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Ricci flow of non-collapsed three manifolds
whose Ricci curvature 1s bounded from below

By Miles Simon at Freiburg

Abstract. We consider complete (possibly non-compact) three dimensional Riemann-
ian manifolds (M, g) such that: (a) (M, g) is non-collapsed (i.e. the volume of an arbitrary
ball of radius one is bounded from below by v > 0), (b) the Ricci curvature of (M, g) is
bounded from below by k, (c) the geometry at infinity of (M, g) is not too extreme (or
(M,g) is compact). Given such initial data (A, g) we show that a Ricci flow exists for
a short time interval [0, T'), where 7' = T'(v,k) > 0. This enables us to construct a Ricci
flow of any (possibly singular) metric space (X, d) which arises as a Gromov—Hausdorff
(GH) limit of a sequence of 3-manifolds which satisfy (a), (b) and (c) uniformly. As a
corollary we show that such an X must be a manifold. This shows that the conjecture of
M. Anderson—J. Cheeger—T. Colding—G. Tian is correct in dimension three.

1. Introduction and statement of results

A smooth family of metrics (M, g(1)) 0.7y 18 @ solution to the Ricci flow if

%g(z) = —2Ricci(g(r)) Viel0,T).

We say that this solution has initial value go if g(-,0) = go(-). The Ricci flow was intro-
duced by R. Hamilton in [20] and has led to many new results in differential geometry
and topology: see for example [35], [36], [3], [37], [31], [5], [24], [29], [13]. For very good
expositions of the papers of G. Perelman ([35], [36]) and parts thereof see [6], [44], [45],
[27] and [30] and [15].

In this paper we define a Ricci flow for a class of possibly singular metric spaces, ele-
ments of which arise as Gromov—Hausdorff limits of sequences of complete, non-collapsed
manifolds with Ricci curvature bounded from below.
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60 Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below

More specifically, we consider the class of smooth, complete Riemannian manifolds
(M, g) which satisfy

(a) Ricci(g) = k,
(b) vol(“Bi(x)) = vo > 0 for all x e M.

It is well known, see [18], that every sequence of smooth Riemannian manifolds sat-
isfying (a) contains a subsequence which converges with respect to the Gromov—Hausdorff
distance to a possibly singular metric space (M,d) (see [4] for a definition of Gromov—
Hausdorff distance: this distance is a weak measure of how close metric spaces are to being
isometric). With the expression ‘possibly singular’ we mean two things:

e it is possible that the limiting space (M, d) is no longer a manifold (see Example 1.1
below) and

e it is possible that the resulting metric d is not smooth, even if M is a manifold (see
Example 1.2 below).

Example 1.1 (M. Anderson). This example is from M. Anderson (see [1], Section 3).
In the paper [17] T. Eguchi and A. Hanson construct a four dimensional Riemannian mani-
fold (M*, h) where M = TS? and Ricci(h) = 0 everywhere. Asymptotically (far away from
some base point) the Riemannian manifold looks like a cone over RP3. More explicitly:

1
if we rescale the metric, (M, h;) := <M,;h>, then Ricci(/;) = 0, vol(By(x),h;) = vo for

allie Nand (M;,d(h;)) — (N,I) asi — oo where N = (Rf x RP?)/({0} x RP?) with the
quotient topology, where /((r,x), (s, y)) := \/r2 + 52 — 2rscos(y(x, y)) for all r,s € Ry and

all x, y e RP? and y: RP? x RP? — R is the standard distance on RP*. In particular, N
is not a manifold.

Example 1.2. Let (M”",h) be a non-negatively curved smoothed out cone over
§7-1. That is, we give M" = R" = (R x S"')/({0} x S"™') a smooth metric / such
that sec(h) =0 everywhere and h(r,o) = dr? ® cr*p(a) for r =1 and some constant

0 < ¢ < 1, y the standard metric on S"~'. Let (M, h;) := (M,%h). Clearly
vol(Bi(x),h;)) = vy forsomevy>0andallieN,all xe M,.
Also, (M;,d(h;)) — (M,]) where
I((r,x), (s,9)) =/ + 52 = 2rscos(v/e(x, y))

forall r,se Rf andall x, ye S" ' and ¢y : S" ! x S"! = RS

is the standard distance on S"'. The distance / : M x M — R is then continuous, but not
differentiable everywhere. For example: if p = (1,0,...,0), ¢(x) = (0,x,0,...,0) e R" in
Euclidean coordinates, then

f(x) = 1(p,q(x)) = 1 + |x|* — 2|x| cos(vV/e(n/2))

is continuous in x =0 but not differentiable there (since /¢ < 1 = cos(y/c(n/2)) * 0).
Note that the same is true for p = (r,0,...,0) where r > 0 is fixed but arbitrary.
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Remark 1.3. Any metric space (M, d) which arises as the GH limit of a sequence of
two dimensional Riemannian manifolds satisfying (a) and (b) is itself a manifold.

This is because: in dimension two Ricci = —k? = sec = —2k2. Then a theorem of G.
Perelman says that (M, d) is a manifold: see [26].

So we see that in dimension two any metric space (M, d) which arises as the GH limit
of a sequence of Riemannian manifolds satisfying (a), (b) must be a manifold, and in
dimension four, there are examples where such (M, d)’s are not manifolds. It is a conjec-
ture of M. Anderson—J. Cheeger—T. Colding—G. Tian (see the introduction of [9]), that:

Conjecture 1.4 (M. Anderson—J. Cheeger-T. Colding—G. Tian). Any metric space
(M, d) which arises as the GH limit of a sequence of three dimensional Riemannian manifolds
satisfying (a) and (b) is itself a manifold.

In this paper we obtain as a consequence of one of our main theorems (Theorem 9.2
in this paper) that this conjecture is correct, if each of the manifolds occurring in the
sequence is compact or we demand that the geometry at infinity is controlled in a certain
sense (see condition (c) and ¢ below). That is we will assume that each of the manifolds
(M, g) occurring in the sequence satisfies additionally:

(c) sup|Riem(g)| < oo (bounded curvature).
M
Or:
() Let f: R — R be the exponential function composed with itself m-times, and
p: M — Ry the distance function from a fixed base point b, p(x) := dist(x, b). We assume

that

(¢1) p: M — Bgr(b) — R is smooth for some R > 0, and k-concave there, that is

Vi <k,

©) im (( sup [Riem()|/£(7)) =0

=% \ xeB,(b)
Remark 1.5. Note that condition (c) is trivially satisfied if M is compact.

Remark 1.6. Assume (C,) is satisfied for some m € N, and that the sectional curva-
tures of (M,g) are larger than —/ on M and that cut(b) n (M — Bg(b)) = 0 for some
R > 0. Then condition (¢,) is satisfied for some k = k(n,/) and some larger m (depending
on the initial m), as one sees using the Hessian comparison principle (see for example [38],
Chapter 1).

Under these restrictions, we obtain that the conjecture of Anderson—Cheeger—
Colding-Tian is correct. That is, we prove:



62 Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below

Theorem 1.7. Let (X,dyx) be a metric space arising as the GH limit of a sequence of
three dimensional Riemannian manifolds (M, g;), i € N, each of which satisfies (a), (b) and
(c) or each of which satisfies (a), (b) and (). Then X is a three dimensional manifold. If fur-
thermore each of the (M;,g;) has diameter bounded above by a uniform constant dy < oo,
then M; is diffeomorphic to X for all i sufficiently large.

Remark 1.8. In the case that all manifolds in the sequence above satisfy a two
sided Ricci curvature bound, |Ricci| < k2, a bound on the integral of the curvature tensor
| ]Riem]3/ < Dand (b) is satisfied, M. Anderson also proved that the limit space X is

M
a manifold: see [2], Corollary 2.8. Later, Cheeger—Colding—Tian (see [10], Theorem 1.15)
proved that the singular set of the limit space (X, dy) is empty, if all manifolds occurring

in the sequence above satisfy (a), (b) and |Riem|3/ 2 < D for all balls of radius one. The
B] (X)
condition “Riem]y ? < D prohibits non-flat cones over spheres occurring in (X, d).
M

Theorem 1.7 allows the occurrence of such cones.

The method we use to prove this theorem is as follows. Let (M i gi(O)) be a sequence
of manifolds satisfying (a), (b) and (c). We flow each of the (M;,g;(0)) by Ricci flow to
obtain solutions (M;, g;(1)) 0.7 Then we prove uniform estimates (independent of i) for

the solutions. Once we have these estimates, we are able to take a limit of these solutions,
to obtain a new solution (M, g(r)) 1e(0.7) where M is some manifold. This solution will

also (by construction: it is a smooth limit) satisfy similar estimates to those obtained for
(Mi’gi(t))ze[O.T,-)' Using these estimates, we show that (M,d(g(r))) — (X,dx) in the
Gromov-Hausdorff sense as ¢\, 0, and that in fact X is diffeomorphic to M. The
most important step in this procedure is proving uniform estimates for the solutions
(M, 9:(1)) ief0.1)- The case that the (M, g:(0)) satisfy (a), (b) and (C) is reduced to the case

that the (M, g;(0)) satisfy (a), (b) and (c) by a conformal deformation of the starting
metrics (which leave the starting metrics unchanged on larger and larger balls as i — oo:
see Section 8 for details).

The estimates we require to carry out this procedure are obtained in the following
theorem (see Theorem 9.1):

Theorem 1.9. Let ke R, 0 <voe R, me N and (M, go) be a three (two) manifold
satisfying (a), (b) and (C) with constants k, vy and m respectively. Then there exists a
T = T(vo,k,m) > 0 and K = K(vo,k,m) >0 and a solution (M, g(1)) to Ricci flow

tel0,7)
satisfying

(a;) Ricci(g(t)) =2 —K?, Vi e (0,7),
(b)) vol(Bi(x,t)) =
(c) sup|Riem(g(1))| <

(d)) eX*d(p,q,5) Z d(p,q,t) = d(p,q,5) — K> (V1 —/5) forall0 < s < te (0, T)

(note that these estimates are trivial for t = 0).
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Remark 1.10. A similar result was proved in the paper [42] (see Theorem 7.1 there),
under the extra assumptions that (M, go) has

diam(M,go) <dy < oo and Ricci(gy) = —&o(do, v9) where &(dp, vg) > 0

is a small constant depending on dj, and vy.

To help us prove Theorem 1.9 we prove estimates on the rate at which the infimum of
the Ricci curvature can decrease, and on the rate at which the distance function and volume
of such a solution can change (see Lemmas 6.1 and 6.2). As an application of Theorem 1.9
and these estimates we get (Theorem 9.2 in this paper).

Theorem 1.11. Let k, vy, m € R be fixed. Let (M;,'gy) be a sequence of three (or two)
manifolds satisfying (a), (b), (c) or (a), (b), (C) (with constants k, vy, m independent of i)
and let (X,d,x) = lim(M;,d(‘go),x;) be a pointed Gromov—Hausdorff limit of this

sequence. Let (M,-7 ig(l)) re(0.7) be the solutions to Ricci flow coming from the theorem

above. Then (after taking a sub-sequence if necessary) there exists a Hamilton limit solution
(M7 g(t)7 X)IE(O, T) = lllg}; (Mi7 lg(l)7 xi)te(O, T) Satisfying (at)> (bt)> (Ct)7 (dt)> and.

(i) (M,d(g(1)),x) — (X,d,x) in the Gromov—Hausdorff sense as t — 0.
(i) M is diffeomorphic to X. In particular, X is a manifold.

As a corollary to this result and Lemma 5.1 we obtain the following corollary
(Corollary 9.4 in this paper):

Corollary 1.12.  Let (M;,'go), i € N be a sequence of three (or two) manifolds satisfy-
ing (b), (c) or (b), (C), and

| —

Ricci(M;, 'go) = — .

~

Let (X,dy) = GH lim (M;,d('go)) (notation GH lim refers to the Gromov—Hausdorff limit).

Then the solution (M ,9(1), x) ) obtained in Theorem 1.11 satisfies

te(0,T
Ricci(g(7)) 2 0
for all 1€ (0, T) and (X,dy) is diffeomorphic to (M,g(t)) for all t € (0, T). In particular,

combining this with the results of W. X. Shi [40] and R. Hamilton [20], we get that (X,dy)

is diffeomorphic to R3, S? x R or S* modulo a group of fixed point free isometries in the
standard metric.

2. Previous results
We present here some previous results related to Ricci flow of non-smooth metrics.

In the paper [41], the Ricci flow of continuous metrics is considered. Estimates similar
to those in Theorem 1.9 are proved.
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In the paper [12] Kéhler Ricci flow of L™ Kéhler metrics is considered.

In the paper [48] the author considers the Ricci flow of initial metrics which have
(uniformly) small curvature in the L"/> norm, bounded Ricci curvature in the 7 norm
(p > (n/2)), and satisfy a volume and diameter bound. He proves using Moser iteration,
that estimates similar to (c;) of Theorem 1.9 hold under the Ricci flow of such a metric.

In the paper [47], the class of metrics with |Ricci| < 1 and conjugate radius bigger
than ry is considered. The authors prove estimates similar to (c,) of Theorem 1.9 once again
using Moser iteration.

In the paper [35], the author proves an estimate of the form (c;) of Theorem 1.9,
under the assumption that all neighbourhoods are almost Euclidean, and the scalar curva-
ture is bounded from below. Here, a blow up argument is used, and an analysis of a back-
ward evolving heat-type flow (see also [34] and [8]).

In the paper [19], the author extends the results of Yang to the case that the manifold
is non-compact, and Ricci = —1 and an L? bound on the curvature holds (p > (n/2)) (see
also [28]).

The case that the L/ curvature is small locally, and an L? bound on the norm of
the Ricci curvature exists, is considered in the paper [46].

The Ricci flow of compact manifolds with vol = 1, diam < dj and Ricci = —¢(d, n),
&(dy,n) small is investigated in [42].
3. Methods and structure of this paper
As explained in the introduction, we shall chiefly be concerned with Riemannian
manifolds (M, g) which are contained in 7 (3, k,m,vy) or 7, (3,k,vy), where these two

spaces are defined as follows:

Definition 3.1. We say (M,g) € 7, (n,k,vo) if (M",g) is a smooth n-dimensional
Riemannian manifold satisfying

(a) Ricci(g) = k,
(b) vol(“By(x)) = vo > 0 for all x e M,

(c) sup|Riem(g)| < 0.
M

We say (M, g) € 7 (n,k,m,vp) if (a) and (b) are satisfied and the condition (c) is replaced
by

(¢) Let f: R — R be the exponential function composed with its self m-times, and
p: M — Ry the distance function from a fixed base point b, p(x) := dist(x, b). We assume
that
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(¢1) p: M — Bgr(b) — R is smooth for some R > 0, and p is k-concave there, that
is

Vi <k,

on M — Bg(b) and

(C2) lim ( sup |Riem(x)|/f(r)) =0.

=% \ xeB,(b)

Let us define .7 (n,k,m,vy) (7. (n,k,v0)) as the set of metric spaces (X,dy) which
arise as the Gromov—Hausdorff limit of sequences whose elements are contained in
T (n,k,m,vo) (7 (n,k,vo)). Elements of 7 (n,k,m,vo) (7 (n,k,v0)) can be very irregu-
lar, and are not a priori manifolds (as we saw in the two examples of the introduction).
Nevertheless, they will be length spaces and do carry some structure. In the first part of
the paper we concern ourselves only with 7., (3,k,vp). Assume (X,dy) € 7..(3,k,vp) is
given by (X,dy)=GH ilirg(Mf,d(g,-)) for (M;,9:) € 7,(3,k,v9). In order to define a

Ricci flow of (X,dy) we will flow each of the (M?,g;) and then take a Hamilton limit of
the solutions (see [23]). The two main obstacles to this procedure are:

e It is possible that the solutions (Mi,g[(z)) are defined only for 7€ [0, 7;) where
T, — 0asi— oo.

e In order to take this limit, we require that each of the solutions satisfy uniform
bounds of the form

sEp|Riem(g,-(t))| <|e(t)| Vte(0,T),

for some well-defined common time interval (0,7) and some function c¢:(0,7) — R

where sup |c¢| < oo for all [R,S] < (0,T) (c(t) — oo as t — 0 is allowed). Furthermore,
[R,S]

they should all satisfy a uniform lower bound on the injectivity radius of the form
inj(M, gi(t0)) = g9 >0
for some 7y € (0, T).

As a first step to solving these two problems, in Lemma 4.3 of Section 4, we see

that a (three dimensional) smooth solution to the Ricci flow (M, ¢(t)) re0.7) such that
(M,g(1)) € 750 (3,k,v9) for all 7€[0,T) and sup |Riem|< co for all S < 7T cannot
Mx[0,S]

become singular at time 7'. Furthermore, a bound of the form

co(k, vo)
t

(3.1) [Riem(g(1))| < Vte[0,T)n]0,1]

for such solutions is proved: that is, the curvature of such solutions is quickly smoothed
out.
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In Section 5, we prove an a priori estimate on the rate (Lemma 5.1) at which the
infimum of the Ricci curvature of a solution to the Ricci flow with bounded curvature can
decrease. Note: this lemma is a non-compact version of [42], Lemma 5.1.

Lemma 3.2. Let go be a smooth metric on a 3-dimensional non-compact manifold M>
satisfying
Riceian) = - 210
&
4 go)

(sec(go) = —

for some 0 < & < 1/100, and let (M, g(-,1))

) be a smooth solution to Ricci flow with
bounded curvature at all times. Then

te[0,T

(3.2) Ricci(g(1)) = —eo(1 + k)g(r) — eo(1 + kt)tR (g(2)) 9(2)
Vie0,T) [0, T
(sec(g(r)) = —&o G + kt)g(t) — & G + kt) R (g(1)g(t),

Vie[0,T)n[0,T"),

where k = 100 and T' = T'(100) > 0 is a universal constant.

One of the major applications of this lemma is: any solution (M ,g(~,t)) re[0.7) in
T+ (3,k,v9) which has bounded curvature at all times and satisfies Ricci(gg) = —é&y at

time zero, must also satisfy R (g(7)) < 6’70 (from (3.1)) and hence from (3.2)
Ricci(g(1)) = —2coeg Vi e (0,T") " (0,T) n (0,1).
In Section 6, we consider smooth solutions to the Ricci flow which satisfy

Ricci(g(1)) = —co,

IRiem(g(1)) |1 < co.

In Lemma 6.1, well-known bounds on the evolving distance for a solution to the Ricci flow
are proved for such solutions.

We combine this lemma with some results on Gromov—Hausdorff convergence and
a theorem of Cheeger—Colding (from the paper [9]) to show (Corollary 6.2) that such
solutions can only lose volume at a controlled rate.

The results of the previous sections are then used to prove a theorem (Section 7)
which tells us how a priori the Ricci flow of an element (M, go) € 7.,(3,k,v9) behaves:
see Theorem 7.1.
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In Section 8, we show that any (M,g) € 7 (n,k,m,vy) can be approximated in the
GH sense by manifolds (M, g;) € 7., (n,k, ), i € N. More precisely, we show that there
exists 0y = vo(n, k,m,v9) > 0 and (M;, g;) € T, (n, k, vy) with

(90| B,x0) = 91B.(x0)

such that (M, d(g;)) — (M,d(g)) in the Gromov—HausdorfT sense as i — co. This section
is independent of the rest of the paper, and requires no knowledge of the Ricci flow.

Finally, using the results of the previous two sections, we show that a solution to the
Ricci flow of (X, dy) exists, where (X,dy) is the Gromov—Hausdorff limit as i — oo of
(Mi, d(gi)) where the (M;, g;) are in 7 (3,k,m,vy), and that this solution satisfies certain
a priori estimates. See Theorem 9.2.

Appendix A contains some Hessian comparison principles and the proofs thereof.
Appendix B contains a result on the rate at which distance changes under Ricci flow if the
solution satisfies |Riem| < ¢/1.

4. Bounding the blow up time from below using bounds on the geometry

An important property of the Ricci flow is that: if certain geometrical quantities are
controlled (bounded) on a half open finite time interval [0, 7'), then the solution does not
become singular as ¢ /T and may be extended to a solution defined on the time interval
[0, T + ¢) for some ¢ > 0. As in the paper [42], we are interested in the question:

Problem 4.1. What elements of the geometry need to be controlled, in order to guar-
antee that a solution does not become singular?

In [39], it was shown that for (M, gy) a smooth non-compact Riemannian manifold
with sup |Riem(gy)| < oo, the Ricci flow equation
M

%g = —2Ricci(g),
9(70) = 9o,

has a short time solution (M, ¢(t)) ) for some T = T'(ko, n) satisfying

tel0, T

sup|Riem(g(¢))| < 0 Vte[0,T)
M

(the compact case was proved by Hamilton in [20]). Using Shi’s solution ([39], Theorem 1.1),

we can find a solution (M, ¢(7)) rcpo.7) Satisfying

sup|Riem(g(1))| < 0 Vie[0,T),
M

(4.1) . :
lim sjl‘llp|R1em(g(t))| = o0,
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or

T = o,
42) {sﬁgp;mem(gm)» <o Vie[D,w)

Definition 4.2. A solution (M, g(1)) e, 0 Ricci flow which satisfies either (4.1)
or (4.2) is called a maximal solution with bounded curvature (or maximal with BC).

It was also shown in Shi [39] that if (M, ¢(¢)) 1e0.7) is a smooth solution with 7' < oo

and sup |Riem| < co, then there exists an ¢ > 0 and a solution (M, h(r)) ,» With
Mx[0,T)

h|[O7T) :g|[O,T)

tel0,T+e

So we see that a bound on the supremum of the Riemannian curvature on M x [0, T)
(that is, control of this geometrical quantity) guarantees that this solution does not become
singular as ¢ / T, and that it may be extended past time 7" (where we are assuming here
that 7' < o0). In the following lemma, we present other bounds on geometrical quantities
which guarantee that a solution to the Ricci flow does not become singular as ¢ T (once
again, T < oo is being assumed here).

Lemma 4.3. Let (M3<"), g(l))te[o ) T <1, be an arbitrary smooth complete solution
to Ricci flow satisfying the conditions

(1) Ricci(g(t)) > —kZ(.%(g(l)) > —kz),
(i) vol(B(x,1)) = v > 0 for all x e M,

(iii) szp|Riem(g(t))| < o0,

for all te[0,T) (notation: R refers to the curvature operator). Then there exists a
co = ¢o(vo, k) (co = co(vo, k,n)) such that

sup|Riem(g(2)) |t < co,
M

forall t€ 0, T). In particular, (M3, g(t)) is not maximal with BC.

tel0,T)

Proof. Assume to the contrary that there exist solutions (M i ig(t))
Ricci flow satisfying the conditions (i), (ii) and (iii) and such that

refo,ry i = 1, to

sup  |Riem(‘g)|(x, 1) =2 oo,
(X, Z) EM;X(O, T,)

or there exists some j € N with

sup IRiem(/g)|(x, 1)t = oo.
(x7 7) € M;x (07 Tj)
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It is then possible to choose points (p;,t;) € M; x [0,T;) (or in M; x [0, T;): in this
case we redefine M; = M; and T; = T; for all i € N and hence we do not need to treat this
case separately) such that

IRiem(‘g)|(pi, t)ti = —&:+  sup  [Riem(‘g)|(x, )1 — oo
()CJ)EM,’X(O,I,’]

as i — oo where ¢; — 0 as i — oo. Define

o ;
lg(vt) = cilg<'7 ti +_)>
Ci

where ¢; := |[Riem('g)|(p;, t;). This solution to the Ricci flow is defined for 0 < ¢, + — < Tj,
Ci

that is, at least for 0 =7 > —t;c; =: A;. Then the solution ‘G(z) is defined at least
for e (—4;,0). By the choice of (p;,t;) we see that the solution is defined for

i>—A; = —tic; = —t;|Riem(g)|(pi, t;,) =5 —o0. Since t; < T; < 1, we also have
(4.3) ¢ =35 o,

in view of the fact that
tic; = t;|Riem(‘g)|(ps, t;) == 0.

. . . . ¢
Fix a constant 4 € (—4;,0]. For any 7 with —4; < A < ¢ < 0 define s(7,i) := t; +—. Then
for all such 7 we have Ci

(4.4) Riem(‘g)|(-,7) = 1 [Riem('q)]|(-,s(i,1))
_ [Riem('g)|(-,s(. )
Riem(g)] (7 1)

_ s|Riem("g)[(-,5) 4
ti[Riem(‘g)|(pi, i)

I
—
—
_|_
&
~—
>

in view of the definition of (p;,#;), and 0 < s < ¢; (follows from the definition of s and the
fact that 7 < 0), and (4.3). Since vol(B;(p), 'g(r)) = vy > 0 and Ricci = —k* (% = —n*k?)
(in the case n = 3 this is true by assumption, in the general case it is true as all sectional
curvatures are not less than —k?), we have

vol(B.(p), g(1))

o0 > I(n,v9) = = 0o(n,v9) >0 VI>r>0
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(in view of the Bishop—Gromov comparison principle) which implies the same result (for
radii scaled appropriately) for the rescaling of the manifolds:

vol(B:(p),'4(1))

rn

(4.5) I(n,v9) =

> vo(n,v9) Vy/ci >r>0.

Now using

vol(B.(p), 4(1))

rﬂ

(4.6) =

we obtain a bound on the injectivity radius from below, in view of the theorem of Cheeger—
Gromov-Taylor, [11]. (The theorem of Cheeger—Gromov-Taylor says that for a complete
Riemannian manifold (M, g) with |Riem| < 1, we have

vol(g, B:(x))
vol(g, B:(x)) + w, exp”~!’

inj(x,g) = r

for all r < n/4: in particular, using that diam(M,g) = N, N as large as we like, and
|[Riem| < 2 for the Riemannian manifolds in question, we obtain

Sn+1

inj(x,g) = 50W = 62(50,11) >0

for s = min((w, exp” 1)1, n/4).)

This allows us to take a pointed Hamilton limit (see [23]), which leads to a Ricci flow
solution (Q, o, g(t)te(_ooiw)), with [Riem(g(7))| < [Riem(o,0)| = 1, and Ricci = 0 (%2 = 0),
w = 0. '

In fact, the limit solution satisfies # = 0 for n = 3 also, see [14], Corollary 9.8.

The volume ratio estimates

vol(B,(p))
3

(4.7) 1= >5 Vr>0

are also valid for (Q, g), in view of (4.5).

We now apply [35], Proposition 11.4, to obtain a contradiction. [

5. Bounds on the Ricci curvature from below under Ricci flow in three dimensions
The results of this section are only valid in dimensions two and three.

We prove a quantitative estimate that tells us how quickly the Ricci curvature can
decrease, if we assume at time zero that the Ricci curvature is not less than —1 and that
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the supremum of the curvature of the evolving metric is less than infinity. This involves
modifying the argument from [42] to the case that M is non-compact. This result has simi-
larities to the estimate of Hamilton—Ivey (see [22] or [25] for a proof of the Hamilton—Ivey
estimate, which was independently obtained by R. Hamilton and T. Ivey). For a general
heat type equation on a non-compact manifold f : M x [0, 7] — R,

0
Ef:Ag(t)f+af+g(V7Vf)7

it is well known that the maximum principle does not hold for general solutions f, and for
general " and a. In the case that ¢ and V' are bounded, there are a number of maximum
principles which can be applied as long as the growth of f is controlled, and the evolving

%g < ¢): see for example [16], [33]. In

metric ¢ satisfies certain conditions (for example

the case of tensors, there are also a number of theorems which present conditions which
guarantee that the tensor maximum principle of Hamilton holds in a non-compact setting:
see for example [32], Theorem 2.1, and [41], Theorem 7.1.

In the proof of the lemma below we construct a tensor L which satisfies
_ZL > AL+ N where L(-,0) 20 and L(x,#) = ¢> 0 for all x far away from an origin,
and N(xo,%)(v,v) = 0 for all v which satisfy L(xo,?)(v,v) = 0. This allows us to argue
exactly as in the proof of the tensor maximum principle for compact manifolds (proved
by R. Hamilton in [20]) to conclude that L = 0 everywhere if L = 0 at 1 = 0.

Lemma 5.1. Let gy be a smooth metric on a 3-dimensional (or 2-dimensional) mani-
fold M>®? satisfying sup |Riem(go)| < o0, and
M

. & &
Ricci(go) = —Zogo (sec(go) = —Zogo>7

for some 0 < & < 1/100. Let (M, g(-, 1))
and sup |Riem(g(1))| < co. Then
Mx[0,T)

re(0,7] be a solution to Ricci flow with g(0) = go(+)

Ricci(g(1)) = —eo(1 + k)g(1) — eo(1 + kt)tR (g(2)) g(2)

(sec(g(1) = —a (§+ kr)gm — 2 (§+ kz) R (¢(0)9(1))

SJorallt€[0,T) N[0, T") where k = 100 and T’ > 0 is a universal constant.

Proof.  The proof is a non-compact version of the proof in [42]. We prove the case
n =73 (for n = 2 simply take N = M x S').

Define ¢ = ¢(¢) = ¢(1 + kt), and the tensor L(¢) by

L; := Ricci; + eRtgy + egij + afyy,
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where o <& and f = e/ (1H0Ha p(x 1) := dist(g(1)) (xo,x) for some fixed xo, and

a= IOOOn(l + sup ]Riem(g(l)ﬂ). We will often write ¢ for () (not to be confused
Mx[0,7]
with &). Notice that g < &(¢) < 2¢, for all ¢ € [0,%) = {O,ﬁ): we will use this freely.

Then L! = (R/ 4 ¢R15] + &5/ + gfd!), and as in the paper [42], we calculate:

0 0
(EL)]— (AL); + Nij — aAfg; + 0’(@/’) 9ijs

and Nj; is (up to the constant k = 100) the same as the tensor from the paper [42],
Njj:= =0y + 2R,-kijgkm +eRyg;i + 28[|Ricci|2gl;,- + keotRgy; + keogi — 2L5Rj1,

where Q; := 6gX' Ry Ry — 3RR;; + (R? — 28)g;;. For our choice of a we get

0 a
—L) = (AL); i +=afg;i
(6[ >l]_( )U—I—N]—i-zafg_,

for ta < 1 in view of the Laplacian comparison principle (see the Hessian comparison prin-
ciple in Appendix A), as long as p? is smooth in time and space where we differentiate.

In the following, we argue as in the proof of Hamilton’s maximum principle, [20],
Theorem 9.1. We claim that L;(g(z)) > 0 for all # € [0, T). Notice that / has exponential
growth, and the other terms in the definition of L are bounded. This guarantees that L > 0
outside a compact set. Hence, if L; (g(t)) > 0 is not the case, then there exists a first time
and point (po, t) and a direction w,, for which L(g(7)) (wp,, wp,)(po, to) = 0.

Choose coordinates about py so that at (pg,#) they are orthonormal, and so that
Ricci is diagonal at (po, 7)) with eigenvalues 1 < u < v. Clearly L is then also diagonal
at (po,to) with Li; = A+ &(to)toR + &(tg) + af < Ly < L33, and so L;; =0 (otherwise
L(po,ty) > 0: a contradiction). In particular,

(5.1) Nit(po,to) = (1t — )2 + Al +v) + 261A% + 211> + 2e1”
+ eRg,-j + kb‘oleij + kﬁogij,

in view of the definition of Q (see [20], Corollary 8.2, Theorems 8.3 and 8.4) and the
fact that Ly; =0. As in [42], we will show that Ni;(po, %) = Ni1(po, to) +go—f(po,to)0

which, as we will show, leads to a contradiction. Notice that R(-,0) = —¢ and
sup |Riem| <a on [0,7) implies that R(-,7) = —g for all 1€[0,7) from the
Mx[0,T)

non-compact maximum principle for functions. (This may be seen as follows: (i)
0

o (R+¢+af) 2AR+e +af) and (R +¢& + af)(x,:) > 0 for d(x,xp) large enough,
where here f is as above, (ii) this implies R = —¢y — af for all 1€ [0, T), (iii)) ¢ > 0 was
arbitrary.) Then L;; = 0= A= —¢fyR —¢ —af < 0fors < 1,and hence u +v = R = —¢.
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We will use these facts freely below. Substituting 1 = —efyR — & — af (at (po, tp)) into (5.1),
we get

Nit(po, to) = (u—v)* + (—etoR — & — af ) (1 +v)
+ 2et0(22 + p* +2) + eR + kegtRg;j + keo
> ato(—(A+p+v) (e +v) + 222 + 242 + 2v7)
—(e+af)(u+v)+ eR + keptoR + key
= eto(— (A + p+v)(p+v) + 227 + 247 +2v?)
+ (—&ty + keotg)R — & — aef + key — af (u+ v)

> eto(de + 22%) — afe+ (k — ey — af (u+v),

where here we have used that R = —¢ and —A(x + v) = Je in the last inequality (which fol-
lows from 4+ v =R = —¢ and 4 < 0). Hence,

a
(5.2) N]](po,lo)+50'f>0,

since u+v = 100"

0
The rest of the proof is standard (see [20], Theorem 9.1): extend w(po, t)) = E (po, to)

in space to a vector field w(-) in a small neighbourhood of py so that 9%)Vw(-)(po, t0) = 0,
and let w(-,7) = w(-). Then

0= (%L(w,w)) (po, to) = (AL(w,w))(po, t0) + N(w,w) > 0,

which is a contradiction.
If p? is not differentiable at (po, ty) then we may use the trick of Calabi:

Let y: [0,/ = p(po,t)] — M be a geodesic from xj to py realising the distance, and
parametrised by distance, so that p(y(s), t) = L,(y|[0,s]) = s, where L, is the length of a
curve measured using ¢(#). Since p is not differentiable at po it must be that po is a cut
point of xo. Set j(x, 1) := p(y(r), 1) + dist(g(z)) (y(r), x) for some small fixed r > 0. Then
in a parabolic neighbourhood of (py, #y), p is smooth.

Furthermore, from the triangle inequality, p(x, ) = p(x, 7). Also, p(po, t0) = p(po, to)-
Define L by

iij := Ricci; + eRtg; + egij + afg;,-,
where f = ¢ (It40+4! Then we have just shown that L > L and that L(po, 7o) = L(po, to)

oy 0 . . . .
and so we argue with L instead of L. At (po, f)) we have Fr < % pand Ap? < % (if we
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choose r small enough): that is p and p satisfy the same inequalities at (po, fo) (up to the
constant 50).

Hence, we may argue as above to obtain a contradiction.
Now letting ¢ go to zero, we get Ricci; + ¢éRtg; +¢eg;; = 0 as long as ta <1 and
. 1 . . :
tk < 1. But then, we may argue as above starting at #y = —, but now with f} in place of f,
a

fi = er’(tali—)+a(t—1) to obtain the same result on [0, 27] as long as tk < 1. Continuing in
this way, we see that Ricci; + éRtg; +eg; = 0 as long as tk < 1.

The case for the sectional curvatures is similar: from [21], Section 5, we know that the
reaction equations for the curvature operator are

%a=a2+ﬁ%
0 2
&ﬁ_ﬁ +OCV7
J )
Ey—y + af.

It is shown in [42] (in the proof of the compact version of this lemma) that (for
&(t) == %(80 + kt)) either % (a0 +etR+¢€) >0or
(5.3) %(oc + &R + &) = e(a+ B) + keotR + keg + (o + &fR + €)y.
Also f := er’(Itan+at gatisfies
Creartds

at the points where f is smooth and fa < 1. So the ordinary differential equation for f
satisfies

(54) =S

at the points where f is smooth and ta < 1.

Since f is exponential in distance, the points where o 4 ¢/R + ¢ + gf < 0 is a compact
set. Hence, if o + ¢fR + ¢ + gf > 0 is not true, then there must exist a first time and point
(po, t) where this fails. At such a point (po, r) we have (from (5.3) and (5.4)):

(5.5) %(a—l—stR—i—&Faf) = e(o+ f) + keotR + key + (oc+£tR+8)y+gaf
=é&(o+ f) + kegtR + keg — af 'y —l—gaf

> 2eo+ keptR + key + gaf,
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as long as ta < 1, where we have used that o 4 &fR + ¢ = —gf, and that |y| £ —. Using
_ 10 0
o+ eR+¢e= —af again, we get

e 4 kegtR + key + Zaf = 2¢(—etR — ¢ — af) + keoptR + key + gof
a
= (k—2)e —i—Zo'f
> 0,

1
since R = —3g is preserved by the flow, and 7 < © Hence, inserting this into (5.5) we get

a

%(a+8tR+e—|—af)>O

at a point where o + ¢fR + ¢+ gf = 0. Choose an orthonormal basis for the two forms
at (po.to): ¢' = (') dx' ndx!, ¢* = (§°);dx' ndx!, ¢* = (§); dx' Adx/ (time indepen-
dent by deﬁnition) 'for which the curvature operator is diagonal, and assume that
%(qﬁl , ¢1) Rkl ¢U . 1s the smallest eigen-value of the curvature operator Z. Then we have

C(RHp, (8, (¢ ) + R 45+ o),

(Posto)
> (AR) [jkl(p()v ZO)(¢ ) (¢ )kl + A(‘?ZR +e+ O-f) (po,to)*

Using the maximum principle, we obtain the result by arguing as in the case of the
Ricci curvature above (once again, if this inequality is violated at some point and first
time, then we may need to modify p in order to make sure that it is smooth, as in the argu-
ment above for the Ricci curvature). [

6. Bounding the distance and volume growth in terms of the curvature
The results of this section hold for all dimensions.

Lemma 6.1. Let (M",9(1)),_, 7 be a smooth solution to Ricci flow with

e,
(6.1) Ricci(g(1)) = —1,

‘Rlem(g(t))|

||/\

Then

(62) e d(p,q,5) 2 d(p,q.1) Z d(p,q,5) — c2(n, co) (V1 — V/5)
forall 0 <s=<tel0,T).

Proof.  These results essentially follow from [22], Theorem 17.2 (with a slight modi-

fication of the proof suggested by the editors in [5]: see Appendix B) and [22], Lemma 17.3:
see Appendix B for a proof. []
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Corollary 6.2. Let (M ",g(t)) re0.7) be an arbitrary smooth solution to Ricci flow
(9(0) = go) satisfying the condition (6.1) and assume that there exists vy > 0 such that

Vol(Bl(x,O)) 2v9>0 VxeM.
Then there exists an S = S(co, vo,n) > 0 such that

21)0

vol(By(x,1)) = = >0 VxeM, vie [0,8) N[0, T).

Notice that this then implies

1(B.(x,1) _ 2e~"
Vo(rn(x ))g 63”‘) V1> r>0,

in view of the Bishop—Gromov comparison principle.

Proof. If this were not the case, then there exists solutions (Mi",ig(t)) (0,7
satisfying the stated conditions and there exists # € [0, T}), ;=% 0 and points p; € M;

such that vol(By(p;, 1;)) < % A subsequence of (M;,d('g(0)), p;) converges to (Y,d, p)

in the pointed Gromov—HausdorfT limit. Clearly then (M;,d('g(#;)), pi) also converges
to (Y,d,p), in view of the characterisation of Gromov—Hausdorff convergence given
in [4], Corollary 7.3.28, and the estimates (6.2) (since #; — 0). The theorem of Cheeger
and Colding says that volume is continuous under the limit of non-collapsing spaces with
Ricci curvature bounded from below:

lim vol(B (p;, 1;)) = #" (Bi(p)) = zlir?o vol(Bi (p:,0)).

1— o0

But this is a contradiction as we then have

% > VOl(Bl (pi, [,‘)) — an(Bl (p)) = 111’1’1 VOl(Bl (pi,O)) >v9. [

3 i

7. Non-collapsed non-compact three manifolds with curvature bounded from below
The results of this section are only valid for dimensions two and three.

Theorem 7.1. Let (M,gy) be a complete smooth three (or two) manifold without
boundary in 7,(3,k,vo): that is

(a) Ricci(go) = k,
(b) VOl(gOBl (x)) 2v9>0,Vxe M,

(c) sup|Riem(gy)| < oo.
M
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Then there exists an S = S(vo,k) >0 and K = K(vo, k) and a solution (M, g(t)) to

. tel0,7)
Ricci flow which satisfies T = S, and

(7.1)  (a) Ricci(g(r)) = —K*, Vte(0,T),

(b)) vol("By(x)) = “70 >0,Vxe M, Ve (0,T),

KZ
T, VIG(O,T),

(€)  sup|Riem(y(1))| =
(dl) eq((‘O,n)(t_S)d(p?qv S) g d(p7 q, t) é d(p7 qu) - 62(7’1, CO)(\/E - \/§>7
VO<s=<te(0,7).

(Note that the estimates are trivial for = 0.)

Proof. We assume n = 3. The argument for n = 2 is the same. Before proving the
theorem rigorously, we present a sketch of the proof which leaves out the technical details.
This should give the reader a clear picture of the structure of the proof. As a first step, we
scale the metric by a large constant, so that Ricci(gg) = —¢ for a small ¢ = ¢(vg, k) > 0. The
condition

(7.2) vol(B,(x)) 2 o’ VO <r<1

for some oy = 0y (vo, k) > 0, which is true in view of the Bishop—Gromov volume compari-
son principle, remains valid under this scaling.

Now flow this metric for a maximal amount of time. Let [0, 7)) be the maximal time
interval for which the flow exists and

. 2]
(7.3) ;BLVOI(BI (x,1)) > >
(7.4) 1}‘111“ Ricci(g(x, 1)) > —1,

for all # € [0, Ts). Using the maximum principle and standard ODE estimates, one shows
easily that T, > 0. The aim is now to show that 7, = S for some S = S(%) > 0. From
Lemma 4.3 we see that if 7, = 1 then the estimates (a,), (b,) and (c,) are satisfied. So
w.lo.g. Ty < 1. From Lemma 4.3 again,

Co(ﬁo)
t

|Riem(g(t))’ <

for all 7€ (0,7y). Using Lemma 5.1 we see that Ricci = —2¢Rt—2¢ for all
te[0,T") n (0, Ty) for some universal constant 7/ > (. But these two estimates combined
imply Ricci = —1/2 for all t€[0,T") n (0, Ty ) if 2eco < 1/4 (we assume ¢y > 1). We
assume that we have chosen ¢ small enough, in order that this estimate holds. Similarly,

. . - 2
using 6.2, there exists a 7" = T"(¥y,co) >0, such that vol(B(x,1)) >% for all

tel0,7)n[0,T") N[0, Ty). If Tpy < min(7’, T"), then we obtain a contradiction to the
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definition of Ty, (T should be thought of as the first time where at least one of the
conditions (7.3) or (7.4) is violated). Hence T = min(7’, T”) =: S. But then we may use
4.3 again to show that (a,), (b;), (c;) are satisfied on (0, S). Scaling back to the original es-
timates leads to rescaled estimates (a,), (b;), (c;) (with other constants). (d,) follows imme-
diately from Lemma 6.1. Now we prove the theorem rigorously.

By the Bishop—Gromov volume comparison principle, we have
(7.5) vol(®B,(x)) = dpr* VO <r<1,

for some @y = 0y(vg,k) > 0. Rescale the metric by the constant 1000¢) so that

Ricci(gy) = —¢ where ¢ = and ¢y = ¢ (3, —1,1;)) is from the Lemma 4.3. Notice

1000cq
that (1.5) is still true for this new rescaled metric, as we have scaled by a constant which is
larger than 1. We denote our rescaled metric also by gj.

From the work of W. Shi (see [39], main theorem) we know that there exists a solu-
tion (M, g(1)) to Ricci flow, with g(0) = go,

tel0,7)
sup|Riem(g(1))| < oo
M

for all 7 € [0, T'). Without loss of generality, (M, ¢(¢)) /[0, 1) is @ maximal solution with BC

in the sense of Definition 4.2. Let T, be the supremum over all S < T such that

. (%]
(7.6) xlggvol(Bl(x, 1) > >
(7.7) %f Ricci(g(x, 1)) > —1

for all 7€[0,5)n[0,7T). First we show that 7), > 0. We have bounded curvature on
compact time intervals, N(§) := sup |Riem(g(¢))| < oo, and hence
Mx[0,T-9]

(7.8) gg1 < ()

on such time intervals, which implies vol(B(x,7)) = vol(B(x,0))(1 — o) for t<H
H = H(o, N) small enough (¢ > 0 is an arbitrary constant). Also,

0 .
E Ricci = A Ricci — ¢(N)g,
which implies (choose a = a(N, ¢) large enough)
0 0. . .
p (Ricei + eexp? 1740+ gy > A(Ricei + £ expl? e+ g)

for t < K, K = K(N,¢) small enough (see the argument in the proof of Lemma 5.1) at all
points where p? is differentiable. Since Ricci + ¢exp?’(1t40+a0 g must take its infimum
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at an interior point, we get (arguing as in the proof of Lemma 5.1 for some fixed base
point xg) Ricci = —2¢ for 1 < K small enough as the base point was arbitrary. This means,
that the conditions are not violated for a short time.

Due to Lemma 4.3 we have Ty, < T: if Ty; = T, then we could extend the solution
to the time interval [0, 7 + ¢) for some small ¢ using the result of Shi (see the discussion
at the beginning of Section 2) and Lemma 4.3, which would contradict the definition
of T. W.lo.g. Ty < 1: otherwise we may apply Lemma 4.3 to immediately obtain the

result. From the same lemma (Lemma 4.3), we know that there exists a ¢y = ¢ <% such
that |Riem|(7) < C—to, for all 7€ [0, Ty ). Using Lemma 5.1 and the fact that R(7) < C—ZO
(combined with the choice of ¢)) we see that there exists a global constant 7' such
that Ricci = —% for all 1€ [0,7Ty)Nn[0,7'). So the Ricci curvature condition is not
violated on this time interval. Furthermore, in view of Corollary 6.2, there exists a
T" = T"(ty) > 0, such that vol(B(x, 1)) > ? forall 1€ [0,7")n[0,T") N[0, Ty) for all
x € M. So the volume condition is not violated on this time interval.

From the definition of T, T’ and T” we have T = T); = min(7", T') =: S(v).

So we have a well-defined time interval for which the conditions (7.6) and (7.7) are

. . G C
not violated. Furthermore, the curvature is like 70 on this time interval. Hence we have
. Co
Riem(g(1)] = <,

and

Ricci = —1

for all t £ S. Now we rescale the metric back, to obtain the result: the rescaled solution
h(-,7) = (1/1000co)g(-, 1000coz) is the desired solution. Its initial value is given by go (go
is as in the beginning of the proof of the theorem) and it satisfies the required estimates

by scaling (|Riem| < 70 is a scale invariant inequality, and the estimate ‘Ricci = —1 for all

t <8 scales to ‘Ricci = —1000¢ for all t < .S/(c91000)’). That the volume of a ball of
radius one is larger than vy/2 for the evolving metric follows from the corollary of the
previous section (after shortening the time interval if necessary). The estimate (d,) follows
immediately from Lemma 6.1. []

8. Conformal deformation of non-collapsed manifolds with Ricci 2 —1
Let (M, g) be a manifold satisfying (a) and (b):
(a) Ricci = —k,

(b) vol(Bi(x)) = vo > 0 for all xe M.
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Estimate (b) implies that

(8.1) vol(B,(x)) = o(n, vo, k)r"  Vr>1
for some (n, vy, k) > 0 in view of the Bishop—Gromov comparison principle.

We wish to modify the metric g to a new metric g; so that

® g =g; on Bi(b),

e Ricci = —k(k,n, vy),

e sup |Riem(g;)| < oo,
M

e vol(%By(x)) = o(k,n,v9) > 0 for all x e M,
where b is a fixed origin and i € N. In the next section, we will apply the results of the

previous sections in order to flow the g;’s, and then we will take a limit in 7 of the resulting
solutions.

For convenience, we introduce the following notation:

Definition 8.1. Let /2 : R — R* be a function. We say that / is a function with con-
trolled growth if

h(x) < (expoexpo---oexp)(x),
where the function on the right-hand side is the composition of exp m times, and m is a
fixed number in N. We call functions of the type appearing in the right-hand side an expo-
nential comparison function.

We require the following help lemma about exponential comparison functions.

Lemma 8.2. Let h be an exponential comparison function, 0 < ke R, 0= pe R Let
it RY — RY, hi(x) := h((x —i)}). We have

(82)  [r” + () + [ () + 1" (r)]” < cx pe!) for all r e R,
|hi(y)] < exe™) forall y e R,
1 (y)] < ke ) forall y e RY,
1! (y)] £ ek forall y e RY,

for some constants c,, c,p, depending on p, respectively k and p, and the function h but not
on i.

Proof- The first estimate follows from the definition of an exponential comparison
function 4 and the fact that |y|? < ¢, we*! for ¢ = 0, for some constant Cq k-
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The next estimate follows from the definition of /; and the first estimate:

< et

_ Ckekh;(y)'
The third estimate may be seen as follows:

[hj(x)] = [4(x = )} ((x = D)})]
< cel4(x — i), PPl
= ail4(x = i), P[]
< Ck‘ekh((xfi)i)’ |ekhi(x)’
— cp|eHm00)| i)

= |62kh,-(x) |

)

where we have freely used the first estimate. Replacing k by (k/2), we obtain the desired
estimate. The method for estimating (4;)" is similar:

10l = [ (4= D3 ((x = )Y))|
= 12(x — )71 ((x = )*) + 16(x — ) S 1" ((x — i)Y
< 12(x — )7 |0 ((x = i)*) | + 16| (x — 1)°h" ((x — i)*)|
< ck|ekh<<x—i>“>|
= ¢l M. O

Definition 8.3. Let (M, g) be a Riemannian manifold and let f(r) := sup |Riem(g)]
B, (b)
for some fixed point » € M. We say that (M, g) has controlled geometry at infinity if

e /: Ry — R" is a function with controlled growth,

e the distance function p: (M — Br(b)) — R, p(x) = dist(g)(x,b) is smooth for
some R > 0 and k-concave there, that is V2p < kg on (M — Bg(b)).

Theorem 8.4. Let (M, g) be a smooth Riemannian manifold with controlled geometry
at infinity satisfying

(a) Ricel = —k,

(b) vol(B(x)) = vo > 0 for all xe M.
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Then there exists a family of smooth Riemannian metrics {g;}, i € N, on M satisfying
gi=g¢ forall xe Bi(p),
Ricci(g;) = —c(n, k)g;,
Vol(Bl (x0), g,-) >0y forall xe M,
sup Y|Riem(g;)| < oo.
M
Proof. Let 0 « 1 be fixed for the rest of this section. Let ¢ = h; for some ie N,

where h; is as in Lemma 8.2. Note that ¢ is a non-decreasing function ¢: Rt — R*.
Let b be a fixed base point in M. p: M — R is the distance function with respect to b:
p(x) :=dist(x, b). Let xo be an arbitrary point in M and set p, := p(xo). Let y : [0, p)] — M
be a minimising geodesic from b to xo (with unit speed). So d(y(s), y(u)) = |u — s| for all
u,s € [0, py]. As M is complete, we may extend this smoothly to a geodesic y : [0, 0) — M.
Let » > 0 be some positive number: later we will choose r to depend on p,, but at
first we simply require r to be some positive radius. Let yo := y(p, — (r/2)). In particu-

lar, d(xo, y0) = d(7(po),7(po — (r/2))) =r/2. Due to the triangle inequality we have:
d(x,x0) < d(x, yo) + d(yo,x0) = d(x, y0) + (r/2) for all x e M and hence

Bgr(yo) c Br(.X()).

Furthermore, we have d(x,b) < d(x, yo) + d(y0,b) = d(x, yo) + py — (r/2) for all xe M
and hence

B()‘,.(yo) (e B/’O (b)

In particular, using this inclusion and the fact that ¢ is non-decreasing, we have

(8.3) $(p(x)) < d(py) Vx € Bs(yo).

Now set r:= e~ (1/24n)  which is trivially less than one. We obtain a lower bound for
¢(p(x)) — d(py) for x € Bs.(yo) as follows:

First note that for all x € Bs, (o), we have by the triangle inequality
(8.4) p(x) =d(x,b) =2 d(b, yo) — d(x, yo)
= po — (r/2) — d(x, y0)
2 py— (r/2) —or
=po —r(1/2+9).
From the mean value theorem and the fact that p(x) < p, for x € Bs,(y9), we get
|#(p(x)) = d(po)| = 18" (z0)l I — p(X)
for some z, € [p(x), p,]. From the above (8.4), we have that p(x) = p, — r(1/2 + ). Hence,

|6(p(x)) = d(po)| = 19/ (z2)r(1/2 +9).

Using the third estimate of (8.2), and the fact that ¢ is non-decreasing, we get
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(8.5) |#(p(x)) = d(py)| = cleVP?E|r(1/2 +6)
< C|e(1/2)¢(/’o)|r(1/2 +9)
=c(1/2+9),

in view of the definition of r.

Define §(x) := e?(?()g(x). Balls with respect to § will be denoted with a tilde: By(p)
is the ball with radius s and centre p € M with respect to g. We denote distance with respect
to g also with a tilde: d(x, y) is the distance with respect to g from x to y. The volume form
with respect to g is denoted by du,, and that of g with du;. We wish to show that (M, g) is
also non-collapsed. Let x € M be given.

Claim: Bs.(y9) < By(xp). Leto:[0,1] — Bs (o) be a length minimising geodesic of
unit speed with respect to g, / < dr, a(0) = yo, x = (/) € Bs(y0). Then

d(yo,x) = d(yo,0(l))

lIA
S——

g(a’(s), a’(s)) ds

DO [ (51(s), 6'(5)) ds

I
< e(1/2)¢(po>J" g(a’(s),a’(s)) ds
0

C—~

— o/2400);

/2000 5

lIA

_ o(1/2)8(p0) 5—(1/2)8(p0)
—5<1,

in view of equation (8.3), the definition of r and the fact that ¢ is distance minimising
(w.r.t. g). Furthermore,

- Po

d(yo,x0) = [ \/d(y'(s),7'(s))ds
po—(r/2)

Po
[ e (1/24(p(1(5)) g(y/(s),y’(S)) ds

po—(r/2)

Po
< o(1/24(n0) | g(7'(s),7'(s)) ds
Po—=(r/2)

= e(1/2900) (1 /2)

= (1/2)e(1/2)¢(ﬂo)e—(1/2>¢(l’0)

=1/2,
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in view of the definition of r and the fact that y is distance minimising. Hence,

d(xo,x) < d(xo, yo) +d(x, o)
<3/2
for all x € By, (o), which proves the claim.

This means that

vol(By(x9)) = [ dz(x)

B(xo)

f dﬂg(x)
Bo‘r()’O)

:B E|" )e(n/2>¢(/1(X)) dp,(x)
or( Vo

1\

1\

[ etnP6)=e(/240) gy (x)
Bsr(y0) |

— o= (1/2)(1/2+6) ,(1/2)($(po)) | duy(x)
B{ir(y())

in view of the claim and (8.5). Hence,

v

gel2m) [y (x)
Bs:(y0)

v

ce D po)pnsny — Gt —. o,
in view of the non-collapsed condition (see (8.1)) and the definition of r = e~(1/2)#(0),

Note: é = e~ ("/2)<(1/249) » () is a universal constant which depends only on # and &
(the exponential comparison function which was used to define ¢).

The well-known formulas for the change of the metric g to § = e/ g = yg (for exam-
ple see [39], Chapter 8, equation 13) for a function f : M — R (where here  is defined to
be (x) := e/ (x)) are

_ o )

(8.7) Ricci; = Riceiy — (n — 2)2(V2f), + nTVi 1Y/
1

~5 (Af _

o . 1
Riemy = y Riemy + 5 (g (V)i — g1 (V)i — g (V2)y + g (V2))

n—

2

+ % (9 VUV — ga VbV + gV Vi — gaVip Vi)

1
+ " (gikgit — 9igin) 9™V ¥V g,
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where V/ denotes the gradient of the function /, and (V) denotes the second covariant
0
derivative of f (which is a ( 2) tensor), both w.r.t. g. In the following ¢| - | will denote the

norm with respect to g. Now let / be f(x) = ¢(p(x)) (this implies y(x) = /%) = ¢#(r())
where p is the distance function with respect to g, and ¢ : R — R is an arbitrary smooth
function. Our assumption of controlled geometry at infinity implies that 9|Vp| =1 on
M — Bg(b) and one version of the Hessian comparison principle tells us that

NIV2pl(x) £ ep(x) (Re(p(x)) + c(n)(k + 1)),

wherever p is differentiable and larger than one (see Appendix A) and here Rp : RY — R is
the function

(8.8) Rp(r) == r( sup |Riem(g)|>e<" Bﬁ;{g)\Riemw)HW
B,-(X()) '

The following identities then follow from the definitions of f(x) = #(p(x)), and
W= e¥0) = of:

(8.9) Vif (x) = ¢' (p(x)) Vip(x),
Vip(x) = e/ (x)(Vif)(x) = y(x)' (p(x)) Vip(x),
(V2f);(x) = ¢" (p(x)) Vip(x)V;p(x) + ¢' (p(x)) (V?p),;(x),

(V2);(x) = $()|¢ (p()) " Vip(x)Vip(x) + Y ()" (p(x)) Vip(x)Vip()
H ()P (p(x)) (V?p) (x).

Assume that ¢ satisfies

(8.10) '] < ce?’?,
|¢)? < ce?lt,
|9"] < ce?’*
for some universal constant ¢ not depending on k and n (later we will examine different

¢’s but they all satisfy an estimate of the form above for the same constant (b)). Using
IVp|> =1, (8.9), (8.10) and that p is k-concave, we get

IVf| < cef/g,

(sz) < ¢(n, k)ef/sg.

Hence,
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— -2
(8.11) Riceij = Ricciy — (n — 2)2(V2/), + HTVI' 1Vf

—%(Af—

= —|klgy — C(”ak)ef/3ng

n—

2 2
3 IIVf] )gz:/

2 _C(nak)gzjjy
since g;; = e‘fg,-j and f > 0.
We will assume in the following that

(8.12) lim e Re(r +2) = 0,

r—0o0

where Rg(r) is the function introduced above in (8.8). We estimate the equalities (8.9) using
the growth properties of ¢, (8.10), as follows:

8.13)  |Vy(x)|* = ep®,

IV[(x) < P (e (p(x) +2) (Re(p(x) +2) + c(n) (k + 1)).

Hence, using formula (8.7), we get

(8.14)  9|Riem| < %\Riem\ +ah () (p(x) 4+ 2) (R (p(x) +2) + e(n)(k + 1))
+ (W)
=< llp [Riem| + iy~ (p(x) +2) (Ru(p(x) +2) + c(m)(k + 1)
—0 asp(x) — oo,
in view of (8.12) and the fact that y(x) = e?(?(),

Choose ¢ = ¢,, where ¢,;(r) :== h((r — i)i) and / is an exponential comparison func-
tion such that

lim e~ VHRO Rp(r +2) = 0.

r—oo
Then trivially
(8.15) lim e BN Rp(r 4+ 2) = 0.

Note that ¢, satisfies
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(8.16) |4/] < ce?’®,
11 < e,
971 < e,

as demanded in (8.10), in view of Lemma 8.2. That is, ¢ = ¢, satisfies all the required
conditions of this section. This, (8.6), (8.11), and (8.14) imply that g;(x) := e?*™))g(x) is
a metric satisfying

gi=g forall xe B (po),
Ricci(g;) = —c(n, k)g;,
V01(31 (x0), g,-) >py forallxe M,
sup Y|Riem(g;)| < oo,
M

as required. []

9. Applications

Let (M, go) € 7 (3,k,m,vy) and let (M, gy) € 7.,(3, k, T) be the smooth metrics con-
structed in the previous section: remember that these ‘g satisfy ‘gy = go for all x € B;(py).

Now we may apply Theorem 7.1 to each (M, ‘gy) to obtain solutions

(M7 gi(t))te[()’ T(n, 7)) € ’9‘.00 (37 k) 50)

satisfying the a priori estimates. Hence using the local estimates of [43], Theorem 1.3, and
the interior estimates of Shi (see [5]), we may take a Hamilton limit to get a solution to
Ricci flow (M, ¢(2), <), T)) which satisfies the a priori estimates (7.1). Note that the local
estimates of [43], Theorem 1.3, guarantee that we may take the limit on the interval [0, T")
and not just (0, 7). So we have proved:

Theorem 9.1. Let (M,go) be a three (or two) manifold in 7 (3,k,m,uvp)
(7(2,k,m,v)). Then there exists a T = T(vo,k,m) > 0 and a solution (M, g(1)) to

tel0,7)
Ricci flow, satisfying (7.1).

In a more general setting we prove the following:

Theorem 9.2.  Let (M, go) be a sequence of three (or two) manifolds in 7 (3,k, m, vy)
(7(2,k,m,v9)) and let (X,dy,x) = lim (M;,d('gy),x;) be a pointed Gromov—Hausdorff
1—00

limit of this sequence. Let (M,-, ig(t))te[(), 7 be the solutions to Ricci flow coming from the

theorem above. Then (after taking a sub-sequence if necessary) there exists a Hamilton limit

solution (M, g(1), y)[e(m = llin; (M,-, "g(z),xi)[e(q 7 satisfying (7.1) and:

(i) (M,d(g(1)),y) — (X,dy,x) in the Gromov—Hausdorff sense as t — 0.

(i) M is diffeomorphic to X. In particular, X is a manifold.
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Proof. We apply the Theorem 9.1 to obtain (after taking a subsequence if
necessary) a limit solution (M,g(1),y),. 0.1) = hm (M,, ‘g(1), xi), . o.r) satisfying the

estimates (7.1). We prove that (M, d(g(t)), y) — (X ,dy,x) as t — 0 as follows. We intro-
duce the notation d(t) = d(g(1)) and d;(t) = d(g;(t)). In view of the Lemma 6.1 we have
don ((Br(x:), di(1)), (B (xi),di(0))) < c(r, 1) where ¢(r, 1) — 0 as t — 0 and ¢(r, ) does not
depend on i. Furthermore, dgu ((B:(x;),di(0)), (B:(x),dx)) < I(i,r) where I(i,r) — 0 as
i — o0, and dou ((B:(x),di(1)), (B:(»),d(1))) < s(i,r, 1) where s(i,r,t) — 0 as i — oo, in
view of the fact that (M,d;(r),x;) — (M,d(),y) and (M;,d;(0),x;) — (X,dx,x) in GH
sense as i — oo. Hence, since Gromov—Hausdorff distance satisfies the triangle inequality,
we obtain (for r fixed):

den ((B/(2),d(1)), (B(x),dx))
< don ((B:(y),d(1)), (Bi(xi), di(1))) + don ((By(x), dx)., (B(xi), di(1)))
< dou((B.(3),d(1)), (B(x;), di(t))) + dau ((B,(x), dx ), (B.(x;), di(0)))
+dou ((B:(x:), di(1)), (Br(x:),di(0)))
< s(i,r,0) +1(i,r) + c(r, 1).

Letting i — oo (¢ and r fixed), we get

dau ((B/(»),d(1)), (By(x),dx)) < c(r,2),

in view of the properties of s(i,r, ) and I(i,r), and hence (M,d(g(t)), ) — (X,dx,x) as
t — 0 since ¢(r,t) — 0ast— 0.

Finally, we show that (M, d(t), y) is diffeomorphic to (X,d,x) for all € (0, T). The
limit solution satisfies the estimates (7.1). So d(#;)(p,¢q) is a Cauchy sequence in i for any
sequence #; — 0. In particular, we obtain a limit as i — oo: let us call this limit /(p, q).
Clearly /(p,q) does not depend on the sequence #; we choose. /(-,-) satisfies the triangle
inequality, as d(7)(-,-) does, for all z> 0. Also /(p, p) = hrn d(p, p,t) = 0. Furthermore,
[(p,q) >0 forall p+gq:

(9.1) I(p,q) = lim d(s)(p,q)

= lim e Dd(1)(p, q)
S—

= ¢ @"d(1)(p,q) > 0.

That is, / is a metric. From the above estimates (9.1), we see that d(¢)(-,) — [(-,-)ast — 0
uniformly on compact sets K — M (compact with respect to d(¢) for any 7). This implies
that (M,d(1),y) — (M,1,y) as t — 0 in the C° sense on compact sets.

Now we show that the metric / defined on the set M defines the same topology as that
of (M,d(t)) for any t. First note that all of the (M, d(r)) for ¢ > 0 have the same topology:
(M, g(1)) are smooth Riemannian metrics with bounded curvature evolving by Ricci flow
and are all equivalent. Let us denote this topology by ¢. We denote the topology coming
from (M, 1) by @.
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We use the notation /B, (x) to denote a ball of radius r > 0 at x € M with respect to
the metric /, and (as usual) “¢“)B,(x) to denote a Ball of radius > 0 at x € M with respect
to the metric d(¢). From the above inequalities and the definition of / we have

(9.2) ‘OB, ., /i(p) = 'Bi(p) = “Byer(p)
forall pe M.

For any open set U in @, we therefore have

U= U 'Byy(p)
peU

= U d((p) g
pelU

where (p) > 0 is chosen small so that ‘B, (p) = U and #(p) > 0 is chosen small so that
r(p) — c2+/t(p) > 0. Hence, U is in ¢. Now assume V" € (. Then, using the estimate (9.2)
again, we see that

V= U d(l)Br(p.,l) (p)
pev

= UV IB,,(p7 t)e—qt (p)’
PE

where r(p,t) is chosen small so that d(’>B,,( »0(p) = V. Hence Ve 0. Hence, the identity
from (M, 1, y) to (M,d(t), y) is a homeomorphism. We already showed that

(M,d(t),y) — (X,dx,x) ast—0

((X,dy,x) was defined by (X,dy,x) := lim (M;, d;(0),x;)). Hence (X,dy,x) = (M,l, y),
and (X, dy, x) is homeomorphic to (M, d(z), ). In three dimensions every manifold has a

unique smooth maximal structure. This finishes the proof. []

We formulate the last result of the theorem above in a form independent of the Ricci
flow.

Proposition 9.3. Let (M;,g;) be a sequence of smooth 3-manifolds (2-manifolds) in
T (3,k,m,v9) (7 (2,k,m,v)) and (X, dy, x) be a Gromov—Hausdorff limit of (M;,d(g;),x;)
(such a (X, dy, x) always exists after taking a subsequence). Then:

® (X,dy) is a manifold.

o [f diam(M,;,g;) < dy < oo for all i € N, then M; is diffeomorphic to X for i e N
sufficiently large.

As a corollary to this result and Theorem 9.2 and Lemma 5.1 we obtain the following
corollary:
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Corollary 9.4. Let (M;,'go), i € N, be a sequence of three (or two) manifolds with

. 1 1
(M;,"g0) € 9’(3, —=,m, U()) (9’ (2, ——_,m,v())) for each i € N: note this implies
i i

| —

Ricci(M;, 'go) = —-.

~

Let (X,dy) = GH lim (M;,d('go)). Then the solution (M7g(l)7x)t€(0AT> obtained in

Theorem 9.1 satisfies
Ricci(g(1)) 2 0

for all te (0, T) and (X, dy) is diffeomorphic to (M,g(t)) for all t € (0, T). In particular,
combining this with the results of Shi [40] and Hamilton [20], we get that (X ,dy) is diffeo-
morphic to R*, S* x R or S® modulo a group of fixed point free isometries in the standard
metric.

Appendix A. Hessian comparison principles

Let p: M :=M —cut(p) — R be the distance function from some fixed p,
p(x) :=dist(p,x), and let ge M. Let y:[0,]] — M be the unique minimising geodesic
from p to g with |y’(z)| = 1 for all ¢ € [0, /]. We denote the set of smooth vector fields along
yby T,M: V e T,M means V : [0,/] — TM is smooth with V(s) € T, M for all s € [0, /].
V' :[0,/] = TM will denote the vector field along y obtained by taking the covariant
derivative of 'V along y: see the book of do Carmo [7] for an explanation. Let X, € T, M be

normal to y. It is well-known (see [38], Chapter 1) that p is differentiable on M, and that
Vp(q) = 7'(1) and

1 ~ ~ ~
(A1) V2p(q)(Xq, Xy) = (h)l"ng’(S)l2 — Riem(g)(X, 7", X, y") ds,

where X e T,M is the unique Jacobi field along y such that X(0) =0 and X(/) = X,
(see the Book of do Carmo [7] for a discussion on Jacobi fields).

The tensor inequality
Vip < ¢(n, k)g

in the case that the sectional curvatures are bounded from below by k is well known: a
proof may be found in (for example [38], Chapter 1). Here we show how to obtain a more
general inequality which bounds V?p from above and below, for constants which depend
or; the supremum of the curvatures in a geodesic ball of radius r where we are evaluating
Vep.

Note. To be consistent with the rest of this paper, I am using the convention that
sectional curvatures of a plane spanned by two perpendicular vectors v, w of length one
is sec(v,w) = Riem(v, w,v,w) and that the sectional curvature on the sphere is positive
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(in [38], sec(v, w) = Riem(v, w, w,v) > 0 on the sphere). X is a Jacobi field means then that
X" —Riem(X,y’,7') = 0. Let E; € TyM, i = 1,...,n, be parallel fields (E/ = 0) such that
{E;(1)}, is an orthonormal basis at y(¢) for each ¢ € [0,1]. Let fi(s) := g(X(s), Ei(s)). Let
k := sup{|Riem(y(s))||s € [0,/]}. Then the Jacobi field equation implies

1'(s) = g(X"(s), Ei(s))
= Riem(X,y",y’, Ei(s))

= Z]; Rlel’l’l(E], V/, ylv Ei)7
=1

and hence f(s) := | X (s)]* = Zn:(fi)z(s) satisfies

i=1

"=i%mmmaw%m+§%mf

i,j=1

= —knf(s).
This implies that g(s) = e/ (s) satisfies
g(s) = ef"(s) + ce“f(s) + S (s)
= (—kn + ?)ef (s) + cef'(s)
= (—kn+c*)ef (s) + ¢'(s) — ce“f (s)
= (—kn + 2 — ¢)e“f(s) + ¢'(s)
> g'(s)

if, for example, ¢ = kn + 1. Hence g has no local maximum in (0,/): if it did, we would
obtain

0=g"(s) >0,

which is a contradiction. Now note that g(0) = 0 and
g(l) _ e(kn+])lf(l) — e(kn+l)l|A7(Z)|2 _ e(kn+l)l

since X(0) =0 and X (/) = X(q) and |X(g)| = 1. This implies that g(s) < e®™+1' for all
s € [0,1] and hence that f(s) = |X(s)|* < e®+V! for all s € [0, ]]. Let

Rp(r) :=r sup [Riem(g)|e" s WPax Riem(@l+Dr,

Br(XO)

Then, using (A.1), we get
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1 ~ ~ ~
V2p(q)(Xy, Xy) = JQ\X’(S)Iz — Riem(g)(X, ', X, ') ds

> [—k|X|*ds

S

> _kle(kn+l)l

= —Rp(1),

for every qe B,(p) M as required. The estimate V>p(q) < Rp(/) follows by using
the standard Hessian comparison principle (see [38], Chapter 1), and the fact that

sec(x) = — sup |Riem(xo)| for x € B;(xp).
By(xo)

Appendix B. Estimates on the distance function for Riemannian
manifolds evolved by Ricci flow

For completeness, we prove some results which are implied or proved in [22] and
stated in [5] as editors’ note 24 from the same paper in that book. The lemma we wish to
prove is

Lemma B.1. Let (M",4(1)) ) be a solution to Ricci flow with

tel0, T

Ricci(g(1)) = —co,

|Riem(g(1)) |1 < co.

Then

(B.1) e @94d(p q.5) 2 d(p,q,1) Z d(p,q,s) — c2(n, c0) (VT — /5)
forall0 <s=<tel0,T).

Proof. The inequality

d(p,q,1) 2 d(p.q,0) — c1(n, o)Vt

is proved in [22], Theorem 17.2, after making a slight modification of the proof. If we
examine the proof there (as pointed out in [5] as editors note 24 of the same book), we see
in fact that what is proved is:

d(P,Q,Z)gd(P,Q,S)—Cf M([)v

where /M (t) is any integrable function which satisfies

sup |[Riem(-, 7)| < M(z).
M
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In particular, in our case we may set

M=,

which then implies the inequality d(p,q,t) = d(p,q,s) — ca(n, co)(v/t — +/s). The second
inequality is also a simple consequence of results obtained in [22]. Lemma 17.3 tells us that

Ecl(P, 0,1) < —inf [Ricci(7T, T) ds,
ot vel’y

where the inf is taken over the compact set I' of all geodesics from P to Q realising the

distance as a minimal length, 7 is the unit vector field tangent to y. Then in our case
Ricci = —¢( implies

%d(P, Q, t) = COd(P7 Q7 t)'

This implies that
d(P,Q,1) <exp® d(P,Q,s),

as required. [
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