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Ricci flow of almost non-negatively
curved three manifolds

By Miles Simon at Freiburg

Abstract. In this paper we study the evolution of almost non-negatively curved (pos-
sibly singular) three dimensional metric spaces by Ricci flow. The non-negatively curved
metric spaces which we consider arise as limits of smooth Riemannian manifolds (M;, 'g),
i € N, whose Ricci curvature is bigger than —1/7, and whose diameter is less than d; (inde-
pendent of 7) and whose volume is bigger than vy > 0 (independent of 7). We show for such
spaces, that a solution to Ricci flow exists for a short time 7 € (0, T'), that the solution is
smooth for 7> 0, and has Ricci(g(¢)) = 0 and Riem(g()) < ¢/t for t € (0,T) (for some
constant ¢ = ¢(vg, dy,n)). This allows us to classify the topological type and the differential
structure of the limit manifold (in view of the theorem of Hamilton [10] on closed three
manifolds with non-negative Ricci curvature).

1. Introduction and statement of results
In the papers [9] and [10], R. Hamilton showed using the Ricci flow that

Theorem A ([10], Theorem 1.2). If M", n = 3(4) is a closed n-dimensional Riemann-
ian manifold with non-negative Ricci curvature (non-negative curvature operator) then M* is
diffeomorphic to a quotient of S*, S* x R, or R* by a group of fixed point free isometries
acting properly discontinuously (M* is diffeomorphic to a quotient of one of the spaces S*,
CP?%, 82 x S2, 8% x R!, 82 x R? or R* by a group of fixed point free isometries acting prop-
erly discontinuously) in the standard metric.

It is interesting to note that in order to apply the theorem for n = 3 we only require
information on the Ricci curvatures (not the sectional curvatures). The theorem implies
that only certain three manifolds admit Riemannian metrics with non-negative Ricci curva-
ture. This is not the case for negative Ricci curvature, as proved by Lohkamp in [16]: he
proved that every closed manifold of dimension # = 3 admits a Riemannian metric of neg-
ative Ricci curvature.

We say that a smooth family of metrics (M , g(t)) re0.7) is a solution to the Ricci flow
with initial value go, or is a Ricci flow of gy if '
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. %g(z) = —2Ricci(g(r)), Viel0,T),

9(0) = go.

In three (and four) dimensions, there are similar results to Theorem A requiring less regu-
larity of the starting metric (see Theorem B below).

Definition 1.1. Let M" be closed, g a Lipschitz Riemannian metric on M. We say
that Ricci(g) = k (#(g) = k) if there exists smooth (‘g), . with

i—oo

(@) 1'g — glcogary — O,

(b) sup IT("g) = T(7g)| coar) < o0 and
i,je
C 1 ; 1
(¢) Ricci('g) 2k -~ (%('g9) 2k —-).

i i
Here Z refers to the curvature operator.

Theorem B ([21], Theorem 1.3). Let n = 3(4). The classification of Theorem A re-
mains true if we allow Lipschitz metrics with non-negative Ricci curvature (non-negative cur-
vature operator) in the sense of Definition 1.1.

In this paper we will define a Ricci flow for a larger class of almost non-
negatively Ricci curved (possibly singular) three dimensional metric spaces (M,d).
The spaces we are interested in arise as Gromov-Hausdorff limits of sequences

1
(M;,g:) € /%(n,do,vo, —?), i € N where

Definition 1.2. For ne N, dy e R*, and k € R let .#(n,dy, k) denote the space of
smooth n-dimensional Riemannian manifolds of dimension n with diameter bounded above
by dy and Ricci curvature not less than k. For vy e R™, .#(n,dy, vy, k) is the set of
(M,g) € A (n,dy, k) which satisfy vol(M, g) = vy.

It is well known that the space .#(n,dy, k) is precompact in the Gromov-Hausdorff
space. That is, given a sequence of smooth n-dimensional Riemannian manifolds

(M‘na gi)ieN € ﬂ(l’l, d(),k),

1

there exists a metric space (X,d,) and a subsequence of (M, g;) (which we also call
(M}", g;) for ease of reading) such that (M, d(g;)) % (X,d,,), in the Gromov-Hausdorff
sense, where here d(g) denotes the distance function (metric) d(g) : M x M — R}, arising
from the Riemannian metric g (see Appendix A). The Gromov-Hausdorff (space) distance
between two metric spaces is defined in Appendix A. It is a very weak measure of how close

two metric spaces are to being isometric to one another.

Definition 1.3. For neN, dyeR", and keR, .#(n,dy,k) is the closure of
M (n,dy, k) with respect to the GH limit.
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It is possible that the limit space (X, d.) does not enjoy the regularity properties of
the spaces occurring in the converging sequence, as one sees in the following example.

Example 1.4. Let (S”,g;),.n be a sequence of spheres with Riemannian metrics,
where the metrics are chosen so that

e the sectional curvature is non-negative,

¢ the manifolds are becoming cone like in a fixed compact region (topologically a
closed disc) as i — oo, and stay smooth away from this region (see the remark below),

e the diameter is bounded above by 0 < dy < oo and the volume bounded below by
vy > 0 where dj, vy are constants independent of i € N.

Then (S",d(g;)) converges in the Gromov-Hausdorff space to (S”,d), where d is a (non-
standard) metric on the sphere, and there exists a Riemannian metric g which is smooth
away from the tip, induces d, but cannot be extended in a C° way to the tip. It is not pos-
sible to find a C° Riemannian metric ¢ which induces d.

Remark 1.5. The induced Riemannian metric on the cone
C" = {(x, U | xR} (2> 0)

is C* everywhere away from the tip (6, 0) of the cone, but cannot be extended continuously
to this tip for n = 2.

In [12], [27] and [28] the authors introduce other notions of “spaces with Ricci curva-
ture bounded below”. In those papers, the spaces that one considers are metric spaces
(X,d) together with a measure m. One can measure the distance between two probability
measures 4, v using the L2 Wasserstein-distance function djyy:

1

dutur) =i ([ Px)datr) )

MxM

where the infimum is taken over all couplings g of y and v. A coupling of ¢ and v is a prob-
ability measure on M x M whose marginals (i.e. image measures under the projections) are
the given measure # and v. Let P,(M) be the space of probability measures on M equipped
with the distance djy. The curvature bound from below is then defined using convexity
properties of entropy functionals. For example, one definition in Sturm [27] is as follows:
define the entropy

dv dv
Ent = | — log| — | dm.
nt(v|m) ]J[dm og(dm) m
Then we say (X, d,m) has Ricci curvature bounded from below by K in the weak sense if for
any pair vy, v; € P,(M) with non-infinite entropy, there exists a geodesic I" : [0, 1] — P»(M)
connecting vy and v; such that

Ent(I(¢) |m) < (1 — ¢) Ent(T(0) | m) + ¢ Ent(I(1) | m) —gt(l — 1) dj, (T(0),T(1)),
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for all 7€0,1] (see [27] for more details). A similar definition may be found in [17],
Definition 0.7. Both of these definitions have the advantage of allowing very general
spaces (not necessarily smooth Riemannian manifolds). A further advantage is that this
condition is closed under Gromov-Hausdorff convergence (defined in Apendix A): if
(Xi,di,m;) — (X,d,m) as i — oo, and the (X;,d;,m;) all have Ricci curvature bounded
from below by K in the weak sense, then (X,d,m) has Ricci curvature bounded from
below by K in the weak sense. This is not true in the smooth case, as the example above
illustrates (the Ricci curvature is not defined on the tip of the cone in the above example).
Furthermore, if (X,g) is a smooth Riemannian manifold, %d is the metric induced by ¢,
and V is the volume form induced by g, then: (X, 9d, V) has curvature bounded from
below in the weak sense if and only if (X, g) has Ricci curvature bounded from below in
the smooth sense.

In this paper we show that it is possible to evolve spaces (X,d) € .4 (n,dy, vo, k) by
Ricci flow. In order to do this, we prove a number of estimates on the rate at which geo-
metrical quantities change under the Ricci flow. Many of these estimates are obtained using
the parabolic maximum principle in a smooth setting on a smooth manifold (for example,
estimate (1.6) is obtained by examining the evolution equation of the Ricci curvature). For
this reason, the setting of [17], [27] and [28] is not immediately appropriate for this paper.
In particular, the underlying spaces in that setting are not necessarily manifolds (see [18] for
results on Ricci flow in the setting of [17], [27] and [28]).

We prove Theorem 7.2.

Theorem 1.6. Let (M;, go) be a sequence of closed three (or two) manifolds satisfying
diam(M;, 'g) < d,
Ricci('go)  (sec(’go)) Z —2(i)'gy,
vol(M;, 'go) = vy > 0,

where &(i) — 0, as i — c0. Then there exists an S = S(vy,dy) > 0 and K = K(vo,dy) such

that the maximal solutions (M,-, ig(l)) o,y 10 Ricci-flow satisfy T; = S, and

sup|Riem(‘g(1))| < E,
M; t

Sor all t € (0,S). In particular the Hamilton limit solution

(M7g([))te(0.,S) = lim (M, ig(t))tew,S)

11— 00

(see [13]) exists (after taking a subsequence). It satisfies the estimates

(1.2) sjl‘llp|Riem(g(t))| < ?,
(1.3) Ricci(g(r)) 20 (sec(g(z)) 2 0),

for all t € (0,S) and (M,g(z)) is closed. Hence, if M = M3, then M? is diffeomorphic to a
quotient of one of S>, S? x R or R® by group of fixed point free isometries acting properly
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discontinuously. Furthermore
(1.4) dan((M,d(g(1))), (X, dx)) — 0

as t — 0 where (X, d,) = lim (M;,d('go)) (the Gromov-Hausdorff limit).

As a corollary we obtain the following classification theorem.

Corollary 1.7. For all 0 < vy < 00, 0 < dy < oo there exists an ¢ = &(vo, dy) > 0 such
that if (M3, g) is closed and (M, g) € .4 (3,dy, vy, —¢) then M is diffeomorphic to a quotient
of S3, 82 x R or R® by a group of fixed-point free isometries acting properly discontinuously.

Proof. Assume the corollary is not true. Then there exists a sequence
(M, "g0) € 4 (3,do, vo, —¢(i)), ie N, with &(i) — 0 as i — 0 such that each of the M; is not
diffeomorphic to any of the manifolds listed in the theorem. But then we may apply Theorem
1.6 to obtain that a subsequence of (M,», ig(t)) re(0.5) converges in the sense of Hamilton to
a solution (M, g(1)),_ (0.s)- This implies in particular that M; is diffeomorphic to M for i big
enough. This is a contradiction. []

A scale invariant form of this corollary is:

Corollary 1.8. Let dy be given. There exist 0 < & = e(dy) < oo such that if (M3, g)
satisfies

.y 2
Ricci - vols = —eéy,

(1.5)

diam® < do3 -vol

then M is diffeomorphic to a quotient of S3, S? x R or R* by a group of fixed-point free iso-
metries acting properly discontinuously.

In [29], [22], [23] and [8], Fukaya, Shioya and Yamaguchi obtained similar results
(and more) for three manifolds with almost non-negative sectional curvature. For example,
in [8] Fukaya and Yamaguchi proved:

Theorem C ([8], Corollary 0.13).  There exists an ¢ > 0 such that if (M?,g) is a Rie-
mannian manifold whose diameter is not larger than 1, and has sec = —¢, then a finite cover-
ing of M is either

e homotopic to an S* or

o diffeomorphic to one of
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Hence, using that the Poincaré Conjecture is correct (see Perelman’s papers [19], [20])
(that is, a homotopy S* is homeomorphic to S?), we have a good topological classification
of 3-manifolds with sec - diam? > —¢ and ¢ small enough.

Notice that Theorem C does not require a bound from below on the volume.

Definition 1.9. If

i—o0

vol(M;,g;) — 0

for a sequence of smooth Riemannian manifolds (M;, g;) then we say that the sequence is a
collapsing sequence, or that the sequence collapses. If there exists a vy > 0 such that

vol(M;,g;) = vy, VieN,

then we say that the sequence is a non-collapsing sequence, or that the sequence does not
collapse.

The papers [29], [22], [23] and [8] use results and methods from the theory of
convergence/collapse of Riemannian manifolds, and the theory of Alexandrov spaces (not
Ricci flow).

In order to show that the Ricci-curvature of our solution is non-negative for all £ > 0
(Equation (7.1)), we use the following lemma (Lemma 5.2 of this paper), which may be of

independent interest.

Lemma 1.10. Let gy be a smooth metric on a 3-dimensional manifold M?> which sat-

isfies
Ricci(go) = —%090
(1.6) .
(seclgo) = ~2g0)
for some 0 <eg < 1/100, and let (M,g(-, l))te[O. 7) be a solution to Ricci flow with
9(0) = go(-). Then
Ricci(g(1)) = —eo(1 + kt)g (1) — eo(1 + k1)1R (g(1)) g(2), Viel0,T)n [0, T

(sec(g(1)) = —&o G + kt) g(t) —eo (% + kt) R(g(0)g(r), Vtel0,T)n[0,T"))

where k = 100 and T' = T'(100) > 0 is a universal constant.

2. Methods and structure of this paper

In this paper we will chiefly be concerned with metric spaces (X,d.,) which
arise as Gromov-Hausdorff limits of non-collapsing sequences of Riemannian manifolds
(M?,g;) € M;(3,dy,vo — &(i)) where &(i) — 0 as i — co. In particular, we wish to flow
such metric spaces (X, d.,) by Ricci flow. As we saw in the previous section (see Example
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1.4) such limits can be quite irregular (it is possible that the limit manifold is a non-C° Rie-
mannian manifold). Nevertheless, they will be Alexandrov spaces and so do carry some
structure (see Appendix A). In order to flow (X, d..) we will flow each of the (M}, g;) and
then take a Hamilton limit of the solutions (see [13]). The two main obstacles to this proce-
dure are:

e It is possible that the solutions (M;,g;(f)) are defined only for 7€ [0, T;) where
T, — 0asi— oo.

e In order to take this limit, we require that each of the solutions satisfy uniform
bounds of the form

sEp}Riem(gi(z)ﬂ <c(t), Vte(0,T),

for some well defined common time interval (0,7") (c¢(¢#) — oo as t — 0 would not be a
problem here). Furthermore they should all satisfy a uniform lower bound on the injectivity
radius of the form

inj(M,g,-(to)) = G'(Zo) >0

for some 7y € (0, T).

As a first step to solving these two problems, in Lemma 3.4 of Section 3 we see that a
(three dimensional) smooth solution to the Ricci flow (M, g(7)) i [0,y Cannot become sin-
gular at time 7 as long as Ricci = —1, the diameter remains bounded (by say d) and the
volume stays bounded away from zero (say it is bigger than vy). Furthermore, a bound of

the form

}Riem(g(l))‘ 7c0(d0, )

lIA

, Vte[0,T)n]0,1]

for such solutions is proved: that is, the curvature of such solutions is quickly smoothed out.
In Theorem 4.1 we present an application of the proof of 4.1. Notice that [19], Pro-
position 11.4, for the three dimensional case implies Lemma 4.1. Perelman’s method of

proof is somewhat different from that used in Lemma 4.1.

Section 5 is concerned with proving (for an arbitrary three dimensional solution to the
Ricci flow) lower bounds for the Ricci curvature of the evolving metric, which depend on

e the bound from below for the Ricci curvature of the initial metric,
e the scalar curvature of the evolving metric.
One of the major applications is (see Lemma 1.10): if (M, go) satisfies Ricci(go) = —¢o (o
small enough) and the solution satisfies R (g(7)) < 6‘70 for all £ € (0, T) then
Ricci(g(1)) = —2cogo, Vi€ (0,T.) N (0,7)

for some universal constant 7, = T, > 0.
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In Section 6, we consider smooth solutions to the Ricci flow which satisfy

(2.1) Ricci(g(1)) = —co,
(2.2) |Riem(g(1))|7 < co,
(23) diam(M, go) é do.

In Lemma 6.1, well known bounds on the evolving distance for a solution to the Ricci flow
are proved for such solutions.

We combine this lemma with some results on Gromov-Hausdorff convergence and a
theorem of Cheeger-Colding (from the paper [4]) to show (Corollary 6.2) that such solu-
tions can only lose volume at a controlled rate.

In Section 7 we show (using the a priori estimates from the previous sections) that a
solution to the Ricci flow of (X, d,) exists, where (X, d,,) is the Gromov-Hausdorff limit
as i — oo of (M;,d(g;)) where the (M, g;) satisfy

Ricci(g;)

v

_8(i)7
Vo,

dy.

1\

vol(M;, g;)
diam(M;, go)

[IA

More explicitly we prove Theorem 1.6.

The theorem which is essential in constructing such a solution is (Theorem 7.1 of this
paper):

Theorem 2.1. Let M be a closed three (or two) manifold satisfying

diam(M, go) < do,

(2.4) Ricci(go) (sec(go)) = —ego,
vol(M, go) = vo > 0,

1
where ¢ < 1o and ¢ = ¢(vy,do) = 1 is the constant from Lemma 3.4. Then there exists an
c

S = S(do,v0) >0 and K = K(dy,voy) such that the maximal solution (M,g(t))
Ricci-flow satisfies T = S, and

refo,1) 10

. K
sup|Riem(g(1))| < >
M

forall t € (0, S).

Appendix A contains definitions, results and facts about Gromov-Hausdorff space,
which we require in this paper.
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In Appendix B we define C-essential points, and J-like necks, and consider discuss
0-like necks in the three dimensional case.

A proof of the (well known) Lemma 6.1 is contained in Appendix C.

Appendix D is a description of the notation used in this paper.

3. Bounding the blow up time from below using bounds on the geometry
An important property of the Ricci flow is that:

If certain geometrical quantities are controlled (bounded) on a half open finite time
interval [0, 7'), then the solution does not become singular as ¢t /* T and may be extended
to a solution defined on the time interval [0, 7 + ¢) for some ¢ > 0. We are interested in the
question:

Problem 3.1. What elements of the geometry need to be controlled, in order to guar-
antee that a solution does not become singular?

In [9], it was shown that for (M, go) a closed smooth Riemannian manifold, the Ricci
flow equation

a1 A —2Ricci(g),

g(ao) = 4o,

always has a solution (M,g(1)) re0.7) for a short time. It was also shown that two
such solutions defined on the same time interval must agree, if there initial values agree.
Furthermore, for each smooth, closed (M,go) there exists a maximal time interval
[0, Tmax) (Tmax > 0) for which, there exists a solution (M,g(t))te[o Ta) 1O (3.1), and if
Tmax < o0 then there is no solution (M, g(t))te[O‘TM L 1o (3.1) (for any ¢ > 0). Such a so-
lution (M, g(t)) 1[0, Tn) is called a maximal solution.
Definition 3.2 (Maximal solutions). Let (M, g(7))

) be a solution to Ricci flow.
We say that the solution blows up at time 7" if

tel0, T
(3.2) sup |Riem| = o0.
Mx[0,T)

It was also shown in [9] that

Lemma 3.3. Let (M,q(t))
g9(0) =go and T < oo, with

re0.T) be a closed, smooth solution to Ricci flow, with

(3.3) sup |Riem| < co.
Mx[0,T)

Then, for some ¢ > 0, there exists a solution (M, g(t))ze[o. Tte) with g(0) = go.
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So we see that a bound on the supremum of the Riemannian curvature (that is, con-
trol of this geometrical quantity) on a finite time interval [0, 7') guarantees that this solution
does not become singular as ¢t /* T. In the following lemma, we present other bounds on

geometrical quantities which guarantee that a solution to the Ricci flow does not become
singular as ¢ /' T.

Lemma 3.4. Let (M3,g(t))te[0 mp T=1 be an arbitrary smooth solution to Ricci
flow (M? closed) satisfying 7

Ricci(g) = —1,
(3.4) vol(M,g) = vy > 0,

diam(g) < dy < o©
forall t € [0,T). Then there exists a ¢ = ¢(dy, vo), such that
R(g(t)t<c
forall t € [0,T). In particular, (M?, g(t))le[o, r) s not maximal.

Corollary 3.5. Let (M 3, g(l)) re0,7) be an arbitrary smooth solution to Ricci flow sat-
isfying 7

Ricci(g) = —1,
(3.5) vol(M,g) = vy > 0,

diam(g) < dyp <

forall t € [0,T). Then there exists a ¢ = ¢(do,v), such that

R(g(1)) < cmax(%, 1)

forall t € [0,T). In particular, (M?, g(t))m[o, r) is not maximal.
The proof of the corollary is a trivial iteration argument.

Proof. Fix ty € [0,T). We wish to show that

0

R(g(t)) < cmax(li, 1).

If 7o < 1/2 then we apply Lemma 3.4. If (N +1)/2 >t = N/2 (N € N) then we apply

. N -1 L .
Lemma 3.4 to the solution | M ,g<( 5 )—f— t> of Ricci flow (notice that

N -1 o 1
( 3 )—l—t:tolmphesthatl>z§1/2). O relp1)

We now prove Lemma 3.4.
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Proof. Assume to the contrary that there exist solutions (M;, ‘g(7)) ey TiS1to
Ricci flow such that 7

56 wp R
(x, 1) e M;x(0,T)

or there exists some j € N with

(3.7) sup TR(x, 1)t = o0,
(x,1) € M;x(0,T))
where ‘R :=R(‘g). It is then possible to choose points (p;, ;) € M; x [0,T;) (or in
M; x [0, T;): in this case we redefine M; = M; and T; = T; for all i e N and hence we do
not need to treat this case separately) such that

(3.8) R(pnt)ti=  sup  'R(x,0)t =5 o0,
(x,1) e M;x(0,1]
Define
ise 7 i ‘
(3.9) g(- 1) =¢ g(" fi +?)’
i

~

where ¢; := 'R(p;, t;). This solution to Ricci flow is defined for 0 < 7, + — < T;, that is,
C.

at least for 0 =7 > —t;c;. Let A;:= t;c;, Then the solution ‘G(z) is defined at least
for 7€ (—A4;,0). By the choice of (p;,#;) we see that the solution is defined for
1

i>—A;=—tic; = —1;/R(p;, 1;) —5 —c0. Since 1; < T; < 1, we also have
(310) Cj :E) o0,

in view of the fact that

i— 00

tici = l,‘iR(p,', [l') — 0.

. A, t A
Furthermore, letting s(%,i) := #; +—, where —4; <7 < 0 we have

(3.11) R(-,%) = l"R(.,s(t, i)

Ci

iR('vs)
R(pi, t:)

_ R(-,8)s ¢
~R(pi, i)t s

lIA

(3.12) — 7y
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in view of the definition of (p;,#;), and 0 < s < ¢; (follows from the definition of s and the
fact that 7 £ 0), and (3.10). Due to the conditions (3.4) we see that there exist [ = [(vy, d, n),
and & = ¢(vo, d, n), such that

vol(B,(p), 'g(t))
;,-3

(3.13) [ = >¢,  Vr<diam(M;, 'g(1)),

(in view of the Bishop-Gromov comparison principle) which implies the same result for any
rescaling of the manifolds. Notice that the conditions (3.4) imply that

(3.14) diam (M, 'g(t)) = di(n,vo) > 0
for some oo > d(n,v9) > 0. Otherwise, assume diam(M,‘g(t)) <d; for some small
di, then vol(M,'g(t)) < c¢(n) diw, (Bishop-Gromov comparison principle), and hence
vol(M,’g(t)) <wo if di is too small, which would be a contradiction. Hence,

1— o0

diam (M, ’G(0)) — oo, in view of the inequalities (3.14) and (3.10). Now using

(3.15) 2 YUER). 9(0)

> &, Vr<diam(M;, '§(7)),

we obtain a bound on the injectivity radius from below, in view of the theorem of Cheeger-
Gromov-Taylor, [5] (the theorem of Cheeger-Gromov-Taylor says that for a complete Rie-
mannian manifold (M, g) with [Riem| < 1, we have

vol(g, B,(x))
vol(g, B:(x)) + w,exp”~!’

inj(x,g) = r

for all r < n/4). In particular, using that diam(M,g) = d; > 0 and |Riem| < ¢ (see [i]
below) for the Riemannian manifolds in question, we obtain

Sn+1

(3.16) inj(x,g9) = ¢ > ¢*(dy, vo,n) >0

Is" + w, exp"!
for s = min((w, exp"‘l)%, diam(M, g),7/4).

This allows us to take a pointed Hamilton limit (see [13]), which leads to a Ricci flow
solution (Q,o,g(l)te(_wﬁw)), with R < R(0,0) =1, and Ricci 20, o > 0 (at t = 0, as ex-
plained below, the full Riemannian curvature tensor of 'g(0) is bounded by ¢(3) and so
clearly each solution lives at least to a time @ > 0 independent of 7). More precisely:

¢ [i] The bound from below on the Ricci curvature, and the bound from above on the
scalar curvature imply that the Ricci curvatures are bounded absolutely by the constant 5
for i big enough. In three dimensions, bounds from above and below on the Ricci curva-
tures imply bounds from above and below on the sectional curvatures and hence on the
norm of the full Riemannian curvature tensor. This, together with the bound from below
on the injectivity radius, allows us to a take a Hamilton limit of these Ricci flows.

e [ii] In fact the limit solution satisfies sec = 0, which can be seen as follows: Each
rescaled solution ‘g is defined on M; x [—A4;, w| where A4; 2% 0. They also each satisfy
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sec = —2 and |Riem| < ¢(n) for all # € (—S,0) for any fixed S and all i big enough, in view
of (3.12) and Ricci = —1.

Let us translate in time by S, so that these solutions are defined on M; x [—4; + S, S|
and satisfy sec = —2 and |Riem| < ¢(n) on (0, .S) (for i big enough). Without loss of gener-
ality, we assume that sec = —1. We then use the improved pinching result of Hamilton [14]
(see also [15]):

Theorem 3.6. Let g(t) be a solution to Ricci flow defined on M x [0, T), M closed.
Assume at t = 0 that the eigenvalues o = = y of the curvature operator at each point are
bounded below by y = —1. The scalar curvature is their sum R = o+ f+y, and X := —y.
Then at all points and all times we have the pinching estimate

R = X[log X + log(1 + ¢) — 3],
whenever X > 0.

Notice that this estimate is also valid for the translated limit solution (defined on
[0,S)) as it is valid for each i and the scalar curvature and X converge as i — oo to the
corresponding quantities of the translated (by S) limit solution.

. : S
Let 0 > 0 be any arbitrary small constant. Assume there exists (x,7) € Q X [E’S)
such that X (x,7) = J. Then we get

(3.17) log(d) <log X (x,?) < w —log(l1+1¢)+3
c(n) S
T—log(l +§> +3

which is a contradiction for S big enough. Hence our initial limit solution (without any
translations in time) has X'(x,0) < J. As ¢ was arbitrary we get X(-,0) < 0. A similar argu-
ment shows X < 0 everywhere. That is, the limit space satisfies sec = 0, Vz € (—0,0).

lIA

The volume ratio estimates

vol(B.(p))
3

(3.18) [ = =&y, Vr>0,

are also valid for (Q,¢), as these estimates are scale invariant, and diam(Q,g) = c0. At
this point we could apply [19], Proposition 11.4, to obtain a contradiction. We prefer
however to introduce an alternative method to Perelman in order to obtain a contradic-
tion (this method may be of independent interest). We now consider the following two
cases.

(Case 1) sup |[t|R = c0.
Qx(—00,0]

(Case 2) sup |[tf|R < o0.
Qx(—00,0]
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(Case 1) In the first case, in view of [7], Chapter 8, Section 6, we may assume w.l.0.g.
that there exists a solution (Q,0,9(#),c(_, ), With

(3.19) sup  [R(1)] = 1=[R(0,0)].

Qx(—00,0)

Note: we must slightly modify the argument there, by replacing Riem with R wherever it
appears. We also use the fact (as mentioned above) that |Riem| < ¢(3)R in the case that
Ricci = 0 (in dimension three) and that our scale invariant volume estimate (3.18) remains
true for any rescalings of our solution: these two facts ensure that in the rescaling process of
the argument in [3], Chapter 8, Section 6, an injectivity radius estimate is satisfied, and that
the limit solution is well defined.

(Case 1.1) The sectional curvature is everywhere positive.

(Case 1.2) There exists (po, ty) € Q x (—00, 00), and v,,, Wy, € Tp,Q with

sec(po, 10)(Upy, Wp,) = 0.
First we consider (Case 1.1).

(Case 1.1) This means Q is diffeomorphic to R* in view of the soul theorem (see [6],
Chapter 8) and in particular, Q is simply connected. We may then apply the gradient sol-
iton theorem of Hamilton [11] which implies, in view of (3.19), that (Q,g(z)) e (=00, 00) is
a gradient soliton. We may then, using the dimension reduction theorem of Hamilton,
[12], Theorem 22.3, take a Hamilton limit of rescalings of this solution, to obtain a new
solution, (R x N, dx* @ (1)) re(—on o0y OF @ quotient thereof by a group of fixed-point
free isometries acting properly discontinuously, where dx? is the standard metric on R,
and (N,y(l))te(fOC ) is a solution to the Ricci flow, N is a surface, and R(-,7) > 0, on
N. In the case that we have a quotient of (Rx N,dx*@® p(r)) then we notice that
(R x N,dx* @ p(1)) still satisfies (3.18) (the bound from below follows as the Riemannian
covering map £ : (R x N,dx* @ y(1)) — (Q,¢(7)) is a Riemannian submersion, and the
bound from above follows in view of the Bishop-Gromov comparison principle) and so,
without loss of generality, we may assume that we do not have a quotient. If N is compact,
then (R x N,dx*> @ y), does not satisfy the estimates (3.18), and so we obtain a contradic-
tion. So w.l.o.g. we may assume that N is non-compact. Now we break this up into two
cases:

(Case 1.1.1)  sup |4 |R(?)| = o, and

Nx(—o0,00)

(Case 1.1.2)  sup |f||R(?)| < o0.

Nx(—o0,0)
First we handle

(Case 1.1.1) Once again, w.l.o.g. ([7], Chap. 8, Sec. 6), we may assume

sup R =1=R(0,0).

Nx(—o0,00)
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R(?) > 0, and N non-compact implies N is diffeomorphic to R?, which is simply connected.
We may then use the gradient soliton theorem of Hamilton, [11], to obtain that (N,y) is a
gradient soliton, which implies ([12], Thm. 26.3), that (N,y) is the cigar (X,cig). But
(R x Z,dx> @ cig) do not satisfy the estimates (3.18), and so we obtain a contradiction.

(Case 1.1.2)  sup |7/|R(?)| < co. Hamilton, [12], Thm. 26.1, implies that
NXx(—o00,00
(N,7) = (S? or R?,y) /( T, Wt)lere y is the standard solution on S? or R?, and T is a finite
group of isometries acting without fixed points on the standard S? or standard R2. (R, y)
cannot occur, since the surface should satisfy R(z) > 0 everywhere (the standard (R?,y) is
flat). But then N is compact, and (R x N,dx?> @ y), does not satisfy the estimates (3.18),
and once again we obtain a contradiction.

(Case 1.2) There exists (po, ty) € Q x (—00, 00), and v,,, wp, € Tp,Q with

sec(po, 10)(Upy, Wp,) = 0.

Then the maximum principle applied to the evolution equation of the curvature operator,
implies that (Q, o, g(t))te(ﬂo_oo) =(RxN,dx*® y(t))le<7@7oo), or a quotient thereof by a
group of isometries (see [10], Chapter 9) and  sup R(z) <1 = R(0,0). Without loss
Nx(—o0,0
of generality, we may assume that we don’t have< a qu)otient, as explained in (Case 1.1).
R(?) > 0, implies N is diffeomorphic to S*/T" or R?. In the case that N is diffeomorphic
to S?/T", we obtain a contradiction, as then (€, g) does not satisfy (3.18). So w.l.o.g. N is
diffeomorphic to R?, in particular N is simply connected. We may use the gradient soliton
theorem of Hamilton [11], to get that (N, y) is a soliton and it must be the cigar, in view of
Theorem 26.3 of Hamilton [12]. This leads to a contradiction as then (Q, g) does not satisfy

(3.18) (similarly for the covering case).

(Case 2) B:= sup |[tf||Riem(?)|] < 0.
Qx(—00,0]

(Case 2.1) The asymptotic scalar curvature ratio 4 = limsup Rs? = co. Remember

§— 00

that the asymptotic scalar curvature ratio is a constant in time for ancient solutions which
have bounded curvature at each time and non-negative curvature operator. A4 is also inde-
pendent of which origin we choose: see [12], Theorem 19.1. Then we use the dimension-
reduction argument of Hamilton (see [12], Lemma 22.2 and the argument directly after
the proof of Lemma 22.2) to obtain a new solution (N x R,y @ dx?) or a quotient
thereof by a group of isometries where (N,y) is a solution to Ricci flow defined on
(—o0, T) (T > 0) (note, our injectivity radius estimate is still valid in view of the volume
ratio estimate (3.18) which survives into every limit). If NV is compact then we obtain a con-
tradiction to (3.18). So we may assume that N is non-compact. We then consider the cases

sup |7 |R(#)] = co,and sup |t]|R(¢)| < oo. Then, using the exact same arguments
Nx(—o0,0) Nx(—o0,0)
as in (Case 1.1.1) and (Case 1.1.2), we obtain a contradiction.

Case 2.2) The asymptotic scalar curvature ratio 4 = limsup Rs? < co. Remember
( ymp p

S— 00
that the asymptotic scalar curvature ratio is a constant in time for ancient solutions which
have bounded curvature at each time and non-negative curvature operator. A4 is also inde-
pendent of which origin we choose: see [12], Theorem 19.1.
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Now we use another splitting argument of Hamilton (see [12], Theorem 24.7 for the
compact version of this argument).

(Case 2.2.1) There exists a C > 0, s.t., for all 7 € (—00,0), for all 6 € (0, 1), there ex-
ists (x,7) € Q x (—o0,7) such that (x,¢) is a C-essential -necklike point (see Appendix B).
Let {0;};.n be a positive sequence, J; %0, and let (xi,2;) be chosen so that (x;, ;)
is an C-essential J;,-necklike point. Assume 0; is a unit 2-form on 7, with

|Riem(x,-, l,‘) — R(Xl', Zi)(gi ® 6,)| b 5,~\Riem|(xl~, [j).
1
mg(x, ti + t|t;]). Then

(3.20) 9| iRiem(x, £)| = |6]7|Riem(x, £; + £]14])]

Let ‘g(x,1) =

= |1;]?|Riem(x, (t — 1)|#:])|

— %ﬂRiem(X, (1= 1)ul)|

for < 1/2. Notice that

1 1 1
21 itSllil=t—5ti=31
(3.21) t+2|t| =51 2t<0

and so g(1) is defined for (at least) —oo < ¢ < 1/2. Furthermore,
(3.22) 9|'Riem(x;,0)| = |#]¢|Riem(x;, 1;)| = C > 0,
since (x;, ;) is C-essential. Set

1
lpl = 70[.

|t
Y, is then a unit two form on T, Q with respect to g’(x,0). Then
Y| "Riem(x;, 0) — 'R(x;, 0)(¥; ® ;)| <

Now taking a Hamilton pointed limit (our injectivity radius estimate is still valid) we ob-
tain a solution (Q, g), defined for 7 < 1/2 with

9|Riem(0,0) — R(0,0)( ® ¥)| <0,

where ~|ﬁ is the unit two form (at time zero it has length one) defined on
T,Q, = 11m(F) y,, for diffeomorphisms F;: B;(0) = Q — U; = Q. More precisely
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this ¢ is obtained (in coordinates) as ,5(0) := lim aéi:’z (0)%(0)(%)”(@), where

F;: (Bi(0),g,0) — (Uj,'g,x;) = M;, Fi(0) = x; are the diffeomorphisms occurring in the
Hamilton limit process: (F;)*(‘g) — g on Bg(0) as i — oo for all R = 0 (notice then that
fort =20

(3.23) 1=("9)" ()" W)y (W) om(i)
= (F(9) " (F7 () (Fy W) (F) o 0)

~ glmgrs(l:‘l_* lpi)rl (Fz* lpi)sm (0)

for large i, and so F;y; converges to a unit two form as i — oo, as stated). Furthermore
R(0,0) = C > 0 (in view of (3.22)) which implies (in view of the strong maximum principle
applied to the evolution equation for R) that R > 0. Hence, due to the maximum principle,
(Q,§) = (N x R,y @ dx?), or a quotient thereof by a group of isometries, where (N, 7) is a
solution to the Ricci flow (see Appendix B for a more detailed explanation of this fact). If
N is compact we obtain a contradiction to the volume ratio estimates. If N is non-compact,
then we argue exactly as in (Case 1.1.1) and (Case 1.1.2) to obtain a contradiction.

(Case 2.2.2) For all C > 0, there exists 7 € (—0,0), and ¢ € (0, 1), such that for all
(x,t) € (A (—00,7)), (x,1) is not a C-essential 6-necklike point. Choose C <1/16, and
let 7,  be the 7, 0 from the statement at the beginning of this case. Set

£ ]Rie°m|2
G := |t R

)

with ¢ < (o) : (notice that this function is well defined, as R > 0 everywhere).

B )

~100(3 —9)
Then, as Chow and Knopf show in [7] (see the proof of Theorem 9.19 there)
0 (1—¢)

3.24 —G<AG+2
( ) o - + R

&
21|

(VG,VR> — -G,

for all ¢ < 7. Let us examine G a little more carefully. For fixed 1 < 0 and a fixed xo we have
the estimate

3.25 lim  Glx.)= lim |ffoem OF
( ) d(x,xq,1)—00 ( ) d(x,xg,r)—>oc|| Rz(x’ [)

in view of the fact that the asymptotic scalar curvature ratio is less than infinity. Also, as
Chow and Knopf point out, we have

IRi¢m| 1 Béc(n)

3.26 G = |tf|'R® - < -
20 R T
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in view of the fact that B:= sup |¢7| |R(?)| < oo, and hence

Qx(—o0,0)
(3.27) lim sup G(x,t) =0.
[==% xeM

Let 7/ < 7 — 2 be a constant with sup G(-, ) < & for all # < v’. We know that
Q

(3.28) sup |Riem| < ¢(n)
M x(—00,0]

and without loss of generality
(3.29) sup |VRiem|® 4 |V2Riem|® < ¢(n)
Mx[t!,1]

in view of the interior gradient estimates of Shi (see [12], Chapter 13). We also know that
for given ¢; > 0 and s € [7/, 7] there exists an r(s, &) > 0 such that

(3.30) sup |Riem|(x,s) < e,
{xeM:d?*(x,xo,s)=r}

in view of the fact that the asymptotic scalar curvature ratio is finite. Hence, for all &, > 0
there exists a 0 > 0, such that

sup |[Riem|(x,7) < & + &,
xeM,te(s,s40):d>(x,xo,5) =r

in view of (3.28) and (3.29) and the evolution equation for |Riem|*. In particular if

sup G(+,5) < &, then sup G(-,1) < &, for small enough J (outside of a fixed large
M M x(s,5+9)
compact set K, G < g for all € (s,s + J) and inside K we use the fact that G is smooth).

That is, the set
Z = {r ssup G(-, 1) < e, Vte [T/”’)}
Q

is open. Hence either
sup G(-,1) < &
o)

for all ¢ € [/, 7), or there is a first time #, € (7/, 7) such that sup G(-, 1) = &. In the second
o

case, we see (using equation (3.30) with s = #;) that there must also be a point xy € M such
that G(xo, tp) = &o. But this contradicts the maximum principle in view of (3.24).

This means that
sup G(-,1) < &,
Q
for all ¢t € (—o0, 7), and hence, since &, was arbitrary,
G=0.

Hence Q = S3/T", which is a contradiction to the fact that Q is non-compact. []
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4. An application of the proof of Lemma 3.4

In certain cases, the proof of Lemma 3.4 is applicable even if M is non-compact.
For example, the theorem below is proved similarly to Lemma 3.4. This theorem was ini-
tially proved (using other methods and for all dimensions) by Perelman [19], Proposition
11.4.

Theorem 4.1. Let (Q3, g(1)) re(—0,0] be an ancient non-compact complete solution to
Ricci flow, with (for some fixed origin o € M)

sec = 0,

@ sgp|Riem(g(t))| < o0, Vite(—w,0),

V(@) i fim LB

r—0o0 }"3

=>79>0
for some time 7, T € (—0,0). Then (93, g(1)) is flat for all t € (—0,0).

Remark 4.2. The limit in the statement of the theorem exists in view of the fact that

vol(B.(0,7)) . . . . o . .
——————~ is non-increasing as r increases (in view of the Bishop-Gromov comparison
p

principle).

Proof. Assume that the asymptotic scalar curvature ratio Aq = limsup Rs?> = o0
(this is a constant independent of time). Translate in time so that t = 0. 7%

Notice that for this solution, and any scaling of this solution which has bounded cur-
vature by some fixed constant ¢ in a ball of radius one around some origin o’ at 1 = 0, we
have a uniform bound on the injectivity radius from below at o', in view of (4.1) and [5].
We explain this here more precisely. We have the estimate

1(B,(0',0
BL§_22%>0

for all » > 0 in view of (4.1) and the Bishop-Gromov volume comparison principle. Fur-
vol(B,(0',0))
3

thermore < wj3 trivially using the Bishop-Gromov volume comparison prin-

ciple. We may then apply the result of [5] to obtain our estimate for the bound on the

injectivity radius, exactly as we did in the argument of Lemma 3.4. Also, the estimates

vol(B:(0,0))

r3

[\

>75>0, Vr=0

remain valid under scaling (as the inequality is scale invariant). Hence, we obtain a uniform
bound from below on the injectivity radius estimate at o’, for any scaling of this solution
which has bounded curvature by some fixed constant ¢ on a ball of radius one around o’ at
time zero.
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We use the dimension-reduction argument of Hamilton (see [12], Lemma 22.2 and the
argument directly after the proof of Lemma 22.2) to obtain a new solution (with non-
negative sectional curvature and bounded curvature at each time) (N x R,y x dx?)(¢),
t € (—o0,0] or a quotient thereof by group of isometries. Also (4.2) remains true (at time
zero) for the resulting solution, as we explained above. Without loss of generality, we may
assume that we don’t have a quotient of (N x R,y x dx?)(¢): otherwise we lift the solution
to the solution (N x R,y x dx?)(¢) which still satisfies (4.2) at time zero, as explained in
(Case 1.1) of the proof of Lemma 3.4.

Notice that the dimension-reduction argument of Hamilton is applicable here, in view
of the bounds from below on the injectivity radius at the centres of the balls occurring in
the argument (due to the argument at the beginning of this theorem). Without loss of gen-
erality the solution is defined on (N x R,y x da?) for ¢ € (—o0, w] for some w > 0, in view
of the short time existence result of Shi, [21]. R(0,0) = 1 # 0 due to the construction pro-
cess in the dimension-reduction argument. Ry = 0 (for all times) since the sectional cur-
vatures of (y(¢) x do*, N* x R) are non-negative (for all times) and the curvature in the
R direction is zero. Hence, due to the strong maximum principle again, Ry > 0 for all
t € (—oo,w]. Then, see [12], Lemma 26.2, we have

Ay = lim sup Rys? < o

§— 00

is a constant independent of 7 € (—o0, ) on N.

This means that the asymptotic volume ratio Vy(¢) of (N, y()),

V() = tim VB0, 7(0)

r—0o0 V2

)

is independent of time (see [12], Theorem 18.3). Assume o = (0,a) € N x R. This im-
plies

vol (" B,(6),7(0)) _ vol("'B,(6) x [a — r,a + r],(0) ® do?)

(43) 4 -
vol (79%47* B (0, 9(0) x da?)
- 273
> 7o
= 2 )

in view of (4.2) where here we have used that 7©*47°B (o) = " B.(6) x [a — r,a + 1.
Hence Vy(t) = Vx(0) = 7 /2, which implies

vol ("B, (1)(8), (1))
2

70
2 )

v

= V(1)

1\

w3

for all » >0 and all 7€ (—oo,w] in view of the monotonicity of the volume quotient
(Bishop-Gromov volume comparison principle).
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We then consider the following two cases:

(Case 1) sup |f||R(y(1))|= o0,

Nx(—o0,0)|

(Case2) sup |[f||R(y(1))|< oo,

Nx(—w,0]
exactly as in the proof of Lemma 3.4. Both cases lead to a contradiction.

In the case that Aq = limsup Rs?> < oo then we also know that

§— 00

V(1) =i tim YIEL0)

r—0o0 r
is a constant on Q independent of time, and in particular

vol(B,(o, 1))

[\

w3 =70>0, Vr=0 Vte(—o0,0).

Translate in time so that the solution is defined on (—o0, ), @ > 0. We then consider the
following two cases:

(Case 1) sup |t]|R(7)| = oo,
Qx(—00,0]

(Case2) sup |[f||R(7)] < oo,

Qx(—00,0]

exactly as in the proof of Lemma 3.4. Both cases lead to a contradiction. []

5. Bounds on the Ricci curvature from below under Ricci flow

We prove quantitative estimates that tell us how quickly the Ricci curvature can de-
crease, if we assume that the Ricci curvature is not too negative at time zero. Both lemmas
may be read independently of the rest of the results in this paper.

The first lemma is suited to the case that we have a sequence of solutions to Ricci flow
(M,-, ’g(l)) re0.7) whose initial data satisfies

(5.1) Ricci('g(0)) = —&R ('9(0))'g(0) — &9(0),

where ¢; — 0 as i — oo. One application of this lemma is: if a subsequence of subsets
(Qi,7g(r)), 1€ [0, T) (€; open) converges (in the sense of Hamilton, see [13]) to a smooth
solution (Q,¢()), t € (0, T), then the lemma tells us that the Ricci curvature of (Q, ¢(¢)) is
non-negative for all 7€ (0, 7). This is very general, but does require that a limit solution
exists.
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The second lemma is suited to the case that we have a sequence of solutions to Ricci
flow (M;, ’g(z))[o r) Whose initial data satisfies

(52) Ricci (‘g(0)) = —&/g(0),

where ¢, — 0 as i — o0. Once again, one application of this lemma is: if a subsequence of
subsets (Q;,g(1)), 7 € (0, S) converges (in the sense of Hamilton, see [13]) to a smooth so-
lution (€, ¢(7)), t € (0,S), then the lemma tells us that the Ricci curvature of (Q,g(7)) is
non-negative for all 7 € (0, S). Another useful application of the second lemma is: if a solu-
tion (M, g(1)), t€ [0, T) satisfies

Riem(g)| = <2,
(5.3) !

Ricci(g(0)) = —eg(0)
then for a well controlled time interval the solution satisfies

Ricci(g) = —coeg.

As we saw in Lemma 3.4, such a bound is relevant to the question of existence of solutions
to the Ricci flow. We apply this lemma in the main Theorem 7.1 and the Application 7.2.

Lemma 5.1. Let gy be a smooth metric on a 3-dimensional manifold M3 which sat-

isfies

(5.4) Ricci(go) = =560 — 7 Ro  (see(go) Z =7 —RZ)

for some 0 <egy < 1/100, and let (M,g(-,1))
g(0) = go(+). Then

rel0,T) be a solution to Ricci flow with

Ricci(g(1)) = —eo(1 + 41)g(1) — eo(1 + 4)R(g(2))g(2), Vie[0,T) N [0,%)

1 1 1
(sec(g(2)) = —&o (5 + t) — & (5 + t)R(g(t)), Vte[0,T) N [O,§>).
Proof. Define ¢ = ¢(t) = ¢y(1 + 4¢), and the tensor L(¢) by
Lj = Ricci; + eRgj; + egjj.

We shall often write ¢ for &(¢) (not to be confused with &). Notice that &y < &(r) < 2¢, for
all 7 € [0,1/8): we will use this freely. Then L/ = (R} + ¢RJ! + &5/), and

0 0
(i), = (Gt Jon - 2tims

d d
= gi <E (Rig™) + 6ER51-[ + 4eyRo! + 4805{) —2L!R;
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=gy % (Rikgkl) + &gjj %R + 4egRgij + 4eogij — 2Lij;
= gi((ARicci)! — O + 2Ry Rymg"™g")
+ £g; (AR + 2|Ricci|®) + 4egRgy + 4e0g — 2LIR;
= (AL); — Qy + 2Ry Ring"™ + 2¢[Riccil*g;
+ 4egRgyy + deogyy — 2LIRy,
where Q is the tensor

Qj = 6S; — 3RR;; + (R* — 2S)gj;,
(5.5)
Sj == g" R Ry

(see [9], Theorem 8.4). Clearly L;;(0) > 0. Define N;; by
Nj = —Qy + 2RinRyjg™ + 2&[Ricci|’g; + 4eoRyg; + 4e0gy — 2L Ry,
We argue as in the proof of Hamilton’s maximum principle, [9], Theorem 9.1.
We claim that L;(g(7)) = 0. Assume there exist a first time and point (po, %) and a
direction wj, for which L(w,w)(g(2))(po, ) = 0. Choose coordinates about p, so that at

(po, ty) they are orthonormal, and so that Ricci is diagonal at (py, 7). Clearly L is then
also diagonal at (po, ). W.l.o.g.

Ry = 4,
(56) R22 = U,
R3; =,

and 4 < 4 < v, and so
Liy =2 +¢&(to)R +e(ty) < Loy < Las,
and so L;; = 0 (otherwise L(po, #p) > 0: a contradiction). In particular,
(5.7) Nii(po,t0) = (= v)> + A+ v) + 264 + 26> + 2ev* + 4o R + 4y,

in view of the definition of Q (see [9], Corollary 8.2, Theorems 8.3, 8.4) and the fact that
L)y =0.Also, L;; =0= 1= —¢R —¢at (p, ), and so, substituting this into (5.7), we get

Nii(po,to) = (u— v)2 +(—eR—¢&)(u+v)+ 26(/12 —&—,uz + v2) + 4eoR + 4dg

[\

e(—(A+p+v)(u+v)+ 207 +2u% + 2v%) +4egR + 4eg — e(p +v)

e(—(A+p+v)(p+v) + 227 + 207 +2v%) + 4eoR + deg — eR + el

[\

e(A—dp— v+ +v? +24% - 2uv) + 4eoR + 4¢p — €R.
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To show Nj; > 0, we consider a number of cases.

® Case 1. A = 0. This combined with L;; = 0 implies that R < 0. A contradiction to
the fact that A = 0 and 4 is the smallest eigenvalue of Ricci.

® Case2. A <0, R=0. This implies v = 0 and hence
Ni = e(h— A+ 1 +v2 + 227 — 2uv) + 4e,
in view of the fact that eR < 2¢oR. In the case u = 0 we obtain
N = 3(/1+,u2+v2+2&2 —2uv) +4e) = —e+ 4 > 0,
after an application of Young’s inequality, and similarly in the case 4 < 0 we get
Ni gs(i—lu—i—,u2+v2+2i2) + 4ey > 0.

® Case3. 2 =0, R<0. We know that R(gyg) = —3¢y will be preserved by Ricci flow,
and hence 0 = R(g(7)) = —3&. We break Case 3 up into three Subcases 3.1, 3.2, 3.3.

— Case 3.1. u,v < 0. This with R = —3¢ implies that |4, |/, |v| = 3y and hence
Nip = —3egg — 36667 — 1262 4 dey = —100e] + 4o > 0,
since 0 < gy < 1/100, & < 2¢p < 1.
— Case 3.2. £ £0,v=0. Implies
Ny el — du+ 1> +v? +2/12) — 1285 +4dgy > 0,
in view of Young’s inequality, &y < 1/100, and 0 < ¢ < 2¢.
— Case 3.3. u = 0 (= v = 0). Then, similarly,
Nip = e(4 + 1>+ 2% — 2uv) — 1283 +4gy > 0.

So in all cases Ny; > 0. The rest of the proof is standard (see [9], Theorem 9.1): extend
0 : . .
w(po,ty) = ) (po, to) in space to a vector field w(-) in a small neighbourhood of py so that

90V (-)(po, o) = 0, and let w(-, ) = w(-). Then

0= (%L(W,WO (po, t0) = (AL(w,w))(po, to) + N(w,w) > 0,

which is a contradiction.

The case for the sectional curvatures is similar: from [10], Sec. 5, we know that the
reaction equations for the curvature operator are
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=
%y =7 +ap.
Note that
(5.8) R=o+p+vy,

R (CORICORICS)

1
zi(a2+ﬁz+yz+ocﬂ+ocy+ﬁy).

Similar to the Ricci case, we examine the function o + &(7)R + &() where a < f <y
. 1
are eigenvalues of the curvature operator, and &(¢) = & (5 + t). In order to make the fol-

lowing inequalities more readable, we write ¢ in place of ¢(¢): that is, & = ¢ (5 + t>.

0 o
py (4 &R+ &) = &9 + e R + o + By + 2¢|Ricci|

=y +eoR+ > + Py +e(0® + B2+ >+ af + oy + fy),

. 0
and so in the case that 8,7 > 0, or 8,y < 0, p (0 +eR+¢€) = ¢g(l + R) > 0. So assume that

< f =0, and y = 0. Combining these inequalities with &(7) < &y, we see that

0
o (0t eR+e) Zeg+aR+o +ay+ el + 57 +7 +of + oy + fy)

=¢o+eR+ o’ + (a+eR+¢e)y
— &Ry — ey +e(0®> + B+ 9> +af +ay + By)
=e)+eR+ o+ (a+eR+e)y — ey +e(e? + B>+ ap),

> o’ 4 (a+eR+e)y+eo(l+R—y) +e(o® + ),

which, using () = &/2, is

062 ﬂ2
2ol + (ateR+e)y+ea| l+atp++5 ),

> 0?4 (a+eR + &)y,
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in view of Young’s inequality. At a point where o + eR + ¢ = 0, the last sum is strictly big-
ger than zero (if o = 0, then, R = 0, and hence o + ¢R + ¢ = ¢ > 0: a contradiction). Then
we argue as above. [J

The above lemma shows us that if the Ricci curvature at time zero is bigger than —¢ (e
small) then the Ricci curvature divided by the scalar curvature is at most —ce at points
where the scalar curvature is bigger than one (for a short well defined time interval). It
can of course happen that the Ricci curvature becomes very large and negative in a short
time, if the scalar curvature is very large and positive in a short time.

Now we prove an improved version of the above theorem, which allows for some
scaling in time. In particular, for the class of solutions where |Riem|7 < ¢ it tells us that:
if the Ricci curvature at time zero is bigger than —¢ (¢ small) then the Ricci curvature is at
most —ce for some short well defined time interval.

Lemma 5.2. Let gy be a smooth metric on a 3-dimensional manifold M3 which sat-

isfies
Ricci(go) = — 2 ¢o
(5.9) .
seclg0) 2 -
Sfor some 0 < ¢y < 1/100, and let (M,g(-,t))te[oj) be a solution to Ricci flow with

g(0) = go(+). Then

Ricci(g(1)) = —eo(1 + kt)g(1) — eo(1 + k)R (g(1))g(1), Vie[0,T)n[0,T")
(sec(g(1)) = —&o G + kt) — & G + kz> R(g(r)), Vte[0,T)n[0,T"))

where k =100 and T' = T'(100) > 0 is a universal constant.

Proof. The proof is similar to that above. Define ¢ = ¢(¢) = & (1 + kt), and the ten-
sor L(t) by

L;; := Ricciy + etRgy + &gy

We shall often write ¢ for ¢(¢) (not to be confused with ¢j). Notice that gy < &(¢) < 2¢, for
all 1€ [0,1/k): we will use this freely. Then

L] = (R} + &tR5] + &9]),

i), = (@tJor 2t
—L = _Li gjl — 2LjRj/
<6t i ot

0 0
= gj <— (R,-kgkl) + 8R5{ + 81—R5{ + keozRéf + ks@f) — 2Lij/

and

ot ot
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= gi % (Rixg"") + eRyj; + atgij%R + kegtRg; + keogij — 2L£Rj,
= gﬂ((A Ricci)l.l — Qll + 2R,-kRsmgkmng) + Ry
+ etg (AR + 2|Ricci]”) + keotRgy; + keogy — 2LIRy
= (AL); — Qj + ZR,-kR,-mgkm +eRgj + 231|Ricci|2g!-,-
+ keotRyjj + keogij — 2Lij,,
where Q is the tensor defined in Equation (5.5). Clearly L;(0) > 0. Define N;; by
Nj:=—-0;+ 2R,-kijgkm +eRygji + 2gt|Ricci|2g,-j + kegt Ry + keogiy — 2L;Rﬂ.
We argue as in the proof of Hamilton’s maximum principle, [9], Theorem 9.1.
We claim that L;(g(¢)) > 0 for all £ € [0, T'). Assume there exist a first time and point
(Po, to) and a direction wy, for which L(w,w)(g(7))(po, fo) = 0. Choose coordinates about

po so that at (po, 7o) they are orthonormal, and so that Ricci is diagonal at (po, ). Clearly
L is then also diagonal at (pg, 7). W.l.o.g.

Ry =4,
(5.10) Ry = u,
Ry =,
and
LASp=v,
and so

Ly =2+ ¢(to)toR+&(ty) < Loy < Las,
and so L;; = 0 (otherwise L(po, #)) > 0: a contradiction). In particular,
(5.11) Ni(po, t0) = (u —v)* + A+ v) + 262> + 2et® + 2ev”
+¢eRgj; + keotRg;; + keogjj

in view of the definition of Q (see [9], Corollary 8.2, Theorems 8.3, 8.4) and the fact that
L1 = 0. We will show that Nll(po, Z()) >0. L1 =0=>4A=—¢tpR —¢ at (p(), l()), and so,
substituting this into (5.7), we get

Ni(po, to) = (u— 0)* + (—etgR — &) (1 + v) + 2¢et0(2% + p> + v?)
+eR + ké‘olel’j + kg

> eto(—(A+pu+v)(u+v) + 227+ 24P + 2v2) —e(u+v)
+ R + keptyR + ke
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ety /1+,u—|—v(,u—|—v)+2/12—|—2,u —|—2v)

IIV

Mt — A4 i v 207 —2uv)

(=(
+ ( —& l() + kb‘()t()) p + k8())
eto(—

+((

—& t() + ké‘olo) - + ké‘o)
where here we have used once again that
A(X(), l()) = —6([0)t0R(X(), l()) — 8([0).

If R(x0,%) < 0, then using the fact that R > —3¢ is preserved by the flow, we see that

(—Ez(lo)fo + k(&‘o(l‘())l‘())R()Co7 to) — & + keo = =¢o.

k
2
Furthermore:

o [ji=—-eR—¢e¢=¢(since R=—3¢)and 1 = —eR — & = —¢, thatis |1| S e.

e [ii] Similarly |x+ v| = |[R — /| = 4e.
Hence

eto(—A(u+v) + WAV 227 — 2uv) 2 —50e3,

and so Nyi(po, o) > 0. Hence we must only consider the case R(po, 7)) = 0.

® Case 1. 2 = 0. This combined with L;; = 0 implies that R(po, #) < 0. A contradic-
tion.

® Case2. A0, u=0,v=0. In this case we trivially obtain Nj; > 0.
e Case 3. A0, u £0,v=0. Implies
Nit > eto(—Au+ i +v* +22%) = 0,
in view of Young’s inequality.

So in all cases Nj; > 0. The rest of the proof is standard (see [9], Theorem 9.1): extend
0
w(po, to) = ) (po, to) in space to a vector field w(-) in a small neighbourhood of p so that

90V w(-)(po, ) = 0, and let w(-,¢) = w(-). Then

0= (8 L(w, w)) (po.to) = (AL(w,w))(po, to) + N(w,w) > 0,

which is a contradiction.
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The case for the sectional curvatures is similar: from [10], Sec. 5, we know that the
reaction equations for the curvature operator are

J 2
EO{—O‘ +ﬂy,
J 2
a_[ﬂ_ﬁ +OC)),
0 _ .2
&y—y + af.

In what follows, we use the formulae (5.8) freely.

Similar to the Ricci case, we examine the function o + &(¢)tR + &(¢) where a < f <y

2

. 1
are eigenvalues of the curvature operator, and &(z) = & (— + kt) . In order to make the fol-
lowing inequalities more readable, we write ¢ in place of ¢(7): that is, ¢ = & <2 + kl). We

assume ¢ < ! so that L (1) =

0 .
py (% + &tR + &) = &R + keotR + keo + o® + By + 2¢t|Riceil®

= &R + keotR + ke + o + fy
+et(e? + B2+ 97+ af oy + ),

and so in the case that f,y =2 0, or 5,y <0,

(5.12) %(O(+8R+8) > eR + keotR + ke

> 3¢l — 3¢3 + key > 0.

So assume that o < f <0, and y = 0. Combining these inequalities with &(7) < ¢y, we see
that

0
E(oc—l—stR—}—s) > &R + keotR + keo + oy

+et(a? + B2+ +of +ay + By)
= &R + kegtR + keo + (o0 + etR + €)y
— etRy — ey +et(e + B+ 97 + o+ oy + By)
=eR — &y + keotR+ keg + (o + etR + &)y
+et(o? + B* + ap)
= (o + f) + keotR + keg + (a + etR + ¢)y
+et(o? + B* + ap)

> (2ea + kegtR + keg) + et(a + > + of)
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at a point where o« + ¢fR + ¢ = 0. Using o + &R + ¢ = 0 again, we get
2e00+ kegt R + keg = 2e(—¢etR — ¢) + ket R + ke

= Rt(=2¢&> + keg) + keg — 2&°

>§80,

since R = —3¢ is preserved by the flow, and # < 1/k. Hence

| =

0
—(a+etR+¢e) = Zeo +et(o® + 7 +ap) > 0,

ot
at a point where o + ¢¢R + ¢ = 0. Then we argue as above. []

So although the Ricci curvature can become very large and negative under the Ricci
flow, it can only do so at a controlled rate. In particular, as we mentioned before this
lemma, if the curvature satisfies |[Riem|t < ¢, for all # € [0, T') (in addition to the initial con-
ditions) then Ricci = —c¢(cp)eo, is true on some well defined time interval [0, 7”) (in dimen-
sions two and three).

6. Bounding the diameter and volume in terms of the curvature

The results of this section hold for all dimensions.

Lemma 6.1. Let (M",g(1)) ) be a solution to Ricci flow with

€0, T
Ricci(g(1)) = —co,
(6.1) |Riem(g(1)) |1 < co,
diam(M, go) < dy.
Then
(6.2)  d(p,q,0) —ci(t,do, co,n) Z d(p,q,t) Z d(p,q,0) — ca(n, co)V/1
forall t € [0,T), where
ci(t,do, co,n) — 0
ast — 0.
In particular if 'go is a sequence of smooth metrics on manifolds M; with
diam(M;, 'gy) < do,

(63) . — 0
don ((M;,d('go)), (X,dx)) — 0
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and (M;, ig(t))[e[O_T_) are solutions to Ricci flow with

'9(0) = g0,
(6.4) sec('g(1)) = —co  (Ricci('g()) = —co),
|Riem(‘g(1))|t < co, Vie[0,Ty),
then
don (Mi, d('g(1)), (X, dx)) =50
for any sequence t; € [0, T;), i € N where t; =% 0.

Proof. The first inequality

d(p7 q, Z) = d(p7 q, O) — O (l’l, CO>\/Z

is proved in [12], Theorem 17.2 (with a slight modification of the proof: see Appendix C).
The second inequality follows easily from [12], Lemma 17.3: see Appendix C.

The second statement is a consequence of the first result, and the triangle inequality
which is valid for the Gromov-Hausdorff distance:

(6.5)  dou((Mi,d(‘g(1))), (X, dx))
< dou((Mi,d('9(1))), (Mi,d("gy))) + dau ((M;,d('gy)), (X, dx))
< ¢(t;) + dou (M, d('gy)), (X, dx)) =5 0.
Here we have used the characterisation of Gromov-Hausdorff distance given in A.9,
and the fact that the identity map I : (M;,d('g(t;))) — (M;,d("gy)), is an ¢(;)-HausdorfT

approximation, where ¢(¢f) — 0 as t — 0: see Appendix A, Definition A.8 and Lemma
A9. O

Corollary 6.2. Ler (M", (1)) re0.7) be an arbitrary solution to Ricci flow (g(0) = go)
satisfying the conditions (6.1) and assume that there exists vy > 0 such that

(6.6) vol(M, gy) = vy > 0.

Then there exists an S = S(dy, co, vo,n) > 0 such that
3U0
vol(M,g(t)) = i Vie[0,T)n]0,S).

Proof. 1f this were not the case, then there exist solutions (M}", ‘(1))
ing the stated conditions and there exist #; € [0, T}), t; % 0 such that

1e[0.T) satisfy-

VO](]\li7 ig([l')) = %
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But then
i—oo

dou (M d('g(1:))), (X, dx)) == 0

from the lemma above. According to [2], Thm. 10.8 for the case that sec(‘g(z)) = —cq (for
the Ricci case we use [4], Theorem 5.4 of Cheeger-Colding) we also have

vo < vol(My, 'gy) = #" (M, d(1gy)) =5 A" (X, dx)

which implies #" (X, dx) = vy. Here #" (X, dy) is the n-dimensional Hausdorff mass of X
with respect to the metric dy. Similarly we have

3 P i— o0
% = %H(Mhd(lg(zi))) — A"(X, dy).

This implies #" (X, dy) = 3v9/4. A contradiction. []

7. Non-collapsed compact three manifolds of almost non-negative curvature
The results of this section are only valid for dimensions two and three.
Theorem 7.1. Let M be a closed three (or two) manifold satisfying

diam(M, go)

lIA

dOa
Ricci(go) = —ego,
vol(M, go) = vy > 0,
where e < 1/ 10¢? and ¢ = c(vo,do) = 1is the constant from Lemma 3.4. Then there exists an

S = S(do,v0) >0 and K = K(dy,vy) such that the maximal solution (M,g(l))re[O r fo
Ricci-flow satisfies T = S, and 7

lIA

) K
sup|Riem (g(2))| -
M

Sforall t € (0,8).

Proof. Let [0,T') be the maximal time interval for which

vol(M, g(1)) > %,

Ricci(g(1)) > -1,
diam(g()) < 5do.

If T7"=1 then choose S =1/2. The estimate for the curvature then follows from
Lemma 3.4 and we are finished. So w.l.o.g. T/ < 1. Then the diameter condition will
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not be violated at time 7’ (as one easily sees by examining the evolution equation for
distance under Ricci flow). So we assume w.l.o.g. 7/ <1 and the diameter condition
is not violated. From Lemma 3.4, we know that there exists a ¢ = c(do,v9) such

that R(7) < ;, for all re[0,7’). Using Lemma 5.2 we see that there exists a

T" = T"(c(do,v0)) > 0 such that Ricci = —1/2 for all 1€ [0,7"]n[0,T’). So the Ricci
curvature condition is not violated on [0, 7"] n [0, T"). Furthermore, in view of Corollary
6.2 there exists a T = T" (vy,do, c(do,v9)), such that vol(M,g(z)) > 3vy/4 for all
te[0,T"]n[0,T"] " [0, T']. Hence T = min(T" (c(do,v0)), T" (vo,do)) > 0, as required.
The estimate for the curvature and the existence of S then follow from Lemma 3.4. []

Theorem 7.2. Let (M;, go) be a sequence of closed three (or two) manifolds satisfying
diam(M;, 'go) < d,
Ricci('go)  (sec('g0)) Z —&(i) 9o,
vol(M;, igo) = vy > 0,

where &(i) — 0, as i — co. Then there exists an S = S(vo,dy) > 0 and K = K(vo, do) such

that the maximal solutions (M;,'g(1)) reio.y) 10 Ricci-flow satisfy T; = S, and

. ; K
sup|Riem(‘g(7))| < -
M;

Sor all t € (0,S). In particular the Hamilton limit solution

(M7g([>)te(075) = .lim (Mi7 ig(t))ze(O,S)

11— 00

(see [13]) exists (after taking a subsequence). It satisfies the estimates

(7.1) sjl‘llp|Riem(g(t))| < §,
(7.2) Ricci(g(r)) =20 (sec(g(z)) = 0),

for all t e (0,S) and (M,g(t)) is closed. Hence, if M = M?, then M3 is diffeomorphic to a
quotient of one of S?, S? x R or R by group of fixed point free isometries acting properly
discontinuously. Furthermore

(73) dGH((M,d(g(Z))),(X, doc)) — 0

as t — 0 where (X ,d.,) = lim (M;,d(’go)) (the Gromov-Hausdorff limit).

Proof. We apply the previous theorem. Then notice that Lemma 5.1 (or Lemma
5.2) implies that Ricci(g()) = 0 (sec(g(¢)) = 0) for this limit solution, for all 7€ (0,S).
To prove that deu ((M,d(g(7))),(X,d,)) — 0 use the triangle inequality as in the proof
of Lemma 6.1:
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(74)  deu((M,d(9(1)),(X,d))

< don((M,d(9(1))), (Mi,d('9(1)))) + don (M, d('9())), (X, d.x))
< don((M,d(9(1))), (M:,d('9(1))))

+ dan((Mi,d("g(1)), (M;,d("9p))) + den ((Mi,d('go)), (X, d.))
< dan((M.d(g()), (M:,d('9(1)))) + (1)

i— o0

+don (M d('g))), (X,do)) — (1),
for all # > 0, where ¢(7) — 0 as t — 0: here we have used (6.2), and the characterisation of
Gromov-Hausdorff distance given in A.9 to obtain ¢(¢). [
A. Gromov-Hausdorff space and Alexandrov spaces
Definition A.1. Let (Z,d) be a metric space, p € Z, r > 0.
B.(p) :={xeZ:d(x,p) <r}.
For two non-empty subsets 4, B < Z

dist(4, B) = inf{d(a,b) : a € A,b € B},
B,(A4) :={xe Z :dist(x,4) < r}.

Definition A.2. For subsets X, Y < (Z,d) we define the Hausdorft distance between
X and Y by

du(X,Y):=inf{e >0: X =« B,(Y) and Y = B,(X)}.
Then (see [1], Prop. 7.3.3):
Proposition A.3. ® dy is a semi-metric on 2% (the set of all subsets of Z).
® dy(A,A4) =0 for all A = Z, where A is the closure of A (in (Z,d)).
e [f A and B are closed subsets of (Z,d) and dy(A, B) =0 then A = B.

Definition A.4. For a subset X < Z, (Z,d) a metric space, we define d|, to be the
metric on X defined by

d|y(a,b) =d(a,b).

We then define the Gromov-Hausdorff distance between two abstract metric spaces
(X,dy) and (Y,dy) as follows:

Definition A.5. dgu((X,dx),(Y,dy)) is the infimum over all r> 0 such that
there exists a metric space (Z,d) and maps f: X — Z, X':=f(X), and g: Y — Z,
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Y':=g(Y) such that f: (X,dy) — (X',d|y,) and g : (Y,dy) — (Y',dy/) are isometries
and dg(X', Y') <r.

Fact A.6. dgy satisfies the triangle inequality, i.e.,
don((X1,d1), (X3,d3)) < dou((X1,d1), (X2, da)) + deu (X2, db), (X3, d5))
Sfor all metric spaces (X1,dy), (Xa2,ds), (X3,ds3).
Proof. See [1], Prop. 7.3.16. [

Definition A.7. A v-Hausdorff approximation f : X — Y for metric spaces (X, dy)
and (Y,dy) is a map which satisfies

A1) |dy (f(x), f(x)) = dx(x,x")| S v,
B,(f(X)) = Y.
Definition A.8. Happrox((X,dy),(Y,dy)) is the infimum of v such that there exists
a v-Hausdorff approximation f : X — Y.
The proof of following well known lemma may also be found in [1].
Lemma A.9.
Happrox ((X,dy), (Y,dy)) < 2dgu((X,dx), (Y,dy)) < 4Happrox((X,dx),(Y,dy)).
Proof. See [1], Corollary 7.3.28. [
Now we state the compactness result of Gromov.
Proposition A.10. .7 (n,k,dy) is precompact in Gromov-Hausdorff space.

Proof. See [1], Remark 10.7.5. [

Clearly ¥ (n,k,do) = .4 (n,(n—1)k,dp) and so it is also precompact in Gromov-
Hausdorff space.

In [2] (Theorem 10.8), the following fact about the convergence of Hausdorff measure
was shown.

Theorem A.11. Let (M;,g;) € ¥ (n,k,dy), i € N be a sequence of smooth Riemannian
manifolds with vol(M;, g;) = vy > 0, for all i e N and

i— o0

(Mi7 d(gl)) - (X7 dX)
in Gromov-Hausdorff space. Then

i— 00

vol(M;, gi) = #:(My) =% (M),
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where #;: M; — Ry is n-dimensional Hausdorff measure with respect to d(g;) and
A X — R}, is n-dimensional Hausdorff measure with respect to dy.

Proof. See for example [1], Theorem 10.10.10. [
In [4] (Theorem 5.4) the same result was proved for .Z(n, k,dy).

Theorem A.12. Let (M;,g;) € M (n,k,dy), i € N be a sequence of smooth Riemannian
manifolds with vol(M;, g;) = vy > 0 for all i e N, and
(Mi,d(g)) == (X, dx)
in Gromov-Hausdorff space. Then
=5 A (M),

vol(M;, g;) = H(M;) — A (M

where #;: M; — R} is n-dimensional Hausdorff measure with respect to d(g;) and
A X — R}, is n-dimensional Hausdorff measure with respect to dy.

Proof. See [4], Theorem 5.4. []

For further properties of Alexandrov spaces with curvature > k see [2] or the book
[1]. For further properties of spaces with curvature bounded below see [4].

B. C-essential points and J-like necks

Definition B.1. Let (M, g(l))te(_w.n, T e Ru{oo}, be a solution to Ricci flow. We
say that (x,7) € M x (—o0, T) is a C-essential point if

IRiem(x, 7)| 1] = C.

Definition B.2. We say that (x,7) € M x (—o0, T) is a d-necklike point if there exists
a unit 2-form 6 at (x, ¢) such that

|Riem — R(0 ® 0)| < J|Riem)|.

o-necklike points often occur in the process of taking a limit around a sequence of
times and points which are becoming singular. If 6 = 0, then the inequality reads

|[Riem(x,7) — R(x,1)(0 ® )| = 0.

In three dimensions this tells us that the manifold splits. This can be seen with the help of
some algebraic lemmas.

Lemma B.3. Let w € Q*(R3). Then it is possible to write
V4
o=XAV,

for two orthogonal vectors X and V.
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Remark B.4. Here we identify one forms with vectors using
adx" +bdx* + cdx® = (a,b,c).
Proof. Assume
(B.1) o =adx" Ndx® +bdx" Adx® + cdx? Adx.

Without loss of generality » & 0. Then, we may write:
(B.2) W= <dx1 4—%617962)/\(adx2 + bdx?).

Sow =X AY.Nowlet X, Z, W be an orthogonal basis all of length | X|. Then
Y = a1X+a22+a3W.
This implies

(B.3) o=XAaX+aZ+aW)
=XAN(@Z+azsW)

as required (V =aZ +a;W). [
Hence we may write the § occurring above as
O0=XAV.
Hence
Riem(x, 1)) = cX AV ® X AV,
with
{(X,V,Z}
an orthonormal basis for R>.

The set {X AV, X AZ,V AZ} then forms an orthonormal basis and the curvature
operator Z can be written with respect to this basis as

S O 0
S O O
S O O

Hence the manifold splits (if the solution is complete with bounded curvature and non-
negative curvature operator) in view of the arguments in [10], Chapter 9.
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C. Estimates on the distance function for Riemannian manifolds evolving by Ricci flow

For completeness, we prove some results which are implied or proved in [12] and
stated in [3] as editor’s note 24 from the same paper in that book. The lemma we wish to
prove is

Lemma C.1. Let (M",g(t)) ) be a solution to Ricci flow with

t€0,T
Ricci(g(1)) = —co,
(C.1) |Riem (g(1))|t < co,
diam(M, go) < d,.
Then
(C2)  d(p,q,0) —ci(t,do, co.n) Z d(p,q,1) Z d(p,q,0) — c1(n, o)Vt
forall t e [0,T), where
c1(t,do, co,n) — 0
ast— 0.
Proof. The first inequality
d(p,q,1) Z d(p,q,0) — c1(n, o)Vt
is proved in [12], Theorem 17.2 after making a slight modification of the proof. If we exam-
ine the proof there (as pointed out in [3] as editor’s note 24 of the same book), we see that

in fact that what is proved is:

t

d(P,Q,1) = d(P,0,0) — C[/M(1)

0
where /M (t) is any integrable function which satisfies
sup |[Riem(-, 7)| < M(1).
M
In particular, in our case we may set

M(z):?

which then implies the first inequality. The second inequality is also a simple consequence
of results obtained in [12]. Lemma 17.3 tells us that

gd(P, 0,1) < —inf [Ricci(T,T)ds
ot yel y
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where the inf is taken over the compact set I' of all geodesics from P to Q realising the
distance as a minimal length, 7 is the unit vector field tangent to y. Then in our case
Ricci = —¢( implies

%d(p, 0,1t) £ cod(P, Q,1).

This implies that
d(P,0Q,t) < exp™'d(P,0,0),
and as a consequence
diam (M, g(1)) < doexp®.

Hence

<d(P,Q,0) + (exp® — 1) dp exp“,

which implies the result. []

D. Notation
R is the set of positive real numbers.
R is the set of non-negative real numbers.

For a Riemannian manifold (M, g), (M ,d (g)) is the metric space induced by g. For a
tensor T on M, we write 9|T|2 to represent the norm of T with respect to the metric g on

R 0
M. For example if T is a (

2) tensor, then

IT|* = g"g" Ty Ty.
hVT refers to the covariant derivative with respect to /1 of T.
"Riem or Riem(/) refers to the Riemannian curvature tensor with respect to 4 on M.
"Ricci or Ricci(/) or "Ry refers to the Ricci curvature of 2 on M.
"R or R(h) refers to the scalar curvature of 4 on M.

sec(p)(v,w) is the sectional curvature of the plane spanned by the linearly indepen-
dent vectors v, w at p.

sec = k means that the sectional curvature of every plane at every point is bounded
from below by k.

2 denotes the curvature operator.
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# = c means that the eigenvalues of the curvature operator are bigger than or equal
to ¢ at every point on the manifold.

F(h)k. or 'T° l’]‘ refer to the Christoffel symbols of the metric / in the coordinates {x*},

i
hk ki il it ij
Vo2 <6xf ox! 6x1>

For a diffeomorphism F : M — N we will sometimes consider dF, a 1-form along F,
defined by

dF(x) = ai“

=k dx" (x)

(F(x)

, we define the norm
(F(x))

For a general 1-form w along F, ® = o?(x) dx'(x) ®

0
oy*
of @ with respect to / (a metric on M) and y (a metric on N) by

Mol (x) = 17(x)7,5 (F(x)) o (x)] (%)
For example,

OF* _OFF

l’y|dF|2(X) — Zi/(x)yaﬂ(F(X)) W(x) W(

X).

0
We define 9"V dF, a <2) tensor along F, by

aZFoz OF* aFﬂ oF°
g,h «,_ _Tk « -
( VdF)ij - <5xi6x-f Ty (9) Oxk + rﬁ“(h) ox! axj>'

, we

0 : ,
For a general < ) tensor Y along F, Y = ;(x) dx'(x) ® dx/(x) ® =—
2 | |

define the norm of y with respect to / (a metric on M) and y (a metric on N) by

LI = 9,5 (F ()15 ()17 (x) g5 (x) gl ().

For example

n o *F* . OF* __  QF"QF°
DIV AF | = 5, (F ()1 ()17 (x) (m = Til9) 5+ Do) 75 W)

o*Ff  _  OFF . OF%OF’
(8xfaxs — i) ox" T )% axs) ’
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