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Ricci flow of non-collapsed three manifolds
whose Ricci curvature is bounded from below

By Miles Simon at Freiburg

Abstract. We consider complete (possibly non-compact) three dimensional Riemann-
ian manifolds ðM; gÞ such that: (a) ðM; gÞ is non-collapsed (i.e. the volume of an arbitrary
ball of radius one is bounded from below by v > 0), (b) the Ricci curvature of ðM; gÞ is
bounded from below by k, (c) the geometry at infinity of ðM; gÞ is not too extreme (or
ðM; gÞ is compact). Given such initial data ðM; gÞ we show that a Ricci flow exists for
a short time interval ½0;TÞ, where T ¼ Tðv; kÞ > 0. This enables us to construct a Ricci
flow of any (possibly singular) metric space ðX ; dÞ which arises as a Gromov–Hausdor¤
(GH) limit of a sequence of 3-manifolds which satisfy (a), (b) and (c) uniformly. As a
corollary we show that such an X must be a manifold. This shows that the conjecture of
M. Anderson–J. Cheeger–T. Colding–G. Tian is correct in dimension three.

1. Introduction and statement of results

A smooth family of metrics
�
M; gðtÞ

�
t A ½0;TÞ is a solution to the Ricci flow if

q

qt
gðtÞ ¼ �2 Ricci

�
gðtÞ

�
Et A ½0;TÞ:

We say that this solution has initial value g0 if gð�; 0Þ ¼ g0ð�Þ. The Ricci flow was intro-
duced by R. Hamilton in [20] and has led to many new results in di¤erential geometry
and topology: see for example [35], [36], [3], [37], [31], [5], [24], [29], [13]. For very good
expositions of the papers of G. Perelman ([35], [36]) and parts thereof see [6], [44], [45],
[27] and [30] and [15].

In this paper we define a Ricci flow for a class of possibly singular metric spaces, ele-
ments of which arise as Gromov–Hausdor¤ limits of sequences of complete, non-collapsed
manifolds with Ricci curvature bounded from below.
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More specifically, we consider the class of smooth, complete Riemannian manifolds
ðM; gÞ which satisfy

(a) RicciðgÞf k,

(b) vol
�

gB1ðxÞ
�
f v0 > 0 for all x A M.

It is well known, see [18], that every sequence of smooth Riemannian manifolds sat-
isfying (a) contains a subsequence which converges with respect to the Gromov–Hausdor¤
distance to a possibly singular metric space ðM; dÞ (see [4] for a definition of Gromov–
Hausdor¤ distance: this distance is a weak measure of how close metric spaces are to being
isometric). With the expression ‘possibly singular’ we mean two things:

� it is possible that the limiting space ðM; dÞ is no longer a manifold (see Example 1.1
below) and

� it is possible that the resulting metric d is not smooth, even if M is a manifold (see
Example 1.2 below).

Example 1.1 (M. Anderson). This example is from M. Anderson (see [1], Section 3).
In the paper [17] T. Eguchi and A. Hanson construct a four dimensional Riemannian mani-
fold ðM 4; hÞ where M ¼ TS2 and RicciðhÞ ¼ 0 everywhere. Asymptotically (far away from
some base point) the Riemannian manifold looks like a cone over RP3. More explicitly:

if we rescale the metric, ðMi; hiÞ :¼ M;
1

i
h

� �
, then RicciðhiÞ ¼ 0, vol

�
B1ðxÞ; hi

�
f v0 for

all i A N and
�
Mi; dðhiÞ

�
! ðN; lÞ as i ! y where N ¼ ðRþ

0 � RP3Þ=ðf0g � RP3Þ with the

quotient topology, where l
�
ðr; xÞ; ðs; yÞ

�
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � 2rs cos

�
gðx; yÞ

�q
for all r; s A Rþ

0 and

all x; y A RP3 and g : RP3 � RP3 ! Rþ
0 is the standard distance on RP3. In particular, N

is not a manifold.

Example 1.2. Let ðM n; hÞ be a non-negatively curved smoothed out cone over

S n�1. That is, we give M n ¼ Rn ¼ ðRþ
0 � Sn�1Þ=ðf0g � Sn�1Þ a smooth metric h such

that secðhÞf 0 everywhere and hðr; aÞ ¼ dr2 l cr2gðaÞ for rf 1 and some constant

0 < c < 1, g the standard metric on S n�1. Let ðMi; hiÞ :¼ M;
1

i
h

� �
. Clearly

vol
�
B1ðxÞ; hi

�
f v0 for some v0 > 0 and all i A N; all x A Mi:

Also,
�
Mi; dðhiÞ

�
! ðM; lÞ where

l
�
ðr; xÞ; ðs; yÞ

�
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � 2rs cos

� ffiffiffi
c

p
cðx; yÞ

�q
for all r; s A Rþ

0 and all x; y A Sn�1 and c : Sn�1 � Sn�1 ! Rþ
0

is the standard distance on Sn�1. The distance l : M � M ! R is then continuous, but not
di¤erentiable everywhere. For example: if p ¼ ð1; 0; . . . ; 0Þ, qðxÞ ¼ ð0; x; 0; . . . ; 0Þ A Rn in
Euclidean coordinates, then

f ðxÞ :¼ l2
�

p; qðxÞ
�
¼ 1 þ jxj2 � 2jxj cos

� ffiffiffi
c

p
ðp=2Þ

�
is continuous in x ¼ 0 but not di¤erentiable there (since

ffiffiffi
c

p
< 1 ) cos

� ffiffiffi
c

p
ðp=2Þ

�
3 0).

Note that the same is true for p ¼ ðr; 0; . . . ; 0Þ where r > 0 is fixed but arbitrary.
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Remark 1.3. Any metric space ðM; dÞ which arises as the GH limit of a sequence of
two dimensional Riemannian manifolds satisfying (a) and (b) is itself a manifold.

This is because: in dimension two Riccif�k2 ) secf�2k2. Then a theorem of G.
Perelman says that ðM; dÞ is a manifold: see [26].

So we see that in dimension two any metric space ðM; dÞ which arises as the GH limit
of a sequence of Riemannian manifolds satisfying (a), (b) must be a manifold, and in
dimension four, there are examples where such ðM; dÞ’s are not manifolds. It is a conjec-
ture of M. Anderson–J. Cheeger–T. Colding–G. Tian (see the introduction of [9]), that:

Conjecture 1.4 (M. Anderson–J. Cheeger–T. Colding–G. Tian). Any metric space

ðM; dÞ which arises as the GH limit of a sequence of three dimensional Riemannian manifolds

satisfying (a) and (b) is itself a manifold.

In this paper we obtain as a consequence of one of our main theorems (Theorem 9.2
in this paper) that this conjecture is correct, if each of the manifolds occurring in the
sequence is compact or we demand that the geometry at infinity is controlled in a certain
sense (see condition (c) and ~cc below). That is we will assume that each of the manifolds
ðM; gÞ occurring in the sequence satisfies additionally:

(c) sup
M

jRiemðgÞj < y (bounded curvature).

Or:

(~cc) Let f : R ! R be the exponential function composed with itself m-times, and
r : M ! Rþ

0 the distance function from a fixed base point b, rðxÞ :¼ distðx; bÞ. We assume
that

(~cc1) r : M � BRðbÞ ! R is smooth for some R > 0, and k-concave there, that is

‘2re k;

on
�
M � BRðbÞ

�
and

(~cc2) lim
r!y

�
sup

x ABrðbÞ
jRiemðxÞj=f ðrÞ

�
¼ 0:

Remark 1.5. Note that condition (c) is trivially satisfied if M is compact.

Remark 1.6. Assume (~cc2) is satisfied for some m A N, and that the sectional curva-
tures of ðM; gÞ are larger than �l on M and that cutðbÞX

�
M � BRðbÞ

�
¼ j for some

R > 0. Then condition (~cc1) is satisfied for some k ¼ kðn; lÞ and some larger m (depending
on the initial m), as one sees using the Hessian comparison principle (see for example [38],
Chapter 1).

Under these restrictions, we obtain that the conjecture of Anderson–Cheeger–
Colding–Tian is correct. That is, we prove:
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Theorem 1.7. Let ðX ; dX Þ be a metric space arising as the GH limit of a sequence of

three dimensional Riemannian manifolds ðMi; giÞ, i A N, each of which satisfies (a), (b) and

(c) or each of which satisfies (a), (b) and ð~ccÞ. Then X is a three dimensional manifold. If fur-

thermore each of the ðMi; giÞ has diameter bounded above by a uniform constant d0 < y,
then Mi is di¤eomorphic to X for all i su‰ciently large.

Remark 1.8. In the case that all manifolds in the sequence above satisfy a two
sided Ricci curvature bound, jRiccije k2, a bound on the integral of the curvature tensorÐ
M

jRiemj3=2
eD and (b) is satisfied, M. Anderson also proved that the limit space X is

a manifold: see [2], Corollary 2.8. Later, Cheeger–Colding–Tian (see [10], Theorem 1.15)
proved that the singular set of the limit space ðX ; dX Þ is empty, if all manifolds occurring

in the sequence above satisfy (a), (b) and
Ð

B1ðxÞ
jRiemj3=2

eD for all balls of radius one. The

condition
Ð

M

jRiemj3=2
eD prohibits non-flat cones over spheres occurring in ðX ; dÞ.

Theorem 1.7 allows the occurrence of such cones.

The method we use to prove this theorem is as follows. Let
�
Mi; gið0Þ

�
be a sequence

of manifolds satisfying (a), (b) and (c). We flow each of the
�
Mi; gið0Þ

�
by Ricci flow to

obtain solutions
�
Mi; giðtÞ

�
t A ½0;TiÞ. Then we prove uniform estimates (independent of i) for

the solutions. Once we have these estimates, we are able to take a limit of these solutions,
to obtain a new solution

�
M; gðtÞ

�
t A ð0;TÞ where M is some manifold. This solution will

also (by construction: it is a smooth limit) satisfy similar estimates to those obtained for�
Mi; giðtÞ

�
t A ½0;TiÞ. Using these estimates, we show that

�
M; d

�
gðtÞ

��
! ðX ; dX Þ in the

Gromov–Hausdor¤ sense as t & 0, and that in fact X is di¤eomorphic to M. The
most important step in this procedure is proving uniform estimates for the solutions�
Mi; giðtÞ

�
t A ½0;TiÞ. The case that the

�
M; gið0Þ

�
satisfy (a), (b) and (~cc) is reduced to the case

that the
�
M; gið0Þ

�
satisfy (a), (b) and (c) by a conformal deformation of the starting

metrics (which leave the starting metrics unchanged on larger and larger balls as i ! y:
see Section 8 for details).

The estimates we require to carry out this procedure are obtained in the following
theorem (see Theorem 9.1):

Theorem 1.9. Let k A R, 0 < v0 A R, m A N and ðM; g0Þ be a three (two) manifold

satisfying (a), (b) and (~cc) with constants k, v0 and m respectively. Then there exists a

T ¼ Tðv0; k;mÞ > 0 and K ¼ Kðv0; k;mÞ > 0 and a solution
�
M; gðtÞ

�
t A ½0;TÞ to Ricci flow

satisfying

(at) Ricci
�
gðtÞ

�
f�K 2, Et A ð0;TÞ,

(bt) vol
�
B1ðx; tÞ

�
f

v0

2
> 0, Ex A M, Et A ð0;TÞ,

(ct) sup
M

��Riem
�
gðtÞ

���e K 2

t
, Et A ð0;TÞ,

(dt) eK 2ðt�sÞdðp; q; sÞf dðp; q; tÞf dðp; q; sÞ � K 2ð
ffiffi
t

p
�

ffiffi
s

p
Þ for all 0 < se t A ð0;TÞ

(note that these estimates are trivial for t ¼ 0).
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Remark 1.10. A similar result was proved in the paper [42] (see Theorem 7.1 there),
under the extra assumptions that ðM; g0Þ has

diamðM; g0Þe d0 < y and Ricciðg0Þf�e0ðd0; v0Þ where eðd0; v0Þ > 0

is a small constant depending on d0 and v0.

To help us prove Theorem 1.9 we prove estimates on the rate at which the infimum of
the Ricci curvature can decrease, and on the rate at which the distance function and volume
of such a solution can change (see Lemmas 6.1 and 6.2). As an application of Theorem 1.9
and these estimates we get (Theorem 9.2 in this paper).

Theorem 1.11. Let k; v0;m A R be fixed. Let ðMi;
ig0Þ be a sequence of three (or two)

manifolds satisfying (a), (b), (c) or (a), (b), (~cc) (with constants k, v0, m independent of i )
and let ðX ; d; xÞ ¼ lim

i!y

�
Mi; dð ig0Þ; xi

�
be a pointed Gromov–Hausdor¤ limit of this

sequence. Let
�
Mi;

igðtÞ
�

t A ½0;TÞ be the solutions to Ricci flow coming from the theorem

above. Then (after taking a sub-sequence if necessary) there exists a Hamilton limit solution�
M; gðtÞ; x

�
t A ð0;TÞ :¼ lim

i!y

�
Mi;

igðtÞ; xi

�
t A ð0;TÞ satisfying (at), (bt), (ct), (dt), and:

(i)
�
M; d

�
gðtÞ

�
; x
�
! ðX ; d; xÞ in the Gromov–Hausdor¤ sense as t ! 0.

(ii) M is di¤eomorphic to X. In particular, X is a manifold.

As a corollary to this result and Lemma 5.1 we obtain the following corollary
(Corollary 9.4 in this paper):

Corollary 1.12. Let ðMi;
ig0Þ, i A N be a sequence of three (or two) manifolds satisfy-

ing (b), (c) or (b), (~cc), and

RicciðMi;
ig0Þf� 1

i
:

Let ðX ; dX Þ ¼ GH lim
i!y

�
Mi; dð ig0Þ

�
(notation GH lim refers to the Gromov–Hausdor¤ limit).

Then the solution
�
M; gðtÞ; x

�
t A ð0;TÞ obtained in Theorem 1.11 satisfies

Ricci
�
gðtÞ

�
f 0

for all t A ð0;TÞ and ðX ; dX Þ is di¤eomorphic to
�
M; gðtÞ

�
for all t A ð0;TÞ. In particular,

combining this with the results of W. X. Shi [40] and R. Hamilton [20], we get that ðX ; dX Þ
is di¤eomorphic to R3, S2 � R or S3 modulo a group of fixed point free isometries in the

standard metric.

2. Previous results

We present here some previous results related to Ricci flow of non-smooth metrics.

In the paper [41], the Ricci flow of continuous metrics is considered. Estimates similar
to those in Theorem 1.9 are proved.
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In the paper [12] Kähler Ricci flow of Ly Kähler metrics is considered.

In the paper [48] the author considers the Ricci flow of initial metrics which have
(uniformly) small curvature in the Ln=2 norm, bounded Ricci curvature in the Lp norm
ðp > ðn=2ÞÞ, and satisfy a volume and diameter bound. He proves using Moser iteration,
that estimates similar to ðctÞ of Theorem 1.9 hold under the Ricci flow of such a metric.

In the paper [47], the class of metrics with jRiccije 1 and conjugate radius bigger
than r0 is considered. The authors prove estimates similar to ðctÞ of Theorem 1.9 once again
using Moser iteration.

In the paper [35], the author proves an estimate of the form ðctÞ of Theorem 1.9,
under the assumption that all neighbourhoods are almost Euclidean, and the scalar curva-
ture is bounded from below. Here, a blow up argument is used, and an analysis of a back-
ward evolving heat-type flow (see also [34] and [8]).

In the paper [19], the author extends the results of Yang to the case that the manifold
is non-compact, and Riccif�1 and an L p bound on the curvature holds ðp > ðn=2ÞÞ (see
also [28]).

The case that the Lðn=2Þ curvature is small locally, and an L p bound on the norm of
the Ricci curvature exists, is considered in the paper [46].

The Ricci flow of compact manifolds with volf 1, diame d0 and Riccif�eðd0; nÞ,
eðd0; nÞ small is investigated in [42].

3. Methods and structure of this paper

As explained in the introduction, we shall chiefly be concerned with Riemannian
manifolds ðM; gÞ which are contained in Tð3; k;m; v0Þ or Tyð3; k; v0Þ, where these two
spaces are defined as follows:

Definition 3.1. We say ðM; gÞ A Tyðn; k; v0Þ if ðM n; gÞ is a smooth n-dimensional
Riemannian manifold satisfying

(a) RicciðgÞf k,

(b) vol
�

gB1ðxÞ
�
f v0 > 0 for all x A M,

(c) sup
M

jRiemðgÞj < y.

We say ðM; gÞ A Tðn; k;m; v0Þ if (a) and (b) are satisfied and the condition (c) is replaced
by

(~cc) Let f : R ! R be the exponential function composed with its self m-times, and
r : M ! Rþ

0 the distance function from a fixed base point b, rðxÞ :¼ distðx; bÞ. We assume
that
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(~cc1) r : M � BRðbÞ ! R is smooth for some R > 0, and r is k-concave there, that
is

‘2re k;

on M � BRðbÞ and

(~cc2) lim
r!y

�
sup

x ABrðbÞ
jRiemðxÞj=f ðrÞ

�
¼ 0:

Let us define Tðn; k;m; v0Þ ðTyðn; k; v0ÞÞ as the set of metric spaces ðX ; dX Þ which
arise as the Gromov–Hausdor¤ limit of sequences whose elements are contained in
Tðn; k;m; v0Þ ðTyðn; k; v0ÞÞ. Elements of Tðn; k;m; v0Þ ðTyðn; k; v0ÞÞ can be very irregu-
lar, and are not a priori manifolds (as we saw in the two examples of the introduction).
Nevertheless, they will be length spaces and do carry some structure. In the first part of
the paper we concern ourselves only with Tyð3; k; v0Þ. Assume ðX ; dX Þ A Tyð3; k; v0Þ is
given by ðX ; dX Þ ¼ GH lim

i!y

�
M 3

i ; dðgiÞ
�

for ðMi; giÞ A Tyð3; k; v0Þ. In order to define a

Ricci flow of ðX ; dX Þ we will flow each of the ðM 3
i ; giÞ and then take a Hamilton limit of

the solutions (see [23]). The two main obstacles to this procedure are:

� It is possible that the solutions
�
Mi; giðtÞ

�
are defined only for t A ½0;TiÞ where

Ti ! 0 as i ! y.

� In order to take this limit, we require that each of the solutions satisfy uniform
bounds of the form

sup
Mi

��Riem
�
giðtÞ

���e jcðtÞj Et A ð0;TÞ;

for some well-defined common time interval ð0;TÞ and some function c : ð0;TÞ ! R

where sup
½R;S�

jcj < y for all ½R;S�H ð0;TÞ (cðtÞ ! y as t ! 0 is allowed). Furthermore,

they should all satisfy a uniform lower bound on the injectivity radius of the form

inj
�
M; giðt0Þ

�
f s0 > 0

for some t0 A ð0;TÞ.

As a first step to solving these two problems, in Lemma 4.3 of Section 4, we see
that a (three dimensional) smooth solution to the Ricci flow

�
M; gðtÞ

�
t A ½0;TÞ such that�

M; gðtÞ
�
A Tyð3; k; v0Þ for all t A ½0;TÞ and sup

M�½0;S�
jRiemj < y for all S < T cannot

become singular at time T . Furthermore, a bound of the form

��Riem
�
gðtÞ

���e c0ðk; v0Þ
t

Et A ½0;TÞX ½0; 1�ð3:1Þ

for such solutions is proved: that is, the curvature of such solutions is quickly smoothed
out.
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In Section 5, we prove an a priori estimate on the rate (Lemma 5.1) at which the
infimum of the Ricci curvature of a solution to the Ricci flow with bounded curvature can
decrease. Note: this lemma is a non-compact version of [42], Lemma 5.1.

Lemma 3.2. Let g0 be a smooth metric on a 3-dimensional non-compact manifold M 3

satisfying

Ricciðg0Þf� e0

4
g0

ðsecðg0Þf� e0

4
g0Þ

for some 0 < e0 < 1=100, and let
�
M; gð�; tÞ

�
t A ½0;TÞ be a smooth solution to Ricci flow with

bounded curvature at all times. Then

Ricci
�
gðtÞ

�
f�e0ð1 þ ktÞgðtÞ � e0ð1 þ ktÞtR

�
gðtÞ

�
gðtÞð3:2Þ

Et A ½0;TÞX ½0;T 0Þ

ðsec
�
gðtÞ

�
f�e0

1

2
þ kt

� �
gðtÞ � e0

1

2
þ kt

� �
tR
�
gðtÞ

�
gðtÞ;

Et A ½0;TÞX ½0;T 0ÞÞ;

where k ¼ 100 and T 0 ¼ T 0ð100Þ > 0 is a universal constant.

One of the major applications of this lemma is: any solution
�
M; gð�; tÞ

�
t A ½0;TÞ in

Tyð3; k; v0Þ which has bounded curvature at all times and satisfies Ricciðg0Þf�e0 at

time zero, must also satisfy R
�
gðtÞ

�
e

c0

t
(from (3.1)) and hence from (3.2)

Ricci
�
gðtÞ

�
f�2c0e0 Et A ð0;T 0ÞX ð0;TÞX ð0; 1Þ:

In Section 6, we consider smooth solutions to the Ricci flow which satisfy

Ricci
�
gðtÞ

�
f�c0;��Riem

�
gðtÞ

���te c0:

In Lemma 6.1, well-known bounds on the evolving distance for a solution to the Ricci flow
are proved for such solutions.

We combine this lemma with some results on Gromov–Hausdor¤ convergence and
a theorem of Cheeger–Colding (from the paper [9]) to show (Corollary 6.2) that such
solutions can only lose volume at a controlled rate.

The results of the previous sections are then used to prove a theorem (Section 7)
which tells us how a priori the Ricci flow of an element ðM; g0Þ A Tyð3; k; v0Þ behaves:
see Theorem 7.1.
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In Section 8, we show that any ðM; gÞ A Tðn; k;m; v0Þ can be approximated in the
GH sense by manifolds ðM; giÞ A Tyðn; k; ~vv0Þ, i A N. More precisely, we show that there
exists ~vv0 ¼ ~vv0ðn; k;m; v0Þ > 0 and ðMi; giÞ A Tyðn; k; ~vv0Þ with

ðgiÞjBiðx0Þ ¼ gjBiðx0Þ

such that
�
M; dðgiÞ

�
!
�
M; dðgÞ

�
in the Gromov–Hausdor¤ sense as i ! y. This section

is independent of the rest of the paper, and requires no knowledge of the Ricci flow.

Finally, using the results of the previous two sections, we show that a solution to the
Ricci flow of ðX ; dX Þ exists, where ðX ; dX Þ is the Gromov–Hausdor¤ limit as i ! y of�
Mi; dðgiÞ

�
where the ðMi; giÞ are in Tð3; k;m; v0Þ, and that this solution satisfies certain

a priori estimates. See Theorem 9.2.

Appendix A contains some Hessian comparison principles and the proofs thereof.
Appendix B contains a result on the rate at which distance changes under Ricci flow if the
solution satisfies jRiemje c=t.

4. Bounding the blow up time from below using bounds on the geometry

An important property of the Ricci flow is that: if certain geometrical quantities are
controlled (bounded) on a half open finite time interval ½0;TÞ, then the solution does not
become singular as t % T and may be extended to a solution defined on the time interval
½0;T þ eÞ for some e > 0. As in the paper [42], we are interested in the question:

Problem 4.1. What elements of the geometry need to be controlled, in order to guar-

antee that a solution does not become singular?

In [39], it was shown that for ðM; g0Þ a smooth non-compact Riemannian manifold
with sup

M

jRiemðg0Þj < y, the Ricci flow equation

q

qt
g ¼ �2 RicciðgÞ;

gð�; 0Þ ¼ g0;

has a short time solution
�
M; gðtÞ

�
t A ½0;TÞ for some T ¼ Tðk0; nÞ satisfying

sup
M

��Riem
�
gðtÞ

��� < y Et A ½0;TÞ

(the compact case was proved by Hamilton in [20]). Using Shi’s solution ([39], Theorem 1.1),
we can find a solution

�
M; gðtÞ

�
t A ½0;TÞ satisfying

sup
M

��Riem
�
gðtÞ

��� < y Et A ½0;TÞ;

lim
t!T

sup
M

��Riem
�
gðtÞ

��� ¼ y;

8><>:ð4:1Þ
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or

T ¼ y;

sup
��Riem

�
gðtÞ

��� < y Et A ½0;yÞ:

(
ð4:2Þ

M

Definition 4.2. A solution
�
M; gðtÞ

�
t A ½0;TÞ to Ricci flow which satisfies either (4.1)

or (4.2) is called a maximal solution with bounded curvature (or maximal with BC).

It was also shown in Shi [39] that if
�
M; gðtÞ

�
t A ½0;TÞ is a smooth solution with T < y

and sup
M�½0;TÞ

jRiemj < y, then there exists an e > 0 and a solution
�
M; hðtÞ

�
t A ½0;TþeÞ, with

hj½0;TÞ ¼ gj½0;TÞ

So we see that a bound on the supremum of the Riemannian curvature on M � ½0;TÞ
(that is, control of this geometrical quantity) guarantees that this solution does not become
singular as t % T , and that it may be extended past time T (where we are assuming here
that T < y). In the following lemma, we present other bounds on geometrical quantities
which guarantee that a solution to the Ricci flow does not become singular as t % T (once
again, T < y is being assumed here).

Lemma 4.3. Let
�
M 3ðnÞ; gðtÞ

�
t A ½0;TÞ, T e 1, be an arbitrary smooth complete solution

to Ricci flow satisfying the conditions

(i) Ricci
�
gðtÞ

�
f�k2

�
R
�
gðtÞ

�
f�k2

�
,

(ii) vol
�
B1ðx; tÞ

�
f v0 > 0 for all x A M,

(iii) sup
M

��Riem
�
gðtÞ

��� < y,

for all t A ½0;TÞ (notation: R refers to the curvature operator). Then there exists a

c0 ¼ c0ðv0; kÞ (c0 ¼ c0ðv0; k; nÞ) such that

sup
M

��Riem
�
gðtÞ

���te c0;

for all t A ½0;TÞ. In particular,
�
M 3ðnÞ; gðtÞ

�
t A ½0;TÞ is not maximal with BC.

Proof. Assume to the contrary that there exist solutions
�
Mi;

igðtÞ
�

t A ½0;TiÞ, Ti e 1, to
Ricci flow satisfying the conditions (i), (ii) and (iii) and such that

sup
ðx; tÞ AMi�ð0;TiÞ

jRiemð igÞjðx; tÞt i!y��! y;

or there exists some j A N with

sup
ðx; tÞ AMj�ð0;TjÞ

jRiemð jgÞjðx; tÞt ¼ y:
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It is then possible to choose points ðpi; tiÞ A Mi � ½0;TiÞ (or in Mj � ½0;TjÞ: in this
case we redefine Mi ¼ Mj and Ti ¼ Tj for all i A N and hence we do not need to treat this
case separately) such that

jRiemð igÞjðpi; tiÞti ¼ �ei þ sup
ðx; tÞ AMi�ð0; ti�

jRiemð igÞjðx; tÞt ! y

as i ! y where ei ! 0 as i ! y. Define

iĝgð�; t̂tÞ :¼ ci
ig �; ti þ

t̂t

ci

� �
;

where ci :¼ jRiemð igÞjðpi; tiÞ. This solution to the Ricci flow is defined for 0e ti þ
t̂t

ci

< Ti,

that is, at least for 0f t̂t > �tici ¼: Ai. Then the solution iĝgðt̂tÞ is defined at least
for t̂t A ð�Ai; 0Þ. By the choice of ðpi; tiÞ we see that the solution is defined for

t̂t > �Ai ¼ �tici ¼ �tijRiemð igÞjðpi; tiÞ i!y��! �y. Since ti eTi e 1, we also have

ci
i!y��! y;ð4:3Þ

in view of the fact that

tici ¼ tijRiemð igÞjðpi; tiÞ i!y��! y:

Fix a constant A A ð�Ai; 0�. For any t̂t with �Ai < A < t̂te 0 define sðt̂t; iÞ :¼ ti þ
t̂t

ci

. Then
for all such t̂t we have

jRiemð iĝgÞjð�; t̂tÞ ¼ 1

ci

jRiemð igÞj
�
�; sðt̂t; iÞ

�
ð4:4Þ

¼
jRiemð igÞj

�
�; sðt̂t; iÞ

�
jRiemð igÞjðpi; tiÞ

¼ sjRiemð igÞjð�; sÞ
tijRiemð igÞjðpi; tiÞ

ti

s

e ð1 þ eiÞ
ti

s

¼ ð1 þ eiÞ
ti

ti þ
t̂t

ci

e ð1 þ eiÞ
ti

ti þ
A

ci

i!y��! 1;

in view of the definition of ðpi; tiÞ, and 0e se ti (follows from the definition of s and the
fact that t̂te 0), and (4.3). Since vol

�
B1ðpÞ; igðtÞ

�
f v0 > 0 and Riccif�k2 (Rf�n2k2)

(in the case n ¼ 3 this is true by assumption, in the general case it is true as all sectional
curvatures are not less than �k2), we have

y > lðn; v0Þf
vol
�
BrðpÞ; igðtÞ

�
rn

f ~vv0ðn; v0Þ > 0 E1 > r > 0
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(in view of the Bishop–Gromov comparison principle) which implies the same result (for
radii scaled appropriately) for the rescaling of the manifolds:

lðn; v0Þf
vol
�
BrðpÞ; iĝgðtÞ

�
rn

f ~vv0ðn; v0Þ E
ffiffiffiffi
ci

p
> r > 0:ð4:5Þ

Now using

l f
vol
�
BrðpÞ; iĝgðtÞ

�
rn

f ~vv0 E0 < r < 1;ð4:6Þ

we obtain a bound on the injectivity radius from below, in view of the theorem of Cheeger–
Gromov–Taylor, [11]. (The theorem of Cheeger–Gromov–Taylor says that for a complete
Riemannian manifold ðM; gÞ with jRiemje 1, we have

injðx; gÞf r
vol
�
g;BrðxÞ

�
vol
�
g;BrðxÞ

�
þ on expn�1

;

for all re p=4: in particular, using that diamðM; gÞfN, N as large as we like, and
jRiemje 2 for the Riemannian manifolds in question, we obtain

injðx; gÞf ~vv0
snþ1

lsn þ on expn�1
f c2ð~vv0; nÞ > 0

for s ¼ min
�
ðon expn�1Þ

1
n; p=4

�
.)

This allows us to take a pointed Hamilton limit (see [23]), which leads to a Ricci flow
solution

�
W; o; gðtÞt A ð�y;oÞ

�
, with

��Riem
�
gðtÞ

���e jRiemðo; 0Þj ¼ 1, and Riccif 0 (Rf 0),
of 0.

In fact, the limit solution satisfies Rf 0 for n ¼ 3 also, see [14], Corollary 9.8.

The volume ratio estimates

l f
vol
�
BrðpÞ

�
r3

f ~vv0 Er > 0ð4:7Þ

are also valid for ðW; gÞ, in view of (4.5).

We now apply [35], Proposition 11.4, to obtain a contradiction. r

5. Bounds on the Ricci curvature from below under Ricci flow in three dimensions

The results of this section are only valid in dimensions two and three.

We prove a quantitative estimate that tells us how quickly the Ricci curvature can
decrease, if we assume at time zero that the Ricci curvature is not less than �1 and that
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the supremum of the curvature of the evolving metric is less than infinity. This involves
modifying the argument from [42] to the case that M is non-compact. This result has simi-
larities to the estimate of Hamilton–Ivey (see [22] or [25] for a proof of the Hamilton–Ivey
estimate, which was independently obtained by R. Hamilton and T. Ivey). For a general
heat type equation on a non-compact manifold f : M � ½0;T � ! R,

q

qt
f ¼ DgðtÞ f þ af þ gðV ;‘ f Þ;

f ð�; 0Þ ¼ f0 f 0;

it is well known that the maximum principle does not hold for general solutions f , and for
general V and a. In the case that a and V are bounded, there are a number of maximum
principles which can be applied as long as the growth of f is controlled, and the evolving

metric g satisfies certain conditions (for example
q

qt
g

���� ����e c): see for example [16], [33]. In

the case of tensors, there are also a number of theorems which present conditions which
guarantee that the tensor maximum principle of Hamilton holds in a non-compact setting:
see for example [32], Theorem 2.1, and [41], Theorem 7.1.

In the proof of the lemma below we construct a tensor L which satisfies
q

qt
LfDL þ N where Lð�; 0Þf 0 and Lðx; tÞf e > 0 for all x far away from an origin,

and Nðx0; t0Þðv; vÞf 0 for all v which satisfy Lðx0; t0Þðv; vÞ ¼ 0. This allows us to argue
exactly as in the proof of the tensor maximum principle for compact manifolds (proved
by R. Hamilton in [20]) to conclude that Lf 0 everywhere if Lf 0 at t ¼ 0.

Lemma 5.1. Let g0 be a smooth metric on a 3-dimensional (or 2-dimensional) mani-

fold M 3ð2Þ satisfying sup
M

jRiemðg0Þj < y, and

Ricciðg0Þf� e0

4
g0 secðg0Þf� e0

4
g0

� 	
;

for some 0 < e0 < 1=100. Let
�
M; gð�; tÞ

�
t A ½0;T � be a solution to Ricci flow with gð0Þ ¼ g0ð�Þ

and sup
M�½0;T �

��Riem
�
gðtÞ

��� < y. Then

Ricci
�
gðtÞ

�
f�e0ð1 þ ktÞgðtÞ � e0ð1 þ ktÞtR

�
gðtÞ

�
gðtÞ

ðsec
�
gðtÞ

�
f�e0

1

2
þ kt

� �
gðtÞ � e0

1

2
þ kt

� �
tR
�
gðtÞ

�
gðtÞÞ

for all t A ½0;TÞX ½0;T 0Þ where k ¼ 100 and T 0 > 0 is a universal constant.

Proof. The proof is a non-compact version of the proof in [42]. We prove the case
n ¼ 3 (for n ¼ 2 simply take N ¼ M � S1).

Define e ¼ eðtÞ ¼ e0ð1 þ ktÞ, and the tensor LðtÞ by

Lij :¼ Ricciij þ eRtgij þ egij þ sfgij;
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where se e2
0 and f ¼ er2ð1þatÞþat, rðx; tÞ :¼ dist

�
gðtÞ

�
ðx0; xÞ for some fixed x0, and

a ¼ 1000n

�
1 þ sup

M�½0;T �

��Riem
�
gðtÞ

����. We will often write e for eðtÞ (not to be confused

with e0). Notice that e0 < eðtÞe 2e0, for all t A 0;
1

k


 �
¼ 0;

1

100


 �
: we will use this freely.

Then L
j
i ¼ ðR j

i þ eRtd
j
i þ ed

j
i þ sf d

j
i Þ, and as in the paper [42], we calculate:

q

qt
L

� �
ij

¼ ðDLÞij þ Nij � sDfgij þ s
q

qt
f

� �
gij;

and Nij is (up to the constant k ¼ 100) the same as the tensor from the paper [42],

Nij :¼ �Qij þ 2RikRjmgkm þ eRgij þ 2etjRiccij2gij þ ke0tRgij þ ke0gij � 2Ll
i Rjl ;

where Qij :¼ 6gklRikRjl � 3RRij þ ðR2 � 2SÞgij. For our choice of a we get

q

qt
L

� �
ij

f ðDLÞij þ Nij þ
a

2
sfgij

for tae 1 in view of the Laplacian comparison principle (see the Hessian comparison prin-
ciple in Appendix A), as long as r2 is smooth in time and space where we di¤erentiate.

In the following, we argue as in the proof of Hamilton’s maximum principle, [20],
Theorem 9.1. We claim that Lij

�
gðtÞ

�
> 0 for all t A ½0;TÞ. Notice that f has exponential

growth, and the other terms in the definition of L are bounded. This guarantees that L > 0
outside a compact set. Hence, if Lij

�
gðtÞ

�
> 0 is not the case, then there exists a first time

and point ðp0; t0Þ and a direction wp0
for which L

�
gðtÞ

�
ðwp0

;wp0
Þðp0; t0Þ ¼ 0.

Choose coordinates about p0 so that at ðp0; t0Þ they are orthonormal, and so that
Ricci is diagonal at ðp0; t0Þ with eigenvalues le me n. Clearly L is then also diagonal
at ðp0; t0Þ with L11 ¼ lþ eðt0Þt0R þ eðt0Þ þ sf eL22 eL33, and so L11 ¼ 0 (otherwise
Lðp0; t0Þ > 0: a contradiction). In particular,

N11ðp0; t0Þ ¼ ðm� nÞ2 þ lðmþ nÞ þ 2etl2 þ 2etm2 þ 2etn2ð5:1Þ

þ eRgij þ ke0tRgij þ ke0gij;

in view of the definition of Q (see [20], Corollary 8.2, Theorems 8.3 and 8.4) and the

fact that L11 ¼ 0. As in [42], we will show that ~NN11ðp0; t0Þ ¼ N11ðp0; t0Þ þ
a

2
sf ðp0; t0Þ0

which, as we will show, leads to a contradiction. Notice that Rð�; 0Þf�e0 and
sup

M�½0;T �
jRiemje a on ½0;TÞ implies that Rð�; tÞf�e0 for all t A ½0;TÞ from the

non-compact maximum principle for functions. (This may be seen as follows: (i)
q

qt
ðR þ e0 þ sf ÞfDðR þ e0 þ sf Þ and ðR þ e0 þ sf Þðx; �Þ > 0 for dðx; x0Þ large enough,

where here f is as above, (ii) this implies Rf�e0 � sf for all t A ½0;TÞ, (iii) s > 0 was
arbitrary.) Then L11 ¼ 0 ) l ¼ �et0R � e� sf e 0 for t0 e 1, and hence mþ nfRf�e.
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We will use these facts freely below. Substituting l ¼ �et0R � e� sf (at ðp0; t0Þ) into (5.1),
we get

N11ðp0; t0Þ ¼ ðu � vÞ2 þ ð�et0R � e� sf Þðmþ nÞ

þ 2et0ðl2 þ m2 þ n2Þ þ eR þ ke0tRgij þ ke0

f et0

�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
� ðeþ sf Þðmþ nÞ þ eR þ ke0t0R þ ke0

¼ et0

�
�ðlþ mþ nÞðmþ nÞ þ 2l2 þ 2m2 þ 2n2

�
þ ð�e2t0 þ ke0t0ÞR � e2 � sef þ ke0 � sf ðmþ nÞ

f et0ðleþ 2l2Þ � sf eþ ðk � 1Þe0 � sf ðmþ nÞ;

where here we have used that Rf�e and �lðmþ nÞf le in the last inequality (which fol-
lows from mþ nfRf�e and le 0). Hence,

N11ðp0; t0Þ þ
a

2
sf > 0;ð5:2Þ

since mþ ne
a

100
.

The rest of the proof is standard (see [20], Theorem 9.1): extend wðp0; t0Þ ¼
q

qx1
ðp0; t0Þ

in space to a vector field wð�Þ in a small neighbourhood of p0 so that gðt0Þ‘wð�Þðp0; t0Þ ¼ 0,
and let wð�; tÞ ¼ wð�Þ. Then

0f
q

qt
Lðw;wÞ

� �
ðp0; t0Þf

�
DLðw;wÞ

�
ðp0; t0Þ þ Nðw;wÞ > 0;

which is a contradiction.

If r2 is not di¤erentiable at ðp0; t0Þ then we may use the trick of Calabi:

Let g : ½0; l ¼ rðp0; tÞ� ! M be a geodesic from x0 to p0 realising the distance, and
parametrised by distance, so that r

�
gðsÞ; t

�
¼ Ltðgj½0; s�Þ ¼ s, where Lt is the length of a

curve measured using gðtÞ. Since r is not di¤erentiable at p0 it must be that p0 is a cut
point of x0. Set ~rrðx; tÞ :¼ r

�
gðrÞ; t

�
þ dist

�
gðtÞ

��
gðrÞ; x

�
for some small fixed r > 0. Then

in a parabolic neighbourhood of ðp0; t0Þ, ~rr is smooth.

Furthermore, from the triangle inequality, ~rrðx; tÞf rðx; tÞ. Also, ~rrðp0; t0Þ ¼ rðp0; t0Þ.
Define ~LL by

~LLij :¼ Ricciij þ eRtgij þ egij þ s~ff gij;

where ~ff ¼ e~rr2ð1þatÞþat. Then we have just shown that ~LLfL and that ~LLðp0; t0Þ ¼ Lðp0; t0Þ

and so we argue with ~LL instead of L. At ðp0; t0Þ we have
q

qt
~rre

a

50
~rr and D~rr2 e

a

50
(if we
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choose r small enough): that is r and ~rr satisfy the same inequalities at ðp0; t0Þ (up to the
constant 50).

Hence, we may argue as above to obtain a contradiction.

Now letting s go to zero, we get Ricciij þ eRtgij þ egij f 0 as long as tae 1 and

tk e 1. But then, we may argue as above starting at t0 ¼ 1

a
, but now with f1 in place of f ,

f1 ¼ er2ð1þaðt�t0ÞÞþaðt�t0Þ to obtain the same result on ½0; 2t0� as long as tk e 1. Continuing in
this way, we see that Ricciij þ eRtgij þ egij f 0 as long as tk e 1.

The case for the sectional curvatures is similar: from [21], Section 5, we know that the
reaction equations for the curvature operator are

q

qt
a ¼ a2 þ bg;

q

qt
b ¼ b2 þ ag;

q

qt
g ¼ g2 þ ab:

It is shown in [42] (in the proof of the compact version of this lemma) that (for

eðtÞ :¼ 1

2
ðe0 þ ktÞ) either

q

qt
ðaþ etR þ eÞ > 0 or

q

qt
ðaþ etR þ eÞf eðaþ bÞ þ ke0tR þ ke0 þ ðaþ etR þ eÞg:ð5:3Þ

Also f :¼ er2ð1þatÞþat satisfies

q

qt
f fDf þ a

2
f

at the points where f is smooth and tae 1. So the ordinary di¤erential equation for f

satisfies

q

qt
f f

a

2
f ;ð5:4Þ

at the points where f is smooth and tae 1.

Since f is exponential in distance, the points where aþ etR þ eþ sf e 0 is a compact
set. Hence, if aþ etR þ eþ sf > 0 is not true, then there must exist a first time and point
ðp0; tÞ where this fails. At such a point ðp0; tÞ we have (from (5.3) and (5.4)):

q

qt
ðaþ etR þ eþ sf Þf eðaþ bÞ þ ke0tR þ ke0 þ ðaþ etR þ eÞgþ a

2
sfð5:5Þ

¼ eðaþ bÞ þ ke0tR þ ke0 � sf gþ a

2
sf

f 2eaþ ke0tR þ ke0 þ
a

4
sf ;
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as long as tae 1, where we have used that aþ etR þ e ¼ �sf , and that jgje a

100
. Using

aþ etR þ e ¼ �sf again, we get

2eaþ ke0tR þ ke0 þ
a

4
sf ¼ 2eð�etR � e� sf Þ þ ke0tR þ ke0 þ

a

4
sf

f ðk � 2Þe0 þ
a

4
sf

> 0;

since Rf�3e0 is preserved by the flow, and te
1

k
. Hence, inserting this into (5.5) we get

q

qt
ðaþ etR þ eþ sf Þ > 0;

at a point where aþ etR þ eþ sf ¼ 0. Choose an orthonormal basis for the two forms
at ðp0; t0Þ: f1 ¼ ðf1Þij dxi5dx j, f2 ¼ ðf2Þij dxi5dx j, f3 ¼ ðf3Þij dxi5dx j (time indepen-
dent by definition) for which the curvature operator is diagonal, and assume that
Rðf1; f1Þ ¼ Rijklf1

ijf
1
ij is the smallest eigen-value of the curvature operator R. Then we have

q

qt

�
Rijklðp; tÞðf1Þijðf

1Þkl þ etR þ eþ sf
�
ðp0; t0Þ

> ðDRÞ ijklðp0; t0Þðf1Þijðf
1Þkl þ DðetR þ eþ sf Þðp0; t0Þ:

Using the maximum principle, we obtain the result by arguing as in the case of the
Ricci curvature above (once again, if this inequality is violated at some point and first
time, then we may need to modify r in order to make sure that it is smooth, as in the argu-
ment above for the Ricci curvature). r

6. Bounding the distance and volume growth in terms of the curvature

The results of this section hold for all dimensions.

Lemma 6.1. Let
�
M n; gðtÞ

�
t A ½0;TÞ be a smooth solution to Ricci flow with

Ricci
�
gðtÞ

�
f�1;ð6:1Þ ��Riem

�
gðtÞ

���te c0:

Then

ec1ðc0;nÞðt�sÞdðp; q; sÞf dðp; q; tÞf dðp; q; sÞ � c2ðn; c0Þð
ffiffi
t

p
�

ffiffi
s

p
Þð6:2Þ

for all 0e se t A ½0;TÞ.

Proof. These results essentially follow from [22], Theorem 17.2 (with a slight modi-
fication of the proof suggested by the editors in [5]: see Appendix B) and [22], Lemma 17.3:
see Appendix B for a proof. r
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Corollary 6.2. Let
�
M n; gðtÞ

�
t A ½0;TÞ be an arbitrary smooth solution to Ricci flow

(gð0Þ ¼ g0) satisfying the condition (6.1) and assume that there exists v0 > 0 such that

vol
�
B1ðx; 0Þ

�
f v0 > 0 Ex A M:

Then there exists an S ¼ Sðc0; v0; nÞ > 0 such that

vol
�
B1ðx; tÞ

�
f

2v0

3
> 0 Ex A M; Et A ½0;SÞX ½0;TÞ:

Notice that this then implies

vol
�
Brðx; tÞ

�
rn

f
2e�nv0

3
E1 > r > 0;

in view of the Bishop–Gromov comparison principle.

Proof. If this were not the case, then there exists solutions
�
M n

i ;
igðtÞ

�
t A ½0;TiÞ

satisfying the stated conditions and there exists ti A ½0;TiÞ, ti
i!y��! 0 and points pi A Mi

such that vol
�
B1ðpi; tiÞ

�
<

2v0

3
. A subsequence of

�
Mi; d

�
igð0Þ

�
; pi

�
converges to ðY ; d; pÞ

in the pointed Gromov–Hausdor¤ limit. Clearly then
�
Mi; d

�
igðtiÞ

�
; pi

�
also converges

to ðY ; d; pÞ, in view of the characterisation of Gromov–Hausdor¤ convergence given
in [4], Corollary 7.3.28, and the estimates (6.2) (since ti ! 0). The theorem of Cheeger
and Colding says that volume is continuous under the limit of non-collapsing spaces with
Ricci curvature bounded from below:

lim
i!y

vol
�
B1ðpi; tiÞ

�
¼ Hn

�
B1ðpÞ

�
¼ lim

i!y
vol
�
B1ðpi; 0Þ

�
:

But this is a contradiction as we then have

2v0

3
> vol

�
B1ðpi; tiÞ

�
! Hn

�
B1ðpÞ

�
¼ lim

i!y
vol
�
B1ðpi; 0Þ

�
> v0: r

7. Non-collapsed non-compact three manifolds with curvature bounded from below

The results of this section are only valid for dimensions two and three.

Theorem 7.1. Let ðM; g0Þ be a complete smooth three (or two) manifold without

boundary in Tyð3; k; v0Þ: that is

(a) Ricciðg0Þf k,

(b) vol
�

g0B1ðxÞ
�
f v0 > 0, Ex A M,

(c) sup
M

jRiemðg0Þj < y:
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Then there exists an S ¼ Sðv0; kÞ > 0 and K ¼ Kðv0; kÞ and a solution
�
M; gðtÞ

�
t A ½0;TÞ to

Ricci flow which satisfies T fS, and

ðatÞ Ricci
�
gðtÞ

�
f�K 2; Et A ð0;TÞ;ð7:1Þ

ðbtÞ vol
�

gt B1ðxÞ
�
f

v0

2
> 0; Ex A M; Et A ð0;TÞ;

ðctÞ sup
M

��Riem
�
gðtÞ

���e K 2

t
; Et A ð0;TÞ;

ðdtÞ ec1ðc0;nÞðt�sÞdðp; q; sÞf dðp; q; tÞf dðp; q; sÞ � c2ðn; c0Þð
ffiffi
t

p
�

ffiffi
s

p
Þ;

E0 < se t A ð0;TÞ:

(Note that the estimates are trivial for t ¼ 0.)

Proof. We assume n ¼ 3. The argument for n ¼ 2 is the same. Before proving the
theorem rigorously, we present a sketch of the proof which leaves out the technical details.
This should give the reader a clear picture of the structure of the proof. As a first step, we
scale the metric by a large constant, so that Ricciðg0Þf�e for a small e ¼ eðv0; kÞ > 0. The
condition

vol
�

g0BrðxÞ
�
f ~vv0r3 E0 < re 1ð7:2Þ

for some ~vv0 ¼ ~vv0ðv0; kÞ > 0, which is true in view of the Bishop–Gromov volume compari-
son principle, remains valid under this scaling.

Now flow this metric for a maximal amount of time. Let ½0;TMÞ be the maximal time
interval for which the flow exists and

inf
x AM

vol
�
B1ðx; tÞ

�
>

~vv0

2
;ð7:3Þ

inf
M

Ricci
�
gðx; tÞ

�
> �1;ð7:4Þ

for all t A ½0;TMÞ. Using the maximum principle and standard ODE estimates, one shows
easily that TM > 0. The aim is now to show that TM fS for some S ¼ Sð~vv0Þ > 0. From
Lemma 4.3 we see that if TM f 1 then the estimates (at), (bt) and (ct) are satisfied. So
w.l.o.g. TM e 1. From Lemma 4.3 again,

��Riem
�
gðtÞ

���e c0ð~vv0Þ
t

for all t A ð0;TMÞ. Using Lemma 5.1 we see that Riccif�2eRt � 2e for all
t A ½0;T 0ÞX ð0;TMÞ for some universal constant T 0 > 0. But these two estimates combined
imply Riccif�1=2 for all t A ½0;T 0ÞX ð0;TMÞ if 2ec0 e 1=4 (we assume c0 > 1). We
assume that we have chosen e small enough, in order that this estimate holds. Similarly,

using 6.2, there exists a T 00 ¼ T 00ð~vv0; c0Þ > 0, such that vol
�
B1ðx; tÞ

�
>

2~vv0

3
for all

t A ½0;T 0ÞX ½0;T 00ÞX ½0;TMÞ. If TM < minðT 0;T 00Þ, then we obtain a contradiction to the
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definition of TM (TM should be thought of as the first time where at least one of the
conditions (7.3) or (7.4) is violated). Hence TM fminðT 0;T 00Þ ¼: S. But then we may use
4.3 again to show that (at), (bt), (ct) are satisfied on ð0;SÞ. Scaling back to the original es-
timates leads to rescaled estimates (at), (bt), (ct) (with other constants). (dt) follows imme-
diately from Lemma 6.1. Now we prove the theorem rigorously.

By the Bishop–Gromov volume comparison principle, we have

vol
�

g0 BrðxÞ
�
f ~vv0r3 E0 < re 1;ð7:5Þ

for some ~vv0 ¼ ~vv0ðv0; kÞ > 0. Rescale the metric by the constant 1000c0 so that

Ricciðg0Þf�e where e ¼ 1

1000c0
and c0 ¼ c0 3;�1;

~vv0

2

� �
is from the Lemma 4.3. Notice

that (1.5) is still true for this new rescaled metric, as we have scaled by a constant which is
larger than 1. We denote our rescaled metric also by g0.

From the work of W. Shi (see [39], main theorem) we know that there exists a solu-
tion

�
M; gðtÞ

�
t A ½0;TÞ to Ricci flow, with gð0Þ ¼ g0,

sup
M

��Riem
�
gðtÞ

��� < y

for all t A ½0;TÞ. Without loss of generality,
�
M; gðtÞ

�
t A ½0;TÞ is a maximal solution with BC

in the sense of Definition 4.2. Let TM be the supremum over all S eT such that

inf
x AM

vol
�
B1ðx; tÞ

�
>

~vv0

2
;ð7:6Þ

inf
M

Ricci
�
gðx; tÞ

�
> �1ð7:7Þ

for all t A ½0;SÞX ½0;TÞ. First we show that TM > 0. We have bounded curvature on
compact time intervals, NðdÞ :¼ sup

M�½0;T�d�

��Riem
�
gðtÞ

��� < y, and hence

q

qt
g

���� ����eCðNÞð7:8Þ

on such time intervals, which implies vol
�
B1ðx; tÞ

�
f vol

�
B1ðx; 0Þ

�
ð1 � sÞ for teH

H ¼ Hðs;NÞ small enough (s > 0 is an arbitrary constant). Also,

q

qt
Riccif gDRicci � cðNÞg;

which implies (choose a ¼ aðN; eÞ large enough)

q

qt
ðRicci þ e expðr2ð1þatÞþatÞgÞfDðRicci þ e expðr2ð1þatÞþatÞgÞ

for teK , K ¼ KðN; eÞ small enough (see the argument in the proof of Lemma 5.1) at all
points where r2 is di¤erentiable. Since Ricci þ e expðr2ð1þatÞþatÞg must take its infimum
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at an interior point, we get (arguing as in the proof of Lemma 5.1 for some fixed base
point x0) Riccif�2e for teK small enough as the base point was arbitrary. This means,
that the conditions are not violated for a short time.

Due to Lemma 4.3 we have TM < T : if TM ¼ T , then we could extend the solution
to the time interval ½0;T þ eÞ for some small e using the result of Shi (see the discussion
at the beginning of Section 2) and Lemma 4.3, which would contradict the definition
of T . W.l.o.g. TM e 1: otherwise we may apply Lemma 4.3 to immediately obtain the

result. From the same lemma (Lemma 4.3), we know that there exists a c0 ¼ c0
~vv0

2

� �
such

that jRiemjðtÞe c0

t
, for all t A ½0;TMÞ. Using Lemma 5.1 and the fact that RðtÞe c0

t

(combined with the choice of c0) we see that there exists a global constant T 0 such

that Riccif� 1

2
for all t A ½0;TMÞX ½0;T 0Þ. So the Ricci curvature condition is not

violated on this time interval. Furthermore, in view of Corollary 6.2, there exists a

T 00 ¼ T 00ð~vv0Þ > 0, such that vol
�
B1ðx; tÞ

�
>

2~vv0

3
for all t A ½0;T 00ÞX ½0;T 0ÞX ½0;TMÞ for all

x A M. So the volume condition is not violated on this time interval.

From the definition of TM , T 0 and T 00 we have T fTM fminðT 00;T 0Þ ¼: Sðv0Þ.

So we have a well-defined time interval for which the conditions (7.6) and (7.7) are

not violated. Furthermore, the curvature is like
c0

t
on this time interval. Hence we have

��Riem
�
gðtÞ

���e c0

t
;

and

Riccif�1

for all teS. Now we rescale the metric back, to obtain the result: the rescaled solution
hð�; t̂tÞ ¼ ð1=1000c0Þgð�; 1000c0 t̂tÞ is the desired solution. Its initial value is given by g0 (g0

is as in the beginning of the proof of the theorem) and it satisfies the required estimates

by scaling (jRiemje c0

t
is a scale invariant inequality, and the estimate ‘Riccif�1 for all

teS’ scales to ‘Riccif�1000c0 for all teS=ðc01000Þ’). That the volume of a ball of
radius one is larger than v0=2 for the evolving metric follows from the corollary of the
previous section (after shortening the time interval if necessary). The estimate ðdtÞ follows
immediately from Lemma 6.1. r

8. Conformal deformation of non-collapsed manifolds with RiccikC1

Let ðM; gÞ be a manifold satisfying (a) and (b):

(a) Riccif�k,

(b) vol
�
B1ðxÞ

�
f v0 > 0 for all x A M.
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Estimate (b) implies that

vol
�
BrðxÞ

�
f v̂vðn; v0; kÞrn Er > 1ð8:1Þ

for some v̂vðn; v0; kÞ > 0 in view of the Bishop–Gromov comparison principle.

We wish to modify the metric g to a new metric gi so that

� g ¼ gi on BiðbÞ,

� Riccif�~kkðk; n; v0Þ,

� sup
M

jRiemðgiÞj < y,

� vol
�

gi B1ðxÞ
�
f ~vv0ðk; n; v0Þ > 0 for all x A M,

where b is a fixed origin and i A N. In the next section, we will apply the results of the
previous sections in order to flow the gi’s, and then we will take a limit in i of the resulting
solutions.

For convenience, we introduce the following notation:

Definition 8.1. Let h : Rþ
0 ! Rþ be a function. We say that h is a function with con-

trolled growth if

hðxÞe ðexp � exp � � � � � expÞðxÞ;

where the function on the right-hand side is the composition of exp m times, and m is a
fixed number in N. We call functions of the type appearing in the right-hand side an expo-
nential comparison function.

We require the following help lemma about exponential comparison functions.

Lemma 8.2. Let h be an exponential comparison function, 0 < k A R, 0e p A R. Let

hi : R
þ ! Rþ, hiðxÞ :¼ h

�
ðx � iÞ4

þ
�
. We have

jrjp þ jhðrÞjp þ jh 0ðrÞjp þ jh 00ðrÞjp e ck;pekhðrÞ for all r A Rþ;ð8:2Þ

jhiðyÞje ckekhiðyÞ for all y A Rþ;

jh 0
iðyÞje ckekhiðyÞ for all y A Rþ;

jh 00
i ðyÞje ckekhiðyÞ for all y A Rþ;

for some constants cp, ck;p, depending on p, respectively k and p, and the function h but not

on i.

Proof. The first estimate follows from the definition of an exponential comparison
function h and the fact that jyjq e cq;kekjyj for qf 0, for some constant cq;k.
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The next estimate follows from the definition of hi and the first estimate:

hiðyÞ ¼ h
�
ðy � iÞ4

þ
�

e ckekhððy�iÞ4
þÞ

¼ ckekhiðyÞ:

The third estimate may be seen as follows:

jh 0
iðxÞj ¼

��4ðx � iÞ3
þh 0�ðx � iÞ4

þ
���

e ckj4ðx � iÞþj
3jekhððx�iÞ4

þÞj

¼ ckj4ðx � iÞþj
3jekhiðxÞj

e ckjekhððx�iÞ4
þÞj jekhiðxÞj

¼ ckjekhiðxÞj jekhiðxÞj

¼ ckje2khiðxÞj;

where we have freely used the first estimate. Replacing k by ðk=2Þ, we obtain the desired
estimate. The method for estimating ðhiÞ00 is similar:

jh 00
i ðxÞj ¼

���4ðx � iÞ3
þh 0�ðx � iÞ4�� 0��

¼
��12ðx � iÞ2

þh 0�ðx � iÞ4�þ 16ðx � iÞ6
þh 00�ðx � iÞ4���

e 12ðx � iÞ2
��h 0�ðx � iÞ4���þ 16

��ðx � iÞ6
h 00�ðx � iÞ4���

e ckjekhððx�iÞ4Þj

¼ ckjekhiðxÞj: r

Definition 8.3. Let ðM; gÞ be a Riemannian manifold and let f ðrÞ :¼ sup
BrðbÞ

jRiemðgÞj

for some fixed point b A M. We say that ðM; gÞ has controlled geometry at infinity if

� f : Rþ
0 ! Rþ is a function with controlled growth,

� the distance function r :
�
M � BRðbÞ

�
! R, rðxÞ ¼ distðgÞðx; bÞ is smooth for

some R > 0 and k-concave there, that is ‘2re kg on
�
M � BRðbÞ

�
.

Theorem 8.4. Let ðM; gÞ be a smooth Riemannian manifold with controlled geometry

at infinity satisfying

(a) Riccif�k,

(b) vol
�
B1ðxÞ

�
f v0 > 0 for all x A M.
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Then there exists a family of smooth Riemannian metrics fgig, i A N, on M satisfying

gi ¼ g for all x A Biðp0Þ;

RicciðgiÞf�cðn; kÞgi;

vol
�
B1ðx0Þ; gi

�
f ~vv0 for all x A M;

sup
M

gi jRiemðgiÞj < y:

Proof. Let df 1 be fixed for the rest of this section. Let f ¼ hi for some i A N,
where hi is as in Lemma 8.2. Note that f is a non-decreasing function f : Rþ ! Rþ.
Let b be a fixed base point in M. r : M ! Rþ is the distance function with respect to b:
rðxÞ :¼ distðx; bÞ. Let x0 be an arbitrary point in M and set r0 :¼ rðx0Þ. Let g : ½0; r0� ! M

be a minimising geodesic from b to x0 (with unit speed). So d
�
gðsÞ; gðuÞ

�
¼ ju � sj for all

u; s A ½0; r0�. As M is complete, we may extend this smoothly to a geodesic g : ½0;yÞ ! M.
Let r > 0 be some positive number: later we will choose r to depend on r0, but at
first we simply require r to be some positive radius. Let y0 :¼ g

�
r0 � ðr=2Þ

�
. In particu-

lar, dðx0; y0Þ ¼ d
�
gðr0Þ; g

�
r0 � ðr=2Þ

��
¼ r=2. Due to the triangle inequality we have:

dðx; x0Þe dðx; y0Þ þ dðy0; x0Þ ¼ dðx; y0Þ þ ðr=2Þ for all x A M and hence

Bdrðy0ÞHBrðx0Þ:

Furthermore, we have dðx; bÞe dðx; y0Þ þ dðy0; bÞ ¼ dðx; y0Þ þ r0 � ðr=2Þ for all x A M

and hence

Bdrðy0ÞHBr0
ðbÞ:

In particular, using this inclusion and the fact that f is non-decreasing, we have

f
�
rðxÞ

�
e fðr0Þ Ex A Bdrðy0Þ:ð8:3Þ

Now set r :¼ e�ð1=2Þfðr0Þ, which is trivially less than one. We obtain a lower bound for
f
�
rðxÞ

�
� fðr0Þ for x A Bdrðy0Þ as follows:

First note that for all x A Bdrðy0Þ, we have by the triangle inequality

rðxÞ ¼ dðx; bÞf dðb; y0Þ � dðx; y0Þð8:4Þ

¼ r0 � ðr=2Þ � dðx; y0Þ

f r0 � ðr=2Þ � dr

¼ r0 � rð1=2 þ dÞ:

From the mean value theorem and the fact that rðxÞe r0 for x A Bdrðy0Þ, we get��f�rðxÞ�� fðr0Þ
�� ¼ jf 0ðzxÞj jr0 � rðxÞj

for some zx A ½rðxÞ; ro�. From the above (8.4), we have that rðxÞf r0 � rð1=2 þ dÞ. Hence,��f�rðxÞ�� fðr0Þ
��e jf 0ðzxÞjrð1=2 þ dÞ:

Using the third estimate of (8.2), and the fact that f is non-decreasing, we get
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��f�rðxÞ�� fðr0Þ
��e cjeð1=2ÞfðzxÞjrð1=2 þ dÞð8:5Þ

e cjeð1=2Þfðr0Þjrð1=2 þ dÞ

¼ cð1=2 þ dÞ;

in view of the definition of r.

Define ~ggðxÞ :¼ efðrðxÞÞgðxÞ. Balls with respect to ~gg will be denoted with a tilde: ~BBsðpÞ
is the ball with radius s and centre p A M with respect to ~gg. We denote distance with respect
to ~gg also with a tilde: ~ddðx; yÞ is the distance with respect to ~gg from x to y. The volume form
with respect to g is denoted by dmg, and that of ~gg with dm~gg. We wish to show that ðM; ~ggÞ is
also non-collapsed. Let x A M be given.

Claim: Bdrðy0ÞH ~BB2ðx0Þ. Let s : ½0; l� ! Bdrðy0Þ be a length minimising geodesic of
unit speed with respect to g, l e dr, sð0Þ ¼ y0, x ¼ sðlÞ A Bdrðy0Þ. Then

~ddðy0; xÞ ¼ ~dd
�

y0; sðlÞ
�

e
Ðl
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gg
�
s 0ðsÞ; s 0ðsÞ

�q
ds

¼
Ðl
0

eð1=2ÞfðrðsðsÞÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
s 0ðsÞ; s 0ðsÞ

�q
ds

e eð1=2Þfðr0Þ
Ðl
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
s 0ðsÞ; s 0ðsÞ

�q
ds

¼ eð1=2Þfðr0Þl

e eð1=2Þfðr0Þdr

¼ eð1=2Þfðr0Þde�ð1=2Þfðr0Þ

¼ de 1;

in view of equation (8.3), the definition of r and the fact that s is distance minimising
(w.r.t. g). Furthermore,

~ddðy0; x0Þe
Ðr0

r0�ðr=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gg
�
g 0ðsÞ; g 0ðsÞ

�q
ds

¼
Ðr0

r0�ðr=2Þ
eð1=2ÞfðrðgðsÞÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
g 0ðsÞ; g 0ðsÞ

�q
ds

e eð1=2Þfðr0Þ
Ðr0

r0�ðr=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
g 0ðsÞ; g 0ðsÞ

�q
ds

¼ eð1=2Þfðr0Þðr=2Þ

¼ ð1=2Þeð1=2Þfðr0Þe�ð1=2Þfðr0Þ

¼ 1=2;
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in view of the definition of r and the fact that g is distance minimising. Hence,

~ddðx0; xÞe ~ddðx0; y0Þ þ ~ddðx; y0Þ

e 3=2

for all x A Bdrðy0Þ, which proves the claim.

This means that

fvolvol
�
~BB2ðx0Þ

�
¼

Ð
~BB2ðx0Þ

dm~ggðxÞ

f
Ð

Bdrðy0Þ
dm~ggðxÞ

¼
Ð

Bdrðy0Þ
eðn=2ÞfðrðxÞÞ dmgðxÞ

f
Ð

Bdrðy0Þ
eðn=2Þðfðr0Þ�cð1=2þdÞÞ dmgðxÞ

¼ e�ðn=2Þcð1=2þdÞeðn=2Þðfðr0ÞÞ
Ð

Bdrðy0Þ
dmgðxÞ

in view of the claim and (8.5). Hence,

fvolvol
�
~BB2ðx0Þ

�
f ~cceðn=2Þfðr0Þ

Ð
Bdrðy0Þ

dmgðxÞð8:6Þ

f ~cceðn=2Þfðr0Þrndnv̂v ¼ ~ccv̂vdn ¼: ~vv0;

in view of the non-collapsed condition (see (8.1)) and the definition of r ¼ e�ð1=2Þfðr0Þ.

Note: ~cc ¼ e�ðn=2Þcð1=2þdÞ > 0 is a universal constant which depends only on n and h

(the exponential comparison function which was used to define f).

The well-known formulas for the change of the metric g to ~gg ¼ e f g ¼ cg (for exam-
ple see [39], Chapter 8, equation 13) for a function f : M ! R (where here c is defined to
be cðxÞ :¼ e f ðxÞ) are

gRicciRicciij ¼ Ricciij � ðn � 2Þ2ð‘2 f Þij þ
n � 2

4
‘i f‘j fð8:7Þ

� 1

2
Df � n � 2

2
gj‘f j2

� �
gij;

gRiemRiemijkl ¼ cRiemijkl þ
1

2

�
gjkð‘2cÞil � gjlð‘2cÞik � gikð‘2cÞjl þ gilð‘2cÞjk

�
þ 3

4c
ðgik‘jc‘lc� gjk‘ic‘lcþ gjl‘ic‘kc� gil‘jc‘kcÞ

þ 1

4c
ðgjkgil � gikgjlÞgpq‘pc‘qc;
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where ‘l denotes the gradient of the function l, and ð‘2lÞ denotes the second covariant

derivative of f (which is a
0

2

� �
tensor), both w.r.t. g. In the following gj � j will denote the

norm with respect to g. Now let f be f ðxÞ ¼ f
�
rðxÞ

�
(this implies cðxÞ ¼ e f ðxÞ ¼ efðrðxÞÞ)

where r is the distance function with respect to g, and f : R ! R is an arbitrary smooth
function. Our assumption of controlled geometry at infinity implies that gj‘rj ¼ 1 on
M � BRðbÞ and one version of the Hessian comparison principle tells us that

gj‘2rjðxÞe crðxÞ
�
RB

�
rðxÞ

�
þ cðnÞðk þ 1Þ

�
;

wherever r is di¤erentiable and larger than one (see Appendix A) and here RB : Rþ ! R is
the function

RBðrÞ :¼ r

�
sup

Brðx0Þ
jRiemðgÞj

�
eðn sup

Brðx0Þ
jRiemðgÞjþ1Þr

:
ð8:8Þ

The following identities then follow from the definitions of f ðxÞ ¼ f
�
rðxÞ

�
, and

c ¼ efðrÞ ¼ e f :

‘i f ðxÞ ¼ f 0�rðxÞ�‘irðxÞ;ð8:9Þ

‘icðxÞ ¼ e f ðxÞð‘i f ÞðxÞ ¼ cðxÞf 0�rðxÞ�‘irðxÞ;

ð‘2f ÞijðxÞ ¼ f 00�rðxÞ�‘irðxÞ‘jrðxÞ þ f 0�rðxÞ�ð‘2rÞijðxÞ;

ð‘2cÞijðxÞ ¼ cðxÞ
��f 0�rðxÞ���2‘irðxÞ‘jrðxÞ þ cðxÞf 00�rðxÞ�‘jrðxÞ‘irðxÞ

þ cðxÞf 0�rðxÞ�ð‘2rÞijðxÞ:

Assume that f satisfies

jf 0je cef=8;ð8:10Þ

jf 0j2 e cef=4;

jf 00je cef=8

for some universal constant c not depending on k and n (later we will examine di¤erent
f’s but they all satisfy an estimate of the form above for the same constant (b)). Using
j‘rj2 ¼ 1, (8.9), (8.10) and that r is k-concave, we get

gj‘f je ce f =8;

ð‘2 f Þe cðn; kÞe f =8g:

Hence,
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gRicciRicciij ¼ Ricciij � ðn � 2Þ2ð‘2 f Þij þ
n � 2

4
‘i f ‘j fð8:11Þ

� 1

2
Df � n � 2

2
gj‘f j2

� �
gij

f�jkjgij � cðn; kÞe f =3gij

f�cðn; kÞ~ggij;

since gij ¼ e�f ~ggij and f > 0.

We will assume in the following that

lim
r!y

e�ð1=8ÞfðrÞRBðr þ 2Þ ¼ 0;ð8:12Þ

where RBðrÞ is the function introduced above in (8.8). We estimate the equalities (8.9) using
the growth properties of f, (8.10), as follows:

g
��‘cðxÞ���2 e cc9=4;ð8:13Þ
gj‘2cjðxÞec5=4ðxÞc

�
rðxÞ þ 2

��
RB

�
rðxÞ þ 2

�
þ cðnÞðk þ 1Þ

�
:

Hence, using formula (8.7), we get

~ggj gRiemRiemje 1

c
jRiemj þ cc�2c5=4ðxÞ

�
rðxÞ þ 2

��
RB

�
rðxÞ þ 2

�
þ cðnÞðk þ 1Þ

�
ð8:14Þ

þ cc�3ðc9=4Þ

e
1

c
jRiemj þ cc�3=4

�
rðxÞ þ 2

��
RB

�
rðxÞ þ 2

�
þ cðnÞðk þ 1Þ

�
! 0 as rðxÞ ! y;

in view of (8.12) and the fact that cðxÞ ¼ efðrðxÞÞ.

Choose f ¼ fi, where fiðrÞ :¼ h
�
ðr � iÞ4

þ
�

and h is an exponential comparison func-
tion such that

lim
r!y

e�ð1=8ÞhðrÞRBðr þ 2Þ ¼ 0:

Then trivially

lim
r!y

e�ð1=8ÞfiðrÞRBðr þ 2Þ ¼ 0:ð8:15Þ

Note that fi satisfies
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jf 0
i je cef=8;ð8:16Þ

jf 0
i j

2
e cef=4;

jf 00
i je cef=8;

as demanded in (8.10), in view of Lemma 8.2. That is, f ¼ fi satisfies all the required
conditions of this section. This, (8.6), (8.11), and (8.14) imply that giðxÞ :¼ efiðrðxÞÞgðxÞ is
a metric satisfying

gi ¼ g for all x A Bði=2Þðp0Þ;

RicciðgiÞf�cðn; kÞgi;

vol
�
B1ðx0Þ; gi

�
f ~vv0 for all x A M;

sup
M

gi jRiemðgiÞj < y;

as required. r

9. Applications

Let ðM; g0Þ A Tð3; k;m; v0Þ and let ðM; ig0Þ A Tyð3; k; ~vv0Þ be the smooth metrics con-
structed in the previous section: remember that these ig0 satisfy ig0 ¼ g0 for all x A Biðp0Þ.

Now we may apply Theorem 7.1 to each ðM; ig0Þ to obtain solutions�
M; giðtÞ

�
t A ½0;Tðn; ~vv0ÞÞ A Tyð3; ~kk; ~vv0Þ

satisfying the a priori estimates. Hence using the local estimates of [43], Theorem 1.3, and
the interior estimates of Shi (see [5]), we may take a Hamilton limit to get a solution to
Ricci flow

�
M; gðtÞt A ½0;TÞ

�
which satisfies the a priori estimates (7.1). Note that the local

estimates of [43], Theorem 1.3, guarantee that we may take the limit on the interval ½0;TÞ
and not just ð0;TÞ. So we have proved:

Theorem 9.1. Let ðM; g0Þ be a three (or two) manifold in Tð3; k;m; v0Þ
ðTð2; k;m; v0ÞÞ. Then there exists a T ¼ Tðv0; k;mÞ > 0 and a solution

�
M; gðtÞ

�
t A ½0;TÞ to

Ricci flow, satisfying (7.1).

In a more general setting we prove the following:

Theorem 9.2. Let ðMi;
ig0Þ be a sequence of three (or two) manifolds in Tð3; k;m; v0Þ

ðTð2; k;m; v0ÞÞ and let ðX ; dX ; xÞ ¼ lim
i!y

�
Mi; dð ig0Þ; xi

�
be a pointed Gromov–Hausdor¤

limit of this sequence. Let
�
Mi;

igðtÞ
�

t A ½0;TÞ be the solutions to Ricci flow coming from the

theorem above. Then (after taking a sub-sequence if necessary) there exists a Hamilton limit

solution
�
M; gðtÞ; y

�
t A ð0;TÞ :¼ lim

i!y

�
Mi;

igðtÞ; xi

�
t A ð0;TÞ satisfying (7.1) and:

(i)
�
M; d

�
gðtÞ

�
; y
�
! ðX ; dX ; xÞ in the Gromov–Hausdor¤ sense as t ! 0.

(ii) M is di¤eomorphic to X. In particular, X is a manifold.
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Proof. We apply the Theorem 9.1 to obtain (after taking a subsequence if
necessary) a limit solution

�
M; gðtÞ; y

�
t A ð0;TÞ :¼ lim

i!y

�
Mi;

igðtÞ; xi

�
t A ð0;TÞ satisfying the

estimates (7.1). We prove that
�
M; d

�
gðtÞ

�
; y
�
! ðX ; dX ; xÞ as t ! 0 as follows. We intro-

duce the notation dðtÞ ¼ d
�
gðtÞ

�
and diðtÞ ¼ d

�
giðtÞ

�
. In view of the Lemma 6.1 we have

dGH

��
BrðxiÞ; diðtÞ

�
;
�
BrðxiÞ; dið0Þ

��
e cðr; tÞ where cðr; tÞ ! 0 as t ! 0 and cðr; tÞ does not

depend on i. Furthermore, dGH

��
BrðxiÞ; dið0Þ

�
;
�
BrðxÞ; dX

��
e lði; rÞ where lði; rÞ ! 0 as

i ! y, and dGH

��
BrðxiÞ; diðtÞ

�
;
�
BrðyÞ; dðtÞ

��
e sði; r; tÞ where sði; r; tÞ ! 0 as i ! y, in

view of the fact that
�
M; diðtÞ; xi

�
!
�
M; dðtÞ; y

�
and

�
Mi; dið0Þ; xi

�
! ðX ; dX ; xÞ in GH

sense as i ! y. Hence, since Gromov–Hausdor¤ distance satisfies the triangle inequality,
we obtain (for r fixed):

dGH

��
BrðyÞ; dðtÞ

�
;
�
BrðxÞ; dX

��
e dGH

��
BrðyÞ; dðtÞ

�
;
�
BrðxiÞ; diðtÞ

��
þ dGH

��
BrðxÞ; dX

�
;
�
BrðxiÞ; diðtÞ

��
e dGH

��
BrðyÞ; dðtÞ

�
;
�
BrðxiÞ; diðtÞ

��
þ dGH

��
BrðxÞ; dX

�
;
�
BrðxiÞ; dið0Þ

��
þ dGH

��
BrðxiÞ; diðtÞ

�
;
�
BrðxiÞ; dið0Þ

��
e sði; r; tÞ þ lði; rÞ þ cðr; tÞ:

Letting i ! y (t and r fixed), we get

dGH

��
BrðyÞ; dðtÞ

�
;
�
BrðxÞ; dX

��
e cðr; tÞ;

in view of the properties of sði; r; tÞ and lði; rÞ, and hence
�
M; d

�
gðtÞ

�
; y
�
! ðX ; dX ; xÞ as

t ! 0 since cðr; tÞ ! 0 as t ! 0.

Finally, we show that
�
M; dðtÞ; y

�
is di¤eomorphic to ðX ; d; xÞ for all t A ð0;TÞ. The

limit solution satisfies the estimates (7.1). So dðtiÞðp; qÞ is a Cauchy sequence in i for any
sequence ti ! 0. In particular, we obtain a limit as i ! y: let us call this limit lðp; qÞ.
Clearly lðp; qÞ does not depend on the sequence ti we choose. lð� ; �Þ satisfies the triangle
inequality, as dðtÞð� ; �Þ does, for all t > 0. Also lðp; pÞ ¼ lim

t!0
dðp; p; tÞ ¼ 0. Furthermore,

lðp; qÞ > 0 for all p3 q:

lðp; qÞ ¼ lim
s!0

dðsÞðp; qÞð9:1Þ

f lim
s!0

ec1ðc0;nÞðs�1Þdð1Þðp; qÞ

¼ e�c1ðc0;nÞdð1Þðp; qÞ > 0:

That is, l is a metric. From the above estimates (9.1), we see that dðtÞð� ; �Þ ! lð� ; �Þ as t ! 0
uniformly on compact sets K HM (compact with respect to dðtÞ for any t). This implies
that

�
M; dðtÞ; y

�
! ðM; l; yÞ as t ! 0 in the C0 sense on compact sets.

Now we show that the metric l defined on the set M defines the same topology as that
of
�
M; dðtÞ

�
for any t. First note that all of the

�
M; dðtÞ

�
for t > 0 have the same topology:�

M; gðtÞ
�

are smooth Riemannian metrics with bounded curvature evolving by Ricci flow
and are all equivalent. Let us denote this topology by O. We denote the topology coming
from ðM; lÞ by ~OO.
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We use the notation lBrðxÞ to denote a ball of radius r > 0 at x A M with respect to
the metric l, and (as usual) dðtÞBrðxÞ to denote a Ball of radius r > 0 at x A M with respect
to the metric dðtÞ. From the above inequalities and the definition of l we have

dðtÞBðr�c2

ffiffi
t

p
ÞðpÞH lBrðpÞH dðtÞBrec1tðpÞð9:2Þ

for all p A M.

For any open set U in ~OO, we therefore have

U ¼
S

p AU

lBrðpÞðpÞ

¼
S

p AU

dðtðpÞÞBðrðpÞ�c2

ffiffiffiffiffiffi
tðpÞ

p
ÞðpÞ;

where rðpÞ > 0 is chosen small so that lBrðpÞðpÞHU and tðpÞ > 0 is chosen small so that
rðpÞ � c2

ffiffiffiffiffiffiffiffiffi
tðpÞ

p
> 0. Hence, U is in O. Now assume V A O. Then, using the estimate (9.2)

again, we see that

V ¼
S

p AV

dðtÞBrðp; tÞðpÞ

¼
S

p AV

lBrðp; tÞe�c1tðpÞ;

where rðp; tÞ is chosen small so that dðtÞBrðp; tÞðpÞHV . Hence V A ~OO. Hence, the identity
from ðM; l; yÞ to

�
M; dðtÞ; y

�
is a homeomorphism. We already showed that

�
M; dðtÞ; y

�
! ðX ; dX ; xÞ as t ! 0

(ðX ; dX ; xÞ was defined by ðX ; dX ; xÞ :¼ lim
i!y

�
Mi; dið0Þ; xi

�
). Hence ðX ; dX ; xÞ ¼ ðM; l; yÞ,

and ðX ; dX ; xÞ is homeomorphic to
�
M; dðtÞ; y

�
. In three dimensions every manifold has a

unique smooth maximal structure. This finishes the proof. r

We formulate the last result of the theorem above in a form independent of the Ricci
flow.

Proposition 9.3. Let ðMi; giÞ be a sequence of smooth 3-manifolds (2-manifolds) in

Tð3; k;m; v0Þ ðTð2; k;m; v0ÞÞ and ðX ; dX ; xÞ be a Gromov–Hausdor¤ limit of
�
Mi; dðgiÞ; xi

�
(such a ðX ; dX ; xÞ always exists after taking a subsequence). Then:

� ðX ; dX Þ is a manifold.

� If diamðMi; giÞe d0 < y for all i A N, then Mi is di¤eomorphic to X for i A N

su‰ciently large.

As a corollary to this result and Theorem 9.2 and Lemma 5.1 we obtain the following
corollary:
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Corollary 9.4. Let ðMi;
ig0Þ, i A N, be a sequence of three (or two) manifolds with

ðMi;
ig0Þ A T 3;� 1

i
;m; v0

� �
T 2;� 1

i
;m; v0

� � !
for each i A N: note this implies

RicciðMi;
ig0Þf� 1

i
:

Let ðX ; dX Þ ¼ GH lim
i!y

�
Mi; dð ig0Þ

�
. Then the solution

�
M; gðtÞ; x

�
t A ð0;TÞ obtained in

Theorem 9.1 satisfies

Ricci
�
gðtÞ

�
f 0

for all t A ð0;TÞ and ðX ; dX Þ is di¤eomorphic to
�
M; gðtÞ

�
for all t A ð0;TÞ. In particular,

combining this with the results of Shi [40] and Hamilton [20], we get that ðX ; dX Þ is di¤eo-

morphic to R3, S2 � R or S3 modulo a group of fixed point free isometries in the standard

metric.

Appendix A. Hessian comparison principles

Let r : M̂M :¼ M � cutðpÞ ! R be the distance function from some fixed p,
rðxÞ :¼ distðp; xÞ, and let q A M̂M. Let g : ½0; l� ! M be the unique minimising geodesic
from p to q with jg 0ðtÞj ¼ 1 for all t A ½0; l�. We denote the set of smooth vector fields along
g by TgM: V A TgM means V : ½0; l� ! TM is smooth with VðsÞ A TgðsÞM for all s A ½0; l�.
V 0 : ½0; l� ! TM will denote the vector field along g obtained by taking the covariant

derivative of V along g: see the book of do Carmo [7] for an explanation. Let Xq A TqM be

normal to g. It is well-known (see [38], Chapter 1) that r is di¤erentiable on M̂M, and that
‘rðqÞ ¼ g 0ðlÞ and

‘2rðqÞðXq;XqÞ ¼
Ðl
0

gj ~XX 0ðsÞj2 � RiemðgÞð ~XX ; g 0; ~XX ; g 0Þ ds;ðA:1Þ

where ~XX A TgM is the unique Jacobi field along g such that ~XXð0Þ ¼ 0 and ~XXðlÞ ¼ Xq

(see the Book of do Carmo [7] for a discussion on Jacobi fields).

The tensor inequality

‘2re cðn; kÞg

in the case that the sectional curvatures are bounded from below by k is well known: a
proof may be found in (for example [38], Chapter 1). Here we show how to obtain a more
general inequality which bounds ‘2r from above and below, for constants which depend
on the supremum of the curvatures in a geodesic ball of radius r where we are evaluating
‘2r.

Note. To be consistent with the rest of this paper, I am using the convention that
sectional curvatures of a plane spanned by two perpendicular vectors v, w of length one
is secðv;wÞ ¼ Riemðv;w; v;wÞ and that the sectional curvature on the sphere is positive

90 Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below



(in [38], secðv;wÞ ¼ Riemðv;w;w; vÞ > 0 on the sphere). ~XX is a Jacobi field means then that
~XX 00 � Riemð ~XX ; g 0; g 0Þ ¼ 0. Let Ei A TgM, i ¼ 1; . . . ; n, be parallel fields (E 0

i ¼ 0) such that
fEiðtÞgn

i¼1 is an orthonormal basis at gðtÞ for each t A ½0; l�. Let fiðsÞ :¼ g
�
~XX ðsÞ;EiðsÞ

�
. Let

k :¼ sup
���Riem

�
gðsÞ

��� j s A ½0; l�
�

. Then the Jacobi field equation implies

f 00
i ðsÞ ¼ g

�
~XX 00ðsÞ;EiðsÞ

�
¼ Riem

�
~XX ; g 0; g 0;EiðsÞ

�
¼
Pn
j¼1

fj RiemðEj; g
0; g 0;EiÞ;

and hence f ðsÞ :¼ j ~XX ðsÞj2 ¼
Pn
i¼1

ð fiÞ2ðsÞ satisfies

f 00 ¼
Pn

i; j¼1

2fi fj RiemðEj; g
0; g 0;EiÞ þ

Pn
i¼1

2
�
ð fiÞ0

�2

f�kn
Pn

i; j¼1

�
fiðsÞ

�2

¼ �knf ðsÞ:

This implies that gðsÞ ¼ ecsf ðsÞ satisfies

g 00ðsÞ ¼ ecsf 00ðsÞ þ cecsf 0ðsÞ þ c2ecsf ðsÞ

f ð�kn þ c2Þecsf ðsÞ þ cecsf 0ðsÞ

¼ ð�kn þ c2Þecsf ðsÞ þ g 0ðsÞ � cecsf ðsÞ

¼ ð�kn þ c2 � cÞecsf ðsÞ þ g 0ðsÞ

> g 0ðsÞ

if, for example, c ¼ kn þ 1. Hence g has no local maximum in ð0; lÞ: if it did, we would
obtain

0f g 00ðsÞ > 0;

which is a contradiction. Now note that gð0Þ ¼ 0 and

gðlÞ ¼ eðknþ1Þl f ðlÞ ¼ eðknþ1Þl j ~XXðlÞj2 ¼ eðknþ1Þl

since ~XXð0Þ ¼ 0 and ~XXðlÞ ¼ XðqÞ and jXðqÞj ¼ 1. This implies that gðsÞe eðknþ1Þl for all
s A ½0; l� and hence that f ðsÞ ¼ j ~XXðsÞj2 e eðknþ1Þl for all s A ½0; l�. Let

RBðrÞ :¼ r sup
Brðx0Þ

jRiemðgÞjeðn supBrðx0ÞjRiemðgÞjþ1Þr:

Then, using (A.1), we get
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‘2rðqÞðXq;XqÞ ¼
Ðl
0

gj ~XX 0ðsÞj2 � RiemðgÞð ~XX ; g 0; ~XX ; g 0Þ ds

f
Ðl
0

�kj ~XX j2 ds

f�kleðknþ1Þl

f�RBðlÞ;

for every q A BrðpÞX M̂M as required. The estimate ‘2rðqÞeRBðlÞ follows by using
the standard Hessian comparison principle (see [38], Chapter 1), and the fact that
secðxÞf� sup

Blðx0Þ
jRiemðx0Þj for x A Blðx0Þ.

Appendix B. Estimates on the distance function for Riemannian

manifolds evolved by Ricci flow

For completeness, we prove some results which are implied or proved in [22] and
stated in [5] as editors’ note 24 from the same paper in that book. The lemma we wish to
prove is

Lemma B.1. Let
�
M n; gðtÞ

�
t A ½0;TÞ be a solution to Ricci flow with

Ricci
�
gðtÞ

�
f�c0;��Riem

�
gðtÞ

���te c0:

Then

ec1ðc0;nÞðt�sÞdðp; q; sÞf dðp; q; tÞf dðp; q; sÞ � c2ðn; c0Þð
ffiffi
t

p
�

ffiffi
s

p
ÞðB:1Þ

for all 0e se t A ½0;TÞ.

Proof. The inequality

dðp; q; tÞf dðp; q; 0Þ � c1ðn; c0Þ
ffiffi
t

p

is proved in [22], Theorem 17.2, after making a slight modification of the proof. If we
examine the proof there (as pointed out in [5] as editors note 24 of the same book), we see
in fact that what is proved is:

dðP;Q; tÞf dðP;Q; sÞ � C
Ðt
s

ffiffiffiffiffiffiffiffiffiffiffi
MðtÞ

p
;

where
ffiffiffiffiffiffiffiffiffiffiffi
MðtÞ

p
is any integrable function which satisfies

sup
M

jRiemð�; tÞjeMðtÞ:

92 Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below



In particular, in our case we may set

MðtÞ ¼ co

t
;

which then implies the inequality dðp; q; tÞf dðp; q; sÞ � c2ðn; c0Þð
ffiffi
t

p
�

ffiffi
s

p
Þ. The second

inequality is also a simple consequence of results obtained in [22]. Lemma 17.3 tells us that

q

qt
dðP;Q; tÞe� inf

g AG

Ð
g

RicciðT ;TÞ ds;

where the inf is taken over the compact set G of all geodesics from P to Q realising the
distance as a minimal length, T is the unit vector field tangent to g. Then in our case
Riccif�c0 implies

q

qt
dðP;Q; tÞe c0dðP;Q; tÞ:

This implies that

dðP;Q; tÞe expc0ðt�sÞ dðP;Q; sÞ;

as required. r
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