: ðFiÞ�ð igÞ ! ~gg on BRðoÞ as i ! y for all Rf 0 (notice then that
for t ¼ 0

1 ¼ ð igÞ lmð igÞrsðciÞrlðciÞsmðxiÞð3:23Þ

¼
�
F �

i ð igÞ
� lm�

F �
i ð igÞ

�rsðF �
i ciÞrlðF �

i ciÞsmðoÞ

@ ~gglm~ggrsðF �
i ciÞrlðF �

i ciÞsmðoÞ

for large i, and so F �
i ci converges to a unit two form as i ! y, as stated). Furthermore

Rðo; 0ÞfC > 0 (in view of (3.22)) which implies (in view of the strong maximum principle
applied to the evolution equation for R) that R > 0. Hence, due to the maximum principle,
ð~WW; ~ggÞ ¼ ðN � R; gl dx2Þ, or a quotient thereof by a group of isometries, where ðN; gÞ is a
solution to the Ricci flow (see Appendix B for a more detailed explanation of this fact). If
N is compact we obtain a contradiction to the volume ratio estimates. If N is non-compact,
then we argue exactly as in (Case 1.1.1) and (Case 1.1.2) to obtain a contradiction.

(Case 2.2.2) For all C > 0, there exists t A ð�y; 0Þ, and d A ð0; 1Þ, such that for all
ðx; tÞ A

�
W� ð�y; tÞ

�
, ðx; tÞ is not a C-essential d-necklike point. Choose C e 1=16, and

let t, d be the t, d from the statement at the beginning of this case. Set

G :¼ jtj
e
2
jRiem˚ j2

R2�e
;

with ee hðdÞ :¼ d

100ð3 � dÞ (notice that this function is well defined, as R > 0 everywhere).

Then, as Chow and Knopf show in [7] (see the proof of Theorem 9.19 there)

q

qt
G eDG þ 2

ð1 � eÞ
R

h‘G;‘Ri� e

2jtjG;ð3:24Þ

for all te t. Let us examine G a little more carefully. For fixed t < 0 and a fixed x0 we have
the estimate

lim
dðx;x0; tÞ!y

Gðx; tÞ ¼ lim
dðx;x0; tÞ!y

jtj
e
2
jRiem˚ ðx; tÞj2

R2ðx; tÞ
Reðx; tÞð3:25Þ

e jtj
e
2cðnÞ lim

dðx;x0; tÞ!y
Reðx; tÞ

¼ 0

in view of the fact that the asymptotic scalar curvature ratio is less than infinity. Also, as
Chow and Knopf point out, we have

G ¼ jtjeRe jRiem˚ j2

R2

1

jtj
e
2

e
BecðnÞ
jtj

e
2

;ð3:26Þ
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in view of the fact that B :¼ sup
W�ð�y;o�

jtj jRðtÞj < y, and hence

lim
t!�y

sup
x AM

Gðx; tÞ ¼ 0:ð3:27Þ

Let t 0 < t� 2 be a constant with sup
W

Gð�; tÞ < e0 for all te t 0. We know that

sup
M�ð�y;0�

jRiemje cðnÞð3:28Þ

and without loss of generality

sup
M�½t 0; t�

j‘Riemj2 þ j‘2 Riemj2 e cðnÞð3:29Þ

in view of the interior gradient estimates of Shi (see [12], Chapter 13). We also know that
for given e1 > 0 and s A ½t 0; t� there exists an rðs; e1Þ > 0 such that

sup
fx AM:d 2ðx;x0; sÞfrg

jRiemjðx; sÞe e1;ð3:30Þ

in view of the fact that the asymptotic scalar curvature ratio is finite. Hence, for all e2 > 0
there exists a d > 0, such that

sup
x AM; t A ðs; sþdÞ:d 2ðx;x0; sÞfr

jRiemjðx; tÞe e1 þ e2;

in view of (3.28) and (3.29) and the evolution equation for jRiemj2. In particular if
sup

M

Gð�; sÞ < e0, then sup
M�ðs; sþdÞ

Gð�; tÞ < e0, for small enough d (outside of a fixed large

compact set K;G < e0 for all t A ðs; s þ dÞ and inside K we use the fact that G is smooth).
That is, the set

Z :¼
�

r : sup
W

Gð�; tÞ < e0; Et A ½t 0; rÞ
	

is open. Hence either

sup
W

Gð�; tÞ < e0

for all t A ½t 0; tÞ, or there is a first time t0 A ðt 0; tÞ such that sup
W

Gð�; t0Þ ¼ e0. In the second

case, we see (using equation (3.30) with s ¼ t0) that there must also be a point x0 A M such
that Gðx0; t0Þ ¼ e0. But this contradicts the maximum principle in view of (3.24).

This means that

sup
W

Gð�; tÞ < e0;

for all t A ð�y; tÞ, and hence, since e0 was arbitrary,

G 1 0:

Hence W ¼ S3=G, which is a contradiction to the fact that W is non-compact. r
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4. An application of the proof of Lemma 3.4

In certain cases, the proof of Lemma 3.4 is applicable even if M is non-compact.
For example, the theorem below is proved similarly to Lemma 3.4. This theorem was ini-
tially proved (using other methods and for all dimensions) by Perelman [19], Proposition
11.4.

Theorem 4.1. Let
�
W3; gðtÞ

�
t A ð�y;0� be an ancient non-compact complete solution to

Ricci flow, with ( for some fixed origin o A M )

secf 0;

sup
W

��Riem
�
gðtÞ

��� < y; Et A ð�y; 0Þ;

VðtÞ :¼ lim
r!y

vol
�
Brðo; tÞ

�
r3

fV0 > 0

ð4:1Þ

for some time t, t A ð�y; 0Þ. Then
�
W3; gðtÞ

�
is flat for all t A ð�y; 0Þ.

Remark 4.2. The limit in the statement of the theorem exists in view of the fact that
vol
�
Brðo; tÞ

�
rn

is non-increasing as r increases (in view of the Bishop-Gromov comparison

principle).

Proof. Assume that the asymptotic scalar curvature ratio AW ¼ lim sup
s!y

Rs2 ¼ y
(this is a constant independent of time). Translate in time so that t ¼ 0.

Notice that for this solution, and any scaling of this solution which has bounded cur-
vature by some fixed constant c in a ball of radius one around some origin o 0 at t ¼ 0, we
have a uniform bound on the injectivity radius from below at o 0, in view of (4.1) and [5].
We explain this here more precisely. We have the estimate

vol
�
Brðo 0; 0Þ

�
r3

fV0 > 0

for all r > 0 in view of (4.1) and the Bishop-Gromov volume comparison principle. Fur-

thermore
vol
�
Brðo 0; 0Þ

�
r3

eo3 trivially using the Bishop-Gromov volume comparison prin-

ciple. We may then apply the result of [5] to obtain our estimate for the bound on the
injectivity radius, exactly as we did in the argument of Lemma 3.4. Also, the estimates

o3 f
vol
�
Brðo; 0Þ

�
r3

fV0 > 0; Erf 0ð4:2Þ

remain valid under scaling (as the inequality is scale invariant). Hence, we obtain a uniform
bound from below on the injectivity radius estimate at o 0, for any scaling of this solution
which has bounded curvature by some fixed constant c on a ball of radius one around o 0 at
time zero.
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We use the dimension-reduction argument of Hamilton (see [12], Lemma 22.2 and the
argument directly after the proof of Lemma 22.2) to obtain a new solution (with non-
negative sectional curvature and bounded curvature at each time) ðN � R; g� dx2ÞðtÞ,
t A ð�y; 0� or a quotient thereof by group of isometries. Also (4.2) remains true (at time
zero) for the resulting solution, as we explained above. Without loss of generality, we may
assume that we don’t have a quotient of ðN � R; g� dx2ÞðtÞ: otherwise we lift the solution
to the solution ðN � R; g� dx2ÞðtÞ which still satisfies (4.2) at time zero, as explained in
(Case 1.1) of the proof of Lemma 3.4.

Notice that the dimension-reduction argument of Hamilton is applicable here, in view
of the bounds from below on the injectivity radius at the centres of the balls occurring in
the argument (due to the argument at the beginning of this theorem). Without loss of gen-
erality the solution is defined on ðN � R; g� ds2Þ for t A ð�y;o� for some o > 0, in view
of the short time existence result of Shi, [21]. Rð0; oÞ ¼ 13 0 due to the construction pro-
cess in the dimension-reduction argument. RN f 0 (for all times) since the sectional cur-
vatures of

�
gðtÞ � ds2;N 2 � R

�
are non-negative (for all times) and the curvature in the

R direction is zero. Hence, due to the strong maximum principle again, RN > 0 for all
t A ð�y;o�. Then, see [12], Lemma 26.2, we have

AN ¼ lim sup
s!y

RNs2 < y

is a constant independent of t A ð�y;oÞ on N.

This means that the asymptotic volume ratio VNðtÞ of
�
N; gðtÞ

�
,

VNðtÞ ¼ lim
r!y

vol
�
gðtÞBrðtÞð~ooÞ; gðtÞ

�
r2

;

is independent of time (see [12], Theorem 18.3). Assume o ¼ ð~oo; aÞ A N � R. This im-
plies

vol
�
gð0ÞBrð~ooÞ; gð0Þ

�
r2

¼
vol
�
gð0ÞBrð~ooÞ � ½a � r; a þ r�; gð0Þl ds2

�
2r3

ð4:3Þ

f
vol
�
gð0Þ�ds2

BrðoÞ; gð0Þ � ds2
�

2r3

f
V0

2
;

in view of (4.2) where here we have used that gð0Þ�ds2
BrðoÞH gð0ÞBrð~ooÞ � ½a � r; a þ r�.

Hence VNðtÞ ¼ VNð0ÞfV0=2, which implies

o2 f
vol
�
gðtÞBrðtÞð~ooÞ; gðtÞ

�
r2

fVNðtÞf
V0

2
;

for all r > 0 and all t A ð�y;o� in view of the monotonicity of the volume quotient
(Bishop-Gromov volume comparison principle).
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We then consider the following two cases:

(Case 1) sup
N�ð�y;o�

jtj
��R�gðtÞ���¼ y,

(Case 2) sup
N�ð�y;o�

jtj
��R�gðtÞ���< y,

exactly as in the proof of Lemma 3.4. Both cases lead to a contradiction.

In the case that AW ¼ lim sup
s!y

Rs2 < y then we also know that

VðtÞ ¼:¼ lim
r!y

vol
�
Brðo; tÞ

�
r3

is a constant on W independent of time, and in particular

o3 f
vol
�
Brðo; tÞ

�
r3

fV0 > 0; Erf 0 Et A ð�y; 0Þ:

Translate in time so that the solution is defined on ð�y;oÞ, o > 0. We then consider the
following two cases:

(Case 1) sup
W�ð�y;0�

jtj jRðtÞj ¼ y,

(Case 2) sup
W�ð�y;0�

jtj jRðtÞj < y,

exactly as in the proof of Lemma 3.4. Both cases lead to a contradiction. r

5. Bounds on the Ricci curvature from below under Ricci flow

We prove quantitative estimates that tell us how quickly the Ricci curvature can de-
crease, if we assume that the Ricci curvature is not too negative at time zero. Both lemmas
may be read independently of the rest of the results in this paper.

The first lemma is suited to the case that we have a sequence of solutions to Ricci flow�
Mi;

igðtÞ
�

t A ½0;TÞ whose initial data satisfies

Ricci
�

igð0Þ
�
f�eiR

�
igð0Þ

�
igð0Þ � ei

igð0Þ;ð5:1Þ

where ei ! 0 as i ! y. One application of this lemma is: if a subsequence of subsets�
Wi;

igðtÞ
�
, t A ½0;TÞ (Wi open) converges (in the sense of Hamilton, see [13]) to a smooth

solution
�
W; gðtÞ

�
, t A ð0;TÞ, then the lemma tells us that the Ricci curvature of

�
W; gðtÞ

�
is

non-negative for all t A ð0;TÞ. This is very general, but does require that a limit solution
exists.
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The second lemma is suited to the case that we have a sequence of solutions to Ricci
flow

�
Mi;

igðtÞ
�
½0;TÞ whose initial data satisfies

Ricci
�

igð0Þ
�
f�ei

igð0Þ;ð5:2Þ

where ei ! 0 as i ! y. Once again, one application of this lemma is: if a subsequence of
subsets

�
Wi;

igðtÞ
�
, t A ð0;SÞ converges (in the sense of Hamilton, see [13]) to a smooth so-

lution
�
W; gðtÞ

�
, t A ð0;SÞ, then the lemma tells us that the Ricci curvature of

�
W; gðtÞ

�
is

non-negative for all t A ð0;SÞ. Another useful application of the second lemma is: if a solu-
tion

�
M; gðtÞ

�
, t A ½0;TÞ satisfies

jRiemðgÞje c0

t
;

Ricci
�
gð0Þ

�
f�egð0Þ

ð5:3Þ

then for a well controlled time interval the solution satisfies

RicciðgÞf�c0eg:

As we saw in Lemma 3.4, such a bound is relevant to the question of existence of solutions
to the Ricci flow. We apply this lemma in the main Theorem 7.1 and the Application 7.2.

Lemma 5.1. Let g0 be a smooth metric on a 3-dimensional manifold M 3 which sat-

isfies

Ricciðg0Þf� e0

4
g0 �

e0

4
Rg0 ðsecðg0Þf� e0

4
� R

e0

4
Þð5:4Þ

for some 0 < e0 < 1=100, and let
�
M; gð�; tÞ

�
t A ½0;TÞ be a solution to Ricci flow with

gð0Þ ¼ g0ð�Þ. Then

Ricci
�
gðtÞ

�
f�e0ð1 þ 4tÞgðtÞ � e0ð1 þ 4tÞR

�
gðtÞ

�
gðtÞ; Et A ½0;TÞX 0;

1

8

� �

ðsec
�
gðtÞ

�
f�e0

1

2
þ t

� �
� e0

1

2
þ t

� �
R
�
gðtÞ

�
; Et A ½0;TÞX 0;

1

8

� �
Þ:

Proof. Define e ¼ eðtÞ ¼ e0ð1 þ 4tÞ, and the tensor LðtÞ by

Lij :¼ Ricciij þ eRgij þ egij:

We shall often write e for eðtÞ (not to be confused with e0). Notice that e0 < eðtÞe 2e0, for
all t A ½0; 1=8Þ: we will use this freely. Then L

j
i ¼ ðR j

i þ eRd
j
i þ ed

j
i Þ, and

q

qt
L

� �
ij

¼ q

qt
Ll

i

� �
gjl � 2Ll

i Rjl

¼ gjl

q

qt
ðRikgklÞ þ e

q

qt
Rd l

i þ 4e0Rd l
i þ 4e0d

l
i

� �
� 2Ll

i Rjl

198 Simon, Ricci flow of almost non-negatively curved three manifolds



¼ gjl

q

qt
ðRikgklÞ þ egij

q

qt
R þ 4e0Rgij þ 4e0gij � 2Ll

i Rjl

¼ gjl

�
ðDRicciÞ l

i � Ql
i þ 2RikRsmgkmgls

�
þ egijðDR þ 2jRiccij2Þ þ 4e0Rgij þ 4e0gij � 2Ll

i Rjl

¼ ðDLÞij � Qij þ 2RikRjmgkm þ 2ejRiccij2gij

þ 4e0Rgij þ 4e0gij � 2Ll
i Rjl ;

where Q is the tensor

Qij :¼ 6Sij � 3RRij þ ðR2 � 2SÞgij;

Sij :¼ gklRikRjl

ð5:5Þ

(see [9], Theorem 8.4). Clearly Lijð0Þ > 0. Define Nij by

Nij :¼ �Qij þ 2RimRsjg
ms þ 2ejRiccij2gij þ 4e0Rgij þ 4e0gij � 2Ll

i Rjl:

We argue as in the proof of Hamilton’s maximum principle, [9], Theorem 9.1.

We claim that Lij

�
gðtÞ

�
f 0. Assume there exist a first time and point ðp0; t0Þ and a

direction wp0
for which Lðw;wÞ

�
gðtÞ

�
ðp0; t0Þ ¼ 0. Choose coordinates about p0 so that at

ðp0; t0Þ they are orthonormal, and so that Ricci is diagonal at ðp0; t0Þ. Clearly L is then
also diagonal at ðp0; t0Þ. W.l.o.g.

R11 ¼ l;

R22 ¼ m;

R33 ¼ n;

ð5:6Þ

and le me n, and so

L11 ¼ lþ eðt0ÞR þ eðt0ÞeL22 eL33;

and so L11 ¼ 0 (otherwise Lðp0; t0Þ > 0: a contradiction). In particular,

N11ðp0; t0Þ ¼ ðm� nÞ2 þ lðmþ nÞ þ 2el2 þ 2em2 þ 2en2 þ 4e0R þ 4e0;ð5:7Þ

in view of the definition of Q (see [9], Corollary 8.2, Theorems 8.3, 8.4) and the fact that
L11 ¼ 0. Also, L11 ¼ 0 ) l ¼ �eR � e at ðp0; t0Þ, and so, substituting this into (5.7), we get

N11ðp0; t0Þ ¼ ðu � vÞ2 þ ð�eR � eÞðmþ nÞ þ 2eðl2 þ m2 þ n2Þ þ 4e0R þ 4e0

f e
�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
þ 4e0R þ 4e0 � eðmþ nÞ

¼ e
�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
þ 4e0R þ 4e0 � eR þ el

f eðl� lm� lnþ m2 þ n2 þ 2l2 � 2mnÞ þ 4e0R þ 4e0 � eR:
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To show N11 > 0, we consider a number of cases.

� Case 1. lf 0. This combined with L11 ¼ 0 implies that R < 0. A contradiction to
the fact that lf 0 and l is the smallest eigenvalue of Ricci.

� Case 2. le 0, Rf 0. This implies nf 0 and hence

N11 f eðl� lmþ m2 þ n2 þ 2l2 � 2mnÞ þ 4e0;

in view of the fact that eRe 2e0R. In the case mf 0 we obtain

N11 f eðlþ m2 þ n2 þ 2l2 � 2mnÞ þ 4e0 f�eþ 4e0 > 0;

after an application of Young’s inequality, and similarly in the case me 0 we get

N11 f eðl� lmþ m2 þ n2 þ 2l2Þ þ 4e0 > 0:

� Case 3. le 0, Re 0. We know that Rðg0Þf�3e0 will be preserved by Ricci flow,
and hence 0fR

�
gðtÞ

�
f�3e0. We break Case 3 up into three Subcases 3.1, 3.2, 3.3.

– Case 3.1. m; ne 0. This with Rf�3e0 implies that jlj; jmj; jnje 3e0 and hence

N11 f�3ee0 � 36ee2
0 � 12e2

0 þ 4e0 f�100e2
0 þ 4e0 > 0;

since 0 < e0 < 1=100, e < 2e0 < 1:

– Case 3.2. me 0, nf 0. Implies

N11 f eðl� lmþ m2 þ n2 þ 2l2Þ � 12e2
0 þ 4e0 > 0;

in view of Young’s inequality, e0 e 1=100, and 0 < e < 2e0.

– Case 3.3. mf 0 ð) nf 0Þ. Then, similarly,

N11 f eðlþ m2 þ n2 þ 2l2 � 2mnÞ � 12e2
0 þ 4e0 > 0:

So in all cases N11 > 0. The rest of the proof is standard (see [9], Theorem 9.1): extend

wðp0; t0Þ ¼
q

qx1
ðp0; t0Þ in space to a vector field wð�Þ in a small neighbourhood of p0 so that

gðt0Þ‘wð�Þðp0; t0Þ ¼ 0, and let wð�; tÞ ¼ wð�Þ. Then

0f
q

qt
Lðw;wÞ

� �
ðp0; t0Þf

�
DLðw;wÞ

�
ðp0; t0Þ þ Nðw;wÞ > 0;

which is a contradiction.

The case for the sectional curvatures is similar: from [10], Sec. 5, we know that the
reaction equations for the curvature operator are
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q

qt
a ¼ a2 þ bg;

q

qt
b ¼ b2 þ ag;

q

qt
g ¼ g2 þ ab:

Note that

R ¼ aþ b þ g;ð5:8Þ

jRiccij2 ¼
 

aþ b

2

� �2

þ aþ g

2

� �2

þ b þ g

2

� �2
!

¼ 1

2
ða2 þ b2 þ g2 þ ab þ agþ bgÞ:

Similar to the Ricci case, we examine the function aþ eðtÞR þ eðtÞ where ae be g

are eigenvalues of the curvature operator, and eðtÞ ¼ e0
1

2
þ t

� �
. In order to make the fol-

lowing inequalities more readable, we write e in place of eðtÞ: that is, e ¼ e0
1

2
þ t

� �
.

q

qt
ðaþ eR þ eÞ ¼ e0 þ e0R þ a2 þ bgþ 2ejRiccij2

¼ e0 þ e0R þ a2 þ bgþ eða2 þ b2 þ g2 þ ab þ agþ bgÞ;

and so in the case that b; gf 0, or b; ge 0,
q

qt
ðaþ eR þ eÞf e0ð1 þ RÞ > 0. So assume that

ae be 0, and gf 0. Combining these inequalities with eðtÞe e0, we see that

q

qt
ðaþ eR þ eÞf e0 þ e0R þ a2 þ agþ eða2 þ b2 þ g2 þ ab þ agþ bgÞ

¼ e0 þ e0R þ a2 þ ðaþ eR þ eÞg

� eRg� egþ eða2 þ b2 þ g2 þ ab þ agþ bgÞ

¼ e0 þ e0R þ a2 þ ðaþ eR þ eÞg� egþ eða2 þ b2 þ abÞ;

f a2 þ ðaþ eR þ eÞgþ e0ð1 þ R � gÞ þ eða2 þ b2Þ;

which, using eðtÞf e0=2, is

f a2 þ ðaþ eR þ eÞgþ e0 1 þ aþ b þ a2

2
þ b2

2

 !
;

f a2 þ ðaþ eR þ eÞg;
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in view of Young’s inequality. At a point where aþ eR þ e ¼ 0, the last sum is strictly big-
ger than zero (if a ¼ 0, then, Rf 0, and hence aþ eR þ ef e > 0: a contradiction). Then
we argue as above. r

The above lemma shows us that if the Ricci curvature at time zero is bigger than �e (e
small) then the Ricci curvature divided by the scalar curvature is at most �ce at points
where the scalar curvature is bigger than one (for a short well defined time interval). It
can of course happen that the Ricci curvature becomes very large and negative in a short
time, if the scalar curvature is very large and positive in a short time.

Now we prove an improved version of the above theorem, which allows for some
scaling in time. In particular, for the class of solutions where jRiemjte c0 it tells us that:
if the Ricci curvature at time zero is bigger than �e (e small) then the Ricci curvature is at
most �ce for some short well defined time interval.

Lemma 5.2. Let g0 be a smooth metric on a 3-dimensional manifold M 3 which sat-

isfies

Ricciðg0Þf� e0

4
g0

ðsecðg0Þf� e0

4
Þ

ð5:9Þ

for some 0 < e0 < 1=100, and let
�
M; gð�; tÞ

�
t A ½0;TÞ be a solution to Ricci flow with

gð0Þ ¼ g0ð�Þ. Then

Ricci
�
gðtÞ

�
f�e0ð1 þ ktÞgðtÞ � e0ð1 þ ktÞtR

�
gðtÞ

�
gðtÞ; Et A ½0;TÞX ½0;T 0Þ

ðsec
�
gðtÞ

�
f�e0

1

2
þ kt

� �
� e0

1

2
þ kt

� �
tR
�
gðtÞ

�
; Et A ½0;TÞX ½0;T 0ÞÞ

where k ¼ 100 and T 0 ¼ T 0ð100Þ > 0 is a universal constant.

Proof. The proof is similar to that above. Define e ¼ eðtÞ ¼ e0ð1 þ ktÞ, and the ten-
sor LðtÞ by

Lij :¼ Ricciij þ etRgij þ egij:

We shall often write e for eðtÞ (not to be confused with e0). Notice that e0 < eðtÞe 2e0, for
all t A ½0; 1=kÞ: we will use this freely. Then

L
j
i ¼ ðR j

i þ etRd
j
i þ ed

j
i Þ;

and

q

qt
L

� �
ij

¼ q

qt
Ll

i

� �
gjl � 2Ll

i Rjl

¼ gjl

q

qt
ðRikgklÞ þ eRd l

i þ et
q

qt
Rd l

i þ ke0tRd l
i þ ke0d

l
i

� �
� 2Ll

i Rjl
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¼ gjl

q

qt
ðRikgklÞ þ eRgij þ etgij

q

qt
R þ ke0tRgij þ ke0gij � 2Ll

i Rjl

¼ gjl

�
ðDRicciÞ l

i � Ql
i þ 2RikRsmgkmgls

�
þ eRgij

þ etgijðDR þ 2jRiccij2Þ þ ke0tRgij þ ke0gij � 2Ll
i Rjl

¼ ðDLÞij � Qij þ 2RikRjmgkm þ eRgij þ 2etjRiccij2gij

þ ke0tRgij þ ke0gij � 2Ll
i Rjl ;

where Q is the tensor defined in Equation (5.5). Clearly Lijð0Þ > 0. Define Nij by

Nij :¼ �Qij þ 2RikRjmgkm þ eRgij þ 2etjRiccij2gij þ ke0tRgij þ ke0gij � 2Ll
i Rjl :

We argue as in the proof of Hamilton’s maximum principle, [9], Theorem 9.1.

We claim that Lij

�
gðtÞ

�
> 0 for all t A ½0;TÞ. Assume there exist a first time and point

ðp0; t0Þ and a direction wp0
for which Lðw;wÞ

�
gðtÞ

�
ðp0; t0Þ ¼ 0. Choose coordinates about

p0 so that at ðp0; t0Þ they are orthonormal, and so that Ricci is diagonal at ðp0; t0Þ. Clearly
L is then also diagonal at ðp0; t0Þ. W.l.o.g.

R11 ¼ l;

R22 ¼ m;

R33 ¼ n;

ð5:10Þ

and

le me n;

and so

L11 ¼ lþ eðt0Þt0R þ eðt0ÞeL22 eL33;

and so L11 ¼ 0 (otherwise Lðp0; t0Þ > 0: a contradiction). In particular,

N11ðp0; t0Þ ¼ ðm� nÞ2 þ lðmþ nÞ þ 2etl2 þ 2etm2 þ 2etn2ð5:11Þ

þ eRgij þ ke0tRgij þ ke0gij

in view of the definition of Q (see [9], Corollary 8.2, Theorems 8.3, 8.4) and the fact that
L11 ¼ 0. We will show that N11ðp0; t0Þ > 0. L11 ¼ 0 ) l ¼ �et0R � e at ðp0; t0Þ, and so,
substituting this into (5.7), we get

N11ðp0; t0Þ ¼ ðu � vÞ2 þ ð�et0R � eÞðmþ nÞ þ 2et0ðl2 þ m2 þ n2Þ

þ eR þ ke0tRgij þ ke0

f et0

�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
� eðmþ nÞ

þ eR þ ke0t0R þ ke0
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¼ et0

�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
þ
�
ð�e2t0 þ ke0t0ÞR � e2 þ ke0

�
f et0ð�lm� lnþ m2 þ n2 þ 2l2 � 2mnÞ

þ
�
ð�e2t0 þ ke0t0ÞR � e2 þ ke0

�
where here we have used once again that

lðx0; t0Þ ¼ �eðt0Þt0Rðx0; t0Þ � eðt0Þ:

If Rðx0; t0Þe 0, then using the fact that Rf�3e0 is preserved by the flow, we see that

�
�e2ðt0Þt0 þ ke0ðt0Þt0

�
Rðx0; t0Þ � e2 þ ke0 f

k

2
e0:

Furthermore:

� [i] l ¼ �eR � ee e (since Rf�3e0) and l ¼ �eR � ef�e, that is jlje e.

� [ii] Similarly jmþ nj ¼ jR � lje 4e.

Hence

et0

�
�lðmþ nÞ þ m2 þ n2 þ 2l2 � 2mn

�
f�50e2

0 ;

and so N11ðp0; t0Þ > 0. Hence we must only consider the case Rðp0; t0Þf 0.

� Case 1. lf 0. This combined with L11 ¼ 0 implies that Rðp0; t0Þ < 0. A contradic-
tion.

� Case 2. le 0, mf 0, nf 0. In this case we trivially obtain N11 > 0:

� Case 3. le 0, me 0, nf 0. Implies

N11 > et0ð�lmþ m2 þ n2 þ 2l2Þf 0;

in view of Young’s inequality.

So in all cases N11 > 0. The rest of the proof is standard (see [9], Theorem 9.1): extend

wðp0; t0Þ ¼
q

qx1
ðp0; t0Þ in space to a vector field wð�Þ in a small neighbourhood of p0 so that

gðt0Þ‘wð�Þðp0; t0Þ ¼ 0, and let wð�; tÞ ¼ wð�Þ. Then

0f
q

qt
Lðw;wÞ

� �
ðp0; t0Þf

�
DLðw;wÞ

�
ðp0; t0Þ þ Nðw;wÞ > 0;

which is a contradiction.
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The case for the sectional curvatures is similar: from [10], Sec. 5, we know that the
reaction equations for the curvature operator are

q

qt
a ¼ a2 þ bg;

q

qt
b ¼ b2 þ ag;

q

qt
g ¼ g2 þ ab:

In what follows, we use the formulae (5.8) freely.

Similar to the Ricci case, we examine the function aþ eðtÞtR þ eðtÞ where ae be g

are eigenvalues of the curvature operator, and eðtÞ ¼ e0
1

2
þ kt

� �
. In order to make the fol-

lowing inequalities more readable, we write e in place of eðtÞ: that is, e ¼ e0
1

2
þ kt

� �
. We

assume te
1

2k
so that e0

1

2
e eðtÞe e0:

q

qt
ðaþ etR þ eÞ ¼ eR þ ke0tR þ ke0 þ a2 þ bgþ 2etjRiccij2

¼ eR þ ke0tR þ ke0 þ a2 þ bg

þ etða2 þ b2 þ g2 þ ab þ agþ bgÞ;

and so in the case that b; gf 0, or b; ge 0,

q

qt
ðaþ eR þ eÞf eR þ ke0tR þ ke0ð5:12Þ

f�3e2
0 � 3e2

0 þ ke0 > 0:

So assume that ae be 0, and gf 0. Combining these inequalities with eðtÞe e0, we see
that

q

qt
ðaþ etR þ eÞf eR þ ke0tR þ ke0 þ ag

þ etða2 þ b2 þ g2 þ ab þ agþ bgÞ

¼ eR þ ke0tR þ ke0 þ ðaþ etR þ eÞg

� etRg� egþ etða2 þ b2 þ g2 þ ab þ agþ bgÞ

¼ eR � egþ ke0tR þ ke0 þ ðaþ etR þ eÞg

þ etða2 þ b2 þ abÞ

¼ eðaþ bÞ þ ke0tR þ ke0 þ ðaþ etR þ eÞg

þ etða2 þ b2 þ abÞ

f ð2eaþ ke0tR þ ke0Þ þ etða2 þ b2 þ abÞ
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at a point where aþ etR þ e ¼ 0. Using aþ etR þ e ¼ 0 again, we get

2eaþ ke0tR þ ke0 ¼ 2eð�etR � eÞ þ ke0tR þ ke0

¼ Rtð�2e2 þ ke0Þ þ ke0 � 2e2

>
k

2
e0;

since Rf�3e0 is preserved by the flow, and te 1=k. Hence

q

qt
ðaþ etR þ eÞf k

2
e0 þ etða2 þ b2 þ abÞ > 0;

at a point where aþ etR þ e ¼ 0. Then we argue as above. r

So although the Ricci curvature can become very large and negative under the Ricci
flow, it can only do so at a controlled rate. In particular, as we mentioned before this
lemma, if the curvature satisfies jRiemjte c0 for all t A ½0;TÞ (in addition to the initial con-
ditions) then Riccif�c1ðc0Þe0, is true on some well defined time interval ½0;T 0Þ (in dimen-
sions two and three).

6. Bounding the diameter and volume in terms of the curvature

The results of this section hold for all dimensions.

Lemma 6.1. Let
�
M n; gðtÞ

�
t A ½0;TÞ be a solution to Ricci flow with

Ricci
�
gðtÞ

�
f�c0;��Riem

�
gðtÞ

���te c0;

diamðM; g0Þe d0:

ð6:1Þ

Then

dðp; q; 0Þ � c1ðt; d0; c0; nÞf dðp; q; tÞf dðp; q; 0Þ � c2ðn; c0Þ
ffiffi
t

p
ð6:2Þ

for all t A ½0;TÞ, where

c1ðt; d0; c0; nÞ ! 0

as t ! 0.

In particular if ig0 is a sequence of smooth metrics on manifolds Mi with

diamðMi;
ig0Þe d0;

dGH

��
Mi; dð ig0Þ

�
; ðX ; dX Þ

� ��!i!y
0

ð6:3Þ
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and
�
Mi;

igðtÞ
�

t A ½0;TiÞ are solutions to Ricci flow with

igð0Þ ¼ ig0;

sec
�

igðtÞ
�
f�c0 ðRicci

�
igðtÞ

�
f�c0Þ;��Riem

�
igðtÞ

���te c0; Et A ½0;TiÞ;

ð6:4Þ

then

dGH

��
Mi; d

�
igðtiÞ

��
; ðX ; dX Þ

� ��!i!y
0

for any sequence ti A ½0;TiÞ, i A N where ti ��!i!y
0.

Proof. The first inequality

dðp; q; tÞf dðp; q; 0Þ � c1ðn; c0Þ
ffiffi
t

p

is proved in [12], Theorem 17.2 (with a slight modification of the proof: see Appendix C).
The second inequality follows easily from [12], Lemma 17.3: see Appendix C.

The second statement is a consequence of the first result, and the triangle inequality
which is valid for the Gromov-Hausdor¤ distance:

dGH

��
Mi; d

�
igðtiÞ

��
; ðX ; dX Þ

�
ð6:5Þ

e dGH

��
Mi; d

�
igðtiÞ

��
;
�
Mi; dð ig0Þ

��
þ dGH

��
Mi; dð ig0Þ

�
; ðX ; dX Þ

�
e cðtiÞ þ dGH

��
Mi; dð ig0Þ

�
; ðX ; dX Þ

� ��!i!y
0:

Here we have used the characterisation of Gromov-Hausdor¤ distance given in A.9,
and the fact that the identity map I :

�
Mi; d

�
igðtiÞ

��
!
�
Mi; dð ig0Þ

�
, is an cðtiÞ-Hausdor¤

approximation, where cðtÞ ! 0 as t ! 0: see Appendix A, Definition A.8 and Lemma
A.9. r

Corollary 6.2. Let
�
M n; gðtÞ

�
t A ½0;TÞ be an arbitrary solution to Ricci flow ðgð0Þ ¼ g0Þ

satisfying the conditions (6.1) and assume that there exists v0 > 0 such that

volðM; g0Þf v0 > 0:ð6:6Þ

Then there exists an S ¼ Sðd0; c0; v0; nÞ > 0 such that

vol
�
M; gðtÞ

�
f

3v0

4
; Et A ½0;TÞX ½0;SÞ:

Proof. If this were not the case, then there exist solutions
�
M n

i ;
igðtÞ

�
t A ½0;TiÞ satisfy-

ing the stated conditions and there exist ti A ½0;TiÞ, ti ��!i!y
0 such that

vol
�
Mi;

igðtiÞ
�
¼ 3v0

4
:

207Simon, Ricci flow of almost non-negatively curved three manifolds



But then

dGH

��
Mi; d

�
igðtiÞ

��
; ðX ; dX Þ

� ��!i!y
0

from the lemma above. According to [2], Thm. 10.8 for the case that sec
�

igðtÞ
�
f�c0 (for

the Ricci case we use [4], Theorem 5.4 of Cheeger-Colding) we also have

v0 e volðMi;
ig0Þ ¼ Hn

�
Mi; dð ig0Þ

� ��!i!y
HnðX ; dX Þ

which implies HnðX ; dX Þf v0. Here HnðX ; dX Þ is the n-dimensional Hausdor¤ mass of X

with respect to the metric dX . Similarly we have

3v0

4
¼ Hn

�
Mi; d

�
igðtiÞ

�� ��!i!y
HnðX ; dX Þ:

This implies HnðX ; dX Þ ¼ 3v0=4. A contradiction. r

7. Non-collapsed compact three manifolds of almost non-negative curvature

The results of this section are only valid for dimensions two and three.

Theorem 7.1. Let M be a closed three (or two) manifold satisfying

diamðM; g0Þe d0;

Ricciðg0Þf�eg0;

volðM; g0Þf v0 > 0;

where ee 1=10c2 and c ¼ cðv0; d0Þf 1 is the constant from Lemma 3.4. Then there exists an

S ¼ Sðd0; v0Þ > 0 and K ¼ Kðd0; v0Þ such that the maximal solution
�
M; gðtÞ

�
t A ½0;TÞ to

Ricci-flow satisfies T fS, and

sup
M

��Riem
�
gðtÞ

���e K

t
;

for all t A ð0;SÞ.

Proof. Let ½0;T 0Þ be the maximal time interval for which

vol
�
M; gðtÞ

�
>

v0

2
;

Ricci
�
gðtÞ

�
> �1;

diam
�
gðtÞ

�
< 5d0:

If T 0f 1 then choose S ¼ 1=2. The estimate for the curvature then follows from
Lemma 3.4 and we are finished. So w.l.o.g. T 0 e 1. Then the diameter condition will
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not be violated at time T 0 (as one easily sees by examining the evolution equation for
distance under Ricci flow). So we assume w.l.o.g. T 0 e 1 and the diameter condition
is not violated. From Lemma 3.4, we know that there exists a c ¼ cðd0; v0Þ such

that RðtÞe c

t
, for all t A ½0;T 0Þ. Using Lemma 5.2 we see that there exists a

T 00 ¼ T 00�cðd0; v0Þ
�
> 0 such that Riccif�1=2 for all t A ½0;T 00�X ½0;T 0Þ. So the Ricci

curvature condition is not violated on ½0;T 00�X ½0;T 0Þ. Furthermore, in view of Corollary
6.2 there exists a T 000 ¼ T 000�v0; d0; cðd0; v0Þ

�
, such that vol

�
M; gðtÞ

�
> 3v0=4 for all

t A ½0;T 000�X ½0;T 00�X ½0;T 0�. Hence T 0 fmin
�
T 00�cðd0; v0Þ

�
;T 000ðv0; d0Þ

�
> 0, as required.

The estimate for the curvature and the existence of S then follow from Lemma 3.4. r

Theorem 7.2. Let ðMi;
ig0Þ be a sequence of closed three (or two) manifolds satisfying

diamðMi;
ig0Þe d0;

Riccið ig0Þ ðsecð ig0ÞÞf�eðiÞ ig0;

volðMi;
ig0Þf v0 > 0;

where eðiÞ ! 0, as i ! y. Then there exists an S ¼ Sðv0; d0Þ > 0 and K ¼ Kðv0; d0Þ such

that the maximal solutions
�
Mi;

igðtÞ
�

t A ½0;TiÞ to Ricci-flow satisfy Ti fS, and

sup
Mi

��Riem
�

igðtÞ
���e K

t
;

for all t A ð0;SÞ. In particular the Hamilton limit solution�
M; gðtÞ

�
t A ð0;SÞ ¼ lim

i!y

�
Mi;

igðtÞ
�

t A ð0;SÞ

(see [13]) exists (after taking a subsequence). It satisfies the estimates

sup
M

��Riem
�
gðtÞ

���e K

t
;ð7:1Þ

Ricci
�
gðtÞ

�
f 0 ðsec

�
gðtÞ

�
f 0Þ;ð7:2Þ

for all t A ð0;SÞ and
�
M; gðtÞ

�
is closed. Hence, if M ¼ M 3, then M 3 is di¤eomorphic to a

quotient of one of S3, S2 � R or R3 by group of fixed point free isometries acting properly

discontinuously. Furthermore

dGH

��
M; d

�
gðtÞ

��
; ðX ; dyÞ

�
! 0ð7:3Þ

as t ! 0 where ðX ; dyÞ ¼ lim
i!y

�
Mi; dð ig0Þ

�
(the Gromov-Hausdor¤ limit).

Proof. We apply the previous theorem. Then notice that Lemma 5.1 (or Lemma
5.2) implies that Ricci

�
gðtÞ

�
f 0 ðsec

�
gðtÞ

�
f 0Þ for this limit solution, for all t A ð0;SÞ.

To prove that dGH

��
M; d

�
gðtÞ

��
; ðX ; dyÞ

�
! 0 use the triangle inequality as in the proof

of Lemma 6.1:
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dGH

��
M; d

�
gðtÞ

��
; ðX ; dyÞ

�
ð7:4Þ

e dGH

��
M; d

�
gðtÞ

��
;
�
Mi; d

�
igðtÞ

���
þ dGH

��
Mi; d

�
igðtÞ

��
; ðX ; dyÞ

�
e dGH

��
M; d

�
gðtÞ

��
;
�
Mi; d

�
igðtÞ

���
þ dGH

��
Mi; d

�
igðtÞ

��
;
�
Mi; dð ig0Þ

��
þ dGH

��
Mi; dð ig0Þ

�
; ðX ; dyÞ

�
e dGH

��
M; d

�
gðtÞ

��
;
�
Mi; d

�
igðtÞ

���
þ cðtÞ

þ dGH

��
Mi; dð ig0Þ

�
; ðX ; dyÞ

� ��!i!y
cðtÞ;

for all t > 0, where cðtÞ ! 0 as t ! 0: here we have used (6.2), and the characterisation of
Gromov-Hausdor¤ distance given in A.9 to obtain cðtÞ. r

A. Gromov-Hausdor¤ space and Alexandrov spaces

Definition A.1. Let ðZ; dÞ be a metric space, p A Z, r > 0.

BrðpÞ :¼ fx A Z : dðx; pÞ < rg:

For two non-empty subsets A;BHZ

distðA;BÞ ¼ inffdða; bÞ : a A A; b A Bg;

BrðAÞ :¼ fx A Z : distðx;AÞ < rg:

Definition A.2. For subsets X ;Y H ðZ; dÞ we define the Hausdor¤ distance between
X and Y by

dHðX ;Y Þ :¼ inffe > 0 : X HBeðYÞ and Y HBeðX Þg.

Then (see [1], Prop. 7.3.3):

Proposition A.3. . dH is a semi-metric on 2Z (the set of all subsets of Z).

� dHðA;AÞ ¼ 0 for all AHZ, where A is the closure of A (in ðZ; dÞ).

� If A and B are closed subsets of ðZ; dÞ and dHðA;BÞ ¼ 0 then A ¼ B.

Definition A.4. For a subset X HZ, ðZ; dÞ a metric space, we define djX to be the
metric on X defined by

djX ða; bÞ ¼ dða; bÞ.

We then define the Gromov-Hausdor¤ distance between two abstract metric spaces
ðX ; dX Þ and ðY ; dY Þ as follows:

Definition A.5. dGH

�
ðX ; dX Þ; ðY ; dY Þ

�
is the infimum over all r > 0 such that

there exists a metric space ðZ; dÞ and maps f : X ! Z, X 0 :¼ f ðX Þ, and g : Y ! Z,
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Y 0 :¼ gðYÞ such that f : ðX ; dX Þ ! ðX 0; djX 0 Þ and g : ðY ; dY Þ ! ðY 0; dY 0 Þ are isometries
and dHðX 0;Y 0Þ < r:

Fact A.6. dGH satisfies the triangle inequality, i.e.,

dGH

�
ðX1; d1Þ; ðX3; d3Þ

�
e dGH

�
ðX1; d1Þ; ðX2; d2Þ

�
þ dGH

�
ðX2; d2Þ; ðX3; d3Þ

�
for all metric spaces ðX1; d1Þ, ðX2; d2Þ, ðX3; d3Þ.

Proof. See [1], Prop. 7.3.16. r

Definition A.7. A n-Hausdor¤ approximation f : X ! Y for metric spaces ðX ; dX Þ
and ðY ; dY Þ is a map which satisfies��dY

�
f ðxÞ; f ðx 0Þ

�
� dX ðx; x 0Þ

��e n;

Bn

�
f ðX Þ

�
¼ Y :

ðA:1Þ

Definition A.8. Happrox
�
ðX ; dX Þ; ðY ; dY Þ

�
is the infimum of n such that there exists

a n-Hausdor¤ approximation f : X ! Y .

The proof of following well known lemma may also be found in [1].

Lemma A.9.

Happrox
�
ðX ; dX Þ; ðY ; dY Þ

�
e 2dGH

�
ðX ; dX Þ; ðY ; dY Þ

�
e 4 Happrox

�
ðX ; dX Þ; ðY ; dY Þ

�
:

Proof. See [1], Corollary 7.3.28. r

Now we state the compactness result of Gromov.

Proposition A.10. Mðn; k; d0Þ is precompact in Gromov-Hausdor¤ space.

Proof. See [1], Remark 10.7.5. r

Clearly Sðn; k; d0ÞHM
�
n; ðn � 1Þk; d0

�
and so it is also precompact in Gromov-

Hausdor¤ space.

In [2] (Theorem 10.8), the following fact about the convergence of Hausdor¤ measure
was shown.

Theorem A.11. Let ðMi; giÞ A Sðn; k; d0Þ, i A N be a sequence of smooth Riemannian

manifolds with volðMi; giÞf v0 > 0, for all i A N and�
Mi; dðgiÞ

� ��!i!y ðX ; dX Þ

in Gromov-Hausdor¤ space. Then

volðMi; giÞ ¼ HiðMiÞ ��!i!y
HðMÞ;
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where Hi : Mi ! Rþ
0 is n-dimensional Hausdor¤ measure with respect to dðgiÞ and

H : X ! Rþ
0 , is n-dimensional Hausdor¤ measure with respect to dX .

Proof. See for example [1], Theorem 10.10.10. r

In [4] (Theorem 5.4) the same result was proved for Mðn; k; d0Þ:

Theorem A.12. Let ðMi; giÞ A Mðn; k; d0Þ, i A N be a sequence of smooth Riemannian

manifolds with volðMi; giÞf v0 > 0 for all i A N, and�
Mi; dðgiÞ

� ��!i!y ðX ; dX Þ

in Gromov-Hausdor¤ space. Then

volðMi; giÞ ¼ HiðMiÞ ��!i!y
HðMÞ;

where Hi : Mi ! Rþ
0 is n-dimensional Hausdor¤ measure with respect to dðgiÞ and

H : X ! Rþ
0 , is n-dimensional Hausdor¤ measure with respect to dX .

Proof. See [4], Theorem 5.4. r

For further properties of Alexandrov spaces with curvaturef k see [2] or the book
[1]. For further properties of spaces with curvature bounded below see [4].

B. C-essential points and d-like necks

Definition B.1. Let
�
M; gðtÞ

�
t A ð�y;TÞ, T A RW fyg, be a solution to Ricci flow. We

say that ðx; tÞ A M � ð�y;TÞ is a C-essential point if

jRiemðx; tÞj jtjfC:

Definition B.2. We say that ðx; tÞ A M � ð�y;TÞ is a d-necklike point if there exists
a unit 2-form y at ðx; tÞ such that

jRiem � Rðyn yÞje djRiemj.

d-necklike points often occur in the process of taking a limit around a sequence of
times and points which are becoming singular. If d ¼ 0, then the inequality reads

jRiemðx; tÞ � Rðx; tÞðyn yÞj ¼ 0:

In three dimensions this tells us that the manifold splits. This can be seen with the help of
some algebraic lemmas.

Lemma B.3. Let o A W2ðR3Þ. Then it is possible to write

o ¼ X5V ;

for two orthogonal vectors X and V.
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Remark B.4. Here we identify one forms with vectors using

a dx1 þ b dx2 þ c dx3 1 ða; b; cÞ:

Proof. Assume

o ¼ a dx15dx2 þ b dx15dx3 þ c dx25dx3:ðB:1Þ

Without loss of generality b3 0. Then, we may write:

o ¼ dx1 þ c

b
dx2

� �
5ða dx2 þ b dx3Þ:ðB:2Þ

So o ¼ X5Y . Now let X , Z, W be an orthogonal basis all of length jX j. Then

Y ¼ a1X þ a2Z þ a3W :

This implies

o ¼ X5ða1X þ a2Z þ a3WÞðB:3Þ

¼ X5ða2Z þ a3WÞ

as required ðV ¼ a2Z þ a3WÞ. r

Hence we may write the y occurring above as

y ¼ X5V :

Hence

Riemðx; tÞ ¼ cX5V nX5V ;

with

fX ;V ;Zg

an orthonormal basis for R3.

The set fX5V ;X5Z;V5Zg then forms an orthonormal basis and the curvature
operator R can be written with respect to this basis as

c 0 0

0 0 0

0 0 0

0B@
1CA:

Hence the manifold splits (if the solution is complete with bounded curvature and non-
negative curvature operator) in view of the arguments in [10], Chapter 9.
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C. Estimates on the distance function for Riemannian manifolds evolving by Ricci flow

For completeness, we prove some results which are implied or proved in [12] and
stated in [3] as editor’s note 24 from the same paper in that book. The lemma we wish to
prove is

Lemma C.1. Let
�
M n; gðtÞ

�
t A ½0;TÞ be a solution to Ricci flow with

Ricci
�
gðtÞ

�
f�c0;��Riem

�
gðtÞ

���te c0;

diamðM; g0Þe d0:

ðC:1Þ

Then

dðp; q; 0Þ � c1ðt; d0; c0; nÞf dðp; q; tÞf dðp; q; 0Þ � c1ðn; c0Þ
ffiffi
t

p
ðC:2Þ

for all t A ½0;TÞ, where

c1ðt; d0; c0; nÞ ! 0

as t ! 0:

Proof. The first inequality

dðp; q; tÞf dðp; q; 0Þ � c1ðn; c0Þ
ffiffi
t

p

is proved in [12], Theorem 17.2 after making a slight modification of the proof. If we exam-
ine the proof there (as pointed out in [3] as editor’s note 24 of the same book), we see that
in fact that what is proved is:

dðP;Q; tÞf dðP;Q; 0Þ � C
Ðt
0

ffiffiffiffiffiffiffiffiffiffiffi
MðtÞ

p
where

ffiffiffiffiffiffiffiffiffiffiffi
MðtÞ

p
is any integrable function which satisfies

sup
M

jRiemð�; tÞjeMðtÞ:

In particular, in our case we may set

MðtÞ ¼ c

t

which then implies the first inequality. The second inequality is also a simple consequence
of results obtained in [12]. Lemma 17.3 tells us that

q

qt
dðP;Q; tÞe� inf

g AG

Ð
g

RicciðT ;TÞ ds
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where the inf is taken over the compact set G of all geodesics from P to Q realising the
distance as a minimal length, T is the unit vector field tangent to g. Then in our case
Riccif�c0 implies

q

qt
dðP;Q; tÞe c0dðP;Q; tÞ:

This implies that

dðP;Q; tÞe expc0t dðP;Q; 0Þ;

and as a consequence

diam
�
M; gðtÞ

�
e d0 expct:

Hence

dðP;Q; tÞe expc0t dðP;Q; 0Þ ¼ dðP;Q; 0Þ þ ðexpc0t � 1ÞdðP;Q; 0ÞðC:3Þ

e dðP;Q; 0Þ þ ðexpc0t � 1Þ d0 expct;

which implies the result. r

D. Notation

Rþ is the set of positive real numbers.

Rþ
0 is the set of non-negative real numbers.

For a Riemannian manifold ðM; gÞ,
�
M; dðgÞ

�
is the metric space induced by g. For a

tensor T on M, we write gjT j2 to represent the norm of T with respect to the metric g on

M. For example if T is a
0

2

� �
tensor, then

gjT j2 ¼ gijgklTikTjl .

h‘T refers to the covariant derivative with respect to h of T .

hRiem or RiemðhÞ refers to the Riemannian curvature tensor with respect to h on M.

hRicci or RicciðhÞ or hRij refers to the Ricci curvature of h on M.

hR or RðhÞ refers to the scalar curvature of h on M.

secðpÞðv;wÞ is the sectional curvature of the plane spanned by the linearly indepen-
dent vectors v, w at p.

secf k means that the sectional curvature of every plane at every point is bounded
from below by k.

R denotes the curvature operator.
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Rf c means that the eigenvalues of the curvature operator are bigger than or equal
to c at every point on the manifold.

GðhÞk
ij or hGk

ij refer to the Christo¤el symbols of the metric h in the coordinates fxkg;

hGk
ij ¼

1

2
hkl qhil

qx j
þ qhjl

qxi
� qhij

qxl

� �
:

For a di¤eomorphism F : M ! N we will sometimes consider dF , a 1-form along F ,
defined by

dFðxÞ :¼ qF a

qxk
dxkðxÞ q

qya

����
ðFðxÞÞ

:

For a general 1-form o along F , o ¼ oa
i ðxÞ dxiðxÞn q

qya

����
ðFðxÞÞ

, we define the norm

of o with respect to l (a metric on M) and g (a metric on N) by

l; gjoj2ðxÞ ¼ l ijðxÞgab
�
FðxÞ

�
oa

i ðxÞo
b
j ðxÞ:

For example,

l; gjdF j2ðxÞ ¼ l ijðxÞgab
�
FðxÞ

� qF a

qxi
ðxÞ qF b

qx j
ðxÞ:

We define g;h‘ dF , a
0

2

� �
tensor along F , by

ðg;h‘ dFÞaij :¼
q2F a

qxiqx j
� Gk

ij ðgÞ
qF a

qxk
þ Ga

bsðhÞ
qF b

qxi

qF s

qx j

 !
:

For a general
0

2

� �
tensor c along F , c ¼ ca

ijðxÞ dxiðxÞn dx jðxÞn q

qya

����
ðFðxÞÞ

, we

define the norm of c with respect to l (a metric on M) and g (a metric on N) by

l; gjcj2 ¼ gab
�
FðxÞ

�
l ksðxÞl ijðxÞha

ikðxÞh
b
jsðxÞ:

For example

l; gjg;h‘ dF j2 ¼ gab
�
FðxÞ

�
l ksðxÞl ijðxÞ q2F a

qxiqxk
� Gr

ikðgÞ
qF a

qxr
þ Ga

hsðhÞ
qF h

qxi

qF s

qxk

 !

� q2F b

qx jqxs
� Gr

jsðgÞ
qF b

qxr
þ G

b
frðhÞ

qF f

qx j

qF r

qxs

 !
:
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