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LOCAL CONTROL ON THE GEOMETRY IN 3D RICCI
FLOW

Miles Simon & Peter M. Topping

Abstract

The geometry of a ball within a Riemannian manifold is coarsely
controlled if it has a lower bound on its Ricci curvature and a pos-
itive lower bound on its volume. We prove that such coarse local
geometric control must persist for a definite amount of time under
three-dimensional Ricci flow, and leads to local C/t decay of the
full curvature tensor, irrespective of what is happening beyond the
local region.

As a by-product, our results generalise the Pseudolocality the-
orem of Perelman [19, §10.1 and §10.5] and Tian-Wang [25] in
this dimension by not requiring the Ricci curvature to be almost-
positive, and not asking the volume growth to be almost-Euclidean.

Our results also have applications to the topics of starting Ricci
flow with manifolds of unbounded curvature, to the use of Ricci
flow as a mollifier, and to the well-posedness of Ricci flow starting
with Ricci limit spaces. In [24] we use results from this paper to
prove that 3D Ricci limit spaces are locally bi-Hölder equivalent to
smooth manifolds, going beyond a full resolution of the conjecture
of Anderson, Cheeger, Colding and Tian in this dimension.

1. Statement of the main result

Given a complete n-dimensional Riemannian manifold (M, g) and a
point x0 ∈M , it is well-known by the theorem of Bishop-Gromov that if
Ric ≥ 0 in Bg(x0, 1) and the volume of Bg(x0, 1) is equal to the volume
ωn of the unit ball in n-dimensional Euclidean space (i.e. the largest
it can be) then Bg(x0, 1) is isometric to the Euclidean unit ball. More
generally, if we only have

(1.1) Ric ≥ −ε in Bg(x0, 1) and VolBg(x0, 1) ≥ (1− ε)ωn,

for some small ε > 0, then Bg(x0, 1) can be considered to be almost
Euclidean, cf. [9, Theorem 0.8].
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According to Perelman’s celebrated pseudolocality result, as we de-
scribe in a moment, the Ricci flow evolution of g, governed by the equa-
tion

∂g

∂t
= −2Ricg(t),

protects almost-Euclidean regions, and we obtain estimates on the cur-
vature of the flow at the centre of such regions for a definite amount of
time, irrespective of how wild the flow is outside.

In this paper, we consider the behaviour of Ricci flow when confronted
by a local region that is not almost-Euclidean, but has the coarser
geometric control that the Ricci curvature has some lower bound on
Bg(x0, 1), and the volume of this ball has some positive lower bound.
This coarser control completely changes the picture compared with
almost-Euclidean control, and in particular we must restrict to the
three-dimensional case because lower Ricci bounds are respected in this
situation. Our main result is that this coarse geometric control is pre-
served for a uniform amount of time, and as a by-product we obtain
C/t decay of the full curvature tensor.

Theorem 1.1 (Main theorem). Suppose that (M3, g(t)) is a complete
Ricci flow for t ∈ [0, T ) with bounded curvature and x0 ∈ M . Suppose
further that

(1.2) VolBg(0)(x0, 1) ≥ v0 > 0

and

(1.3) Ricg(0) ≥ −K on Bg(0)(x0, 1 + σ),

for some K,σ > 0. Then there exist T̃ = T̃ (v0,K, σ) > 0, ṽ0 =

ṽ0(v0,K) > 0, K̃ = K̃(v0,K, σ) > 0 and c0 = c0(v0,K, σ) < ∞ such

that for all t ∈ [0, T ) ∩ (0, T̃ ) we have
1. VolBg(t)(x0, 1) ≥ ṽ0 > 0,

2. Ricg(t) ≥ −K̃ on Bg(t)(x0, 1),
3. |Rm|g(t) ≤ c0

t on Bg(t)(x0, 1).

Here we are using the shorthand VolBg(x0, r) := Volg(Bg(x0, r)) to
be the volume with respect to the metric g of the ball centred at x0

and of radius r > 0 with respect to g. We are also using the shorthand
Ricg ≥ −K to mean that Ricg ≥ −Kg as bilinear forms.

While the local control on the coarse geometry, as given by Conclu-
sions 1 and 2, is the central issue in Theorem 1.1, the third conclusion
also gives a substantial improvement on Perelman’s celebrated pseudolo-
cality theorem in this dimension as we now explain. Similar control to
this final conclusion was established in the very interesting recent work
of Hochard [15] that was carried out independently to ours. Perelman
proved that an n-dimensional Ricci flow will enjoy α/t local curvature
decay if it is initially locally almost Euclidean, where the closeness to
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Euclidean was given principally in terms of an almost-Euclidean isoperi-
metric inequality and a lower scalar curvature bound holding locally [19,
§10.1]. As alluded to by Perelman [19, §10.5] and proved by Tian and
Wang [25], pseudolocality also applies for almost-Euclidean in the sense
of (1.1).

Theorem 1.2 (Perelman, Tian-Wang). Suppose that (Mn, g(t)) is a
complete Ricci flow for t ∈ [0, T ) with bounded curvature, that α > 0,
and that x0 ∈M . Then there exists ε = ε(n, α) > 0 such that if

(1.4) VolBg(0)(x0, 1) ≥ (1− ε)ωn

and

(1.5) Ricg(0) ≥ −ε on Bg(0)(x0, 1),

then for all t ∈ [0, T ) ∩ (0, ε) we have

|Rm|g(t)(x0) ≤ α

t
.

This almost-Euclidean result can be considered a perturbative result.
The model example is the Ricci flow one obtains starting with a very
shallow cone. For example, when n = 2, if we flow from a cone with cone
angle 2π(1 − β), then the curvature at the tip decays like β

2(1−β)t (see

e.g. Section 4, Chapter 2 of [7]). We can take the Cartesian product
with R to give a three-dimensional flow. Theorem 1.2 would apply when
β ≥ 0 was extremely small. (Strictly speaking, we would apply it from
an arbitrarily small time onwards, so as to consider only smooth flows.)

In contrast, the control we obtain in Conclusion 3 of Theorem 1.1 is
nonperturbative, making the result and its proof quite different. Our
result will handle Ricci flows starting at cones with arbitrary sharp
cone points, e.g. corresponding to β ∈ [0, 1) above as close as we like
to 1. Whether or not Perelman’s original pseudolocality result [19,
Theorem 10.1] can be extended in the analogous way to assume only
some isoperimetric inequality rather than an almost-Euclidean one (at
the expense of not being able to specify the α of the α/t curvature
decay, and acquiring a dependence on the isoperimetric constant) is an
interesting open question.

Our local lower bound on the Ricci curvature and our pseudolocality
decay on the curvature tensor combine to give additional geometric con-
trol in terms of the distance function. On a smaller ball, the distance
function at later times will be equivalent to the distance function ini-
tially. The following proposition will follow rapidly from Theorem 1.1
and Lemma 3.4, as we demonstrate at the end of Section 3.

Proposition 1.3. In the setting of Theorem 1.1 (even allowing σ = 0

in (1.3)) there exist T̃ = T̃ (v0,K) > 0 and κ = κ(v0,K) > 0 such that
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for all x, y ∈ Bg(0)(x0, 1/10) and all t ∈ [0, T ) ∩ [0, T̃ ) we have

(1.6) dg(0)(x, y)− κ
√
t ≤ dg(t)(x, y) ≤ (1 + κt)dg(0)(x, y).

Remark 1.4. To see that Theorem 1.1 fails in dimension 4 (and
higher), one can consider blow-downs of the Eguchi-Hanson metric. In
this way, we can construct a sequence of stationary (Ricci flat) solutions
to the Ricci flow satisfying the hypotheses of our theorem (with K = 0
and uniform v0 > 0) that exist for all time, with larger and larger
curvature (that is constant in time).

Remark 1.5. To see that other aspects of our main theorem are
sharp, key examples include flows from cones as above of various cone
angles, both above and below 2π, and flows that develop singularities,
including shrinking cylinders and neckpinches.

As we will prove in Section 10, Theorem 1.1 is equivalent to the fol-
lowing result with the Conclusions 1, 2 and 3 replaced by the analogous
conclusions in which we define balls with respect to the time 0 metric.

Theorem 1.6. In the setting of Theorem 1.1, there exist constants
T̃ , ṽ0, K̃ and c0 as in Theorem 1.1 such that for all t ∈ [0, T ) ∩ (0, T̃ )
we have

1′. Volg(t)(Bg(0)(x0, 1)) ≥ ṽ0 > 0,

2′. Ricg(t) ≥ −K̃ on Bg(0)(x0, 1),
3′. |Rm|g(t) ≤ c0

t on Bg(0)(x0, 1).

Theorems 1.1 and 1.6 are related to two previous papers of the first
author. In [21], a global result controlling Ricci curvature from below
for Ricci flows on three-dimensional manifolds was established. In [23],
a local result controlling sectional curvature from below, also in three
dimensions, was given. Also, Hochard [15] proved lower Ricci curvature
bounds of the form Ricg(t) ≥ −1

t that degenerate as t ↓ 0, and volume

lower bounds on balls of radius
√
t.

Remark 1.7. The boundedness of the curvature in Theorem 1.1 is
required only because at some point we apply one of Perelman’s pseu-
dolocality theorems, and it is currently necessary to assume such bound-
edness to make the proof of pseudolocality complete.

Remark 1.8. With an additional argument, e.g. extending theory
of Cheeger-Colding-Naber, we expect that it is possible to set ṽ0 = v0/2
in Theorems 1.1 and 1.6.

Remark 1.9. Our work has applications to the problem of starting
the Ricci flow with manifolds that may have unbounded curvature, but
have coarse control on the geometry near each point x0, given by hy-
potheses (1.2) and (1.3) of our main theorem. Indeed, if we combine our
main Theorem 1.1 and Proposition 1.3 with the work of Hochard [15],
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then we find not only that it is possible to start the Ricci flow from such
a manifold (as shown by Hochard), but also that the Ricci curvature of
the resulting flow will be bounded from below, in view of Theorem 1.1,
and that we have quantitative control on the convergence as t ↓ 0 in the
Gromov-Hausdorff sense, in view of Proposition 1.3. In particular, this
allows one to start the Ricci flow with arbitrary Gromov-Hausdorff lim-
its of sequences of complete Riemannian manifolds satisfying hypotheses
(1.2) and (1.3) of our main theorem for each x0 ∈M , and be sure that
the constructed Ricci flow satisfies estimates of the type given in the
conclusions of Theorem 1.1 and Proposition 1.3 for t > 0, and achieves
its initial data in the Gromov-Hausdorff sense. In a subsequent paper
[24] we develop these ideas further in order to prove a stronger result
than the three-dimensional Anderson-Cheeger-Colding-Tian conjecture,
describing the structure of Ricci limit spaces for which we only assume a
noncollapsedness condition like (1.2) at one point in each approximating
manifold.

Implicitly, all Ricci flows in this paper are smooth, and all manifolds
are connected and without boundary.

Acknowledgments. This work was supported by EPSRC grant num-
ber EP/K00865X/1. Key parts of this paper originated at the 2013
Oberwolfach PDE meeting. We would like to thank the MFO and the
organisers Alice Chang, Camillo De Lellis and Reiner Schaetzle for their
invitation.

2. Ingredients in the proof of the main Theorem 1.1

In this section we give three of the main supporting results that will
ultimately be combined to give the proof of Theorem 1.1. Each of
the supporting results can be viewed as weaker versions of the main
theorem, in which we take one or two of the conclusions as additional
hypotheses, and deduce the remaining conclusions. We will also give an
indication of some of the localisation issues that will arise in the proof
by combining the three local supporting results to prove an easier global
version of Theorem 1.1 more along the lines of what was proved in [21].

We first obtain C0/t decay on the sectional curvatures as in Theorem
1.1, but with the stronger hypothesis (2.2) that the Ricci curvature is
bounded below not just at t = 0 but for all times. Despite the closeness
of these results, Lemma 2.1 will just be one ingredient in the proof
of Theorem 1.1, and will be applied at some different scale as part
of a contradiction argument. A subtle distinction is that the stronger
hypothesis allows us to drop the hypothesis that the Ricci flow is part
of a larger complete Ricci flow with bounded curvature.

Lemma 2.1 (Ric ≥ −K lower bound implies |Rm| ≤ C0/t upper
bound). Suppose that (M3, g(t)) is a Ricci flow for t ∈ [0, T ) such that
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Bg(t)(x0, 1) ⊂⊂ M for some x0 ∈ M and each t ∈ [0, T ). Suppose
further that

(2.1) VolBg(0)(x0, 1) ≥ v0 > 0

and for some K > 0 that

(2.2) Ricg(t) ≥ −K on Bg(t)(x0, 1) for all t ∈ [0, T ),

and that γ ∈ (0, 1) is any constant.

Then there exists T̂ = T̂ (v0,K, γ) > 0, C0 = C0(v0,K, γ) < ∞ and

η0 = η0(v0,K, γ) > 0 such that for all t ∈ (0, T ) ∩ (0, T̂ ) we have

|Rm|g(t) <
C0

t
on Bg(t)(x0, γ),

and

(2.3) VolBg(t)(x0, 1) ≥ η0.

We prove Lemma 2.1 in Section 5. It will involve a Perelman-style
point picking procedure (for which we give a clean exposition in Lemma
5.1) allowing us to blow up a contradicting sequence in order to get a
κ-solution with positive asymptotic volume ratio, which is impossible
by a result of Perelman [19, §10.4]. Related arguments have been used
by several authors since Perelman’s work.

If one can see Lemma 2.1 as a version of Theorem 1.1 in which we
assume Conclusion 2 as an additional hypothesis, then the following
lemma can be considered a version in which we assume the curvature
decay of Conclusion 3 as a hypothesis in order to obtain the persistence
of lower Ricci bounds of Conclusion 2.

Lemma 2.2 (Lower Ricci bounds). Let c0 ≥ 1, K̃ > 0 be arbitrary.
Suppose that (M3, g(t)) is a Ricci flow for t ∈ [0, T ), and x0 ∈ M
satisfies Bg(t)(x0, 2) ⊂⊂M for all t ∈ [0, T ). We assume further that

(a) Ricg(0) ≥ −K̃ on Bg(0)(x0, 2)
(b) |Rm|g(t) ≤ c0

t on Bg(t)(x0, 2) for all t ∈ (0, T ).

Then there exists a T̂ = T̂ (c0, K̃) > 0 such that

Ricg(t) ≥ −100K̃c0 on Bg(t)(x0, 1)

for all t ∈ [0, T ) ∩ [0, T̂ ).

This lemma and its proof is considerably more unorthodox. We do
use the remarkable properties of the distance function under Ricci flow
in order to construct useful cut-off functions, in the spirit of Perelman,
following Hamilton. Indeed we give a self-contained, re-usable exposi-
tion of the theory we need in Section 7 – see Lemma 7.1. Moreover, the
local Ricci control of Lemma 2.2 can be considered a relative of the local
scalar curvature control developed by B.-L. Chen [5]. Indeed, we will
use similar control as an ingredient in the proof, and we give the theory
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we need in Section 8 – see Lemma 8.1. However, the proof of Lemma
2.2 is very different in that it requires a double bootstrap argument. If
one interprets the lemma as obtaining L∞ control on the negative part
of the Ricci curvature, then our argument proceeds in two steps, the
first effectively achieving only Lp control in time, for finite p. Lemma
2.2 is just a rescaling of Lemma 9.1, which we prove in Section 9.

A third result that we highlight at this point can be considered the
statement that if we assume both Conclusions 2 and 3 in addition, then
we can deduce Conclusion 1. This result even works in higher dimension.

Lemma 2.3 (Lower volume control). Suppose that (Mn, g(t)) is a
Ricci flow for t ∈ [0, T ), such that Bg(t)(x0, γ) ⊂⊂M for some x0 ∈M
and γ > 0, and all t ∈ [0, T ). Assume further that

(i) Ricg(t) ≥ −K on Bg(t)(x0, γ), for some K > 0 and all t ∈ [0, T ),
(ii) |Rm|g(t) ≤ c0

t on Bg(t)(x0, γ), for some c0 <∞ and all t ∈ (0, T ),
(iii) VolBg(0)(x0, γ) ≥ v0 for some v0 > 0.

Then there exist ε0 = ε0(v0,K, γ, n) > 0 and T̂ = T̂ (v0, c0,K, γ, n) > 0
such that

VolBg(t)(x0, γ) > ε0

for all t ∈ [0, T̂ ] ∩ [0, T ).

Thus, under somewhat weak curvature hypotheses, the volume of a
ball of fixed radius cannot drop too rapidly. Without these hypotheses
the theorem fails. Indeed, there exists a Ricci flow starting with the unit
disc in Euclidean space whose volume becomes as small as we like in as
small a time as we like. An example was given in [11, Theorem A.3] in
two dimensions, which then trivially extends to arbitrary dimension.

Even if one considers only complete or closed Ricci flows, then the
volume of a unit disc could collapse to an arbitrarily small value in an
arbitrarily short time, as we now briefly sketch: Take two round two-
dimensional spheres of radius, say, 1/10. Connect them by a tiny neck
to give a rotationally symmetric dumbbell surface. We pick x0 at the
centre of the neck and start the Ricci flow. Initially, the volume of the
unit ball centred at x0 is of order 1 because the unit ball contains the two
spheres. But virtually instantly, the two spheres fly apart and we are
left standing on a really thin neck, and thus the volume of the unit ball
centred at x0 is now as small as we like. The example trivially extends
to higher dimensions by taking a product with Euclidean space, and can
be made rigorous using far simpler technology than that in [12].

We relegate the proof of Lemma 2.3 to Section 11 because those
familiar with the details of Cheeger-Colding theory (not just the state-
ments) could take a different path by verifying that the statements of
Cheeger-Colding [3] also hold in the case that the balls being considered
are compactly contained in possibly non-complete manifolds, at which
point a more direct argument is possible.
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At this point, we have three results that can each be viewed as weak
forms of the main theorem. In Section 10 we will show how they can be
combined to give the full Theorem 1.1. Much of the significance of these
results is that they apply locally. However, there are still two further
ingredients that will be required in order to make the main theorem
apply locally, namely the prior inclusion lemma and the pseudolocality
improvement lemma, and we describe these in Sections 4 and 6 respec-
tively. In order to understand the subtleties of the localisation aspects,
we now sketch how one could prove the simpler global result in which
we assume that the hypotheses of the theorem hold globally, i.e. we have
Ricg(0) ≥ −K throughout, and VolBg(0)(x, 1) ≥ v0 > 0 for each x ∈M ,
and ask for the lower volume bound of Conclusion 1 for all x0, and for
the curvature control of Conclusions 2 and 3 globally.

By reducing (and then fixing) v0 > 0, we can assume even that
VolBg(0)(x, r) ≥ v0r

3 for each x ∈M and r ∈ (0, 1], by Bishop-Gromov.

With these constants v0 and K, and with γ = 1
2 , we can appeal to

Lemma 2.1 for constants T̂ , C0 and η0, in preparation for the applica-
tion of this lemma later. The lemma will be applied not to g(t), but a
scaled-up version of g(t). We can choose c0 = C0 + 1 in the theorem.
In preparation to apply the lower Ricci bounds Lemma 2.2, also to a
rescaled flow, we reduce T̂ if necessary so that this lemma applies with
K̃ = K/(100c0). Here we assume the condition |Rm|g(t) ≤ c0

t for the c0

that we have just defined.
We now claim, as required in this global version of the theorem, that

|Rm|g(t) ≤ c0
t for all t ∈ (0, T̂ /(100c0)]. If not, then take the first

time δ > 0 for which this estimate fails, and pick z0 ∈ M such that
|Rm|g(δ)(z0) = c0

δ . If we then parabolically rescale up time by a factor

so that δ increases to T̂ , which is a factor of at least 100c0, then we get
a new Ricci flow g̃(t) on [0, T̂ ] such that |Rm|g̃(t) ≤ c0

t , with equality at

t = T̂ at the point z0. Also, after the scaling, Ricg̃(0) ≥ −K/(100c0).
We can then apply Lemma 2.2 to g̃(t), centred at z0, to deduce that

Ricg̃(t) ≥ −K in a ball centred at z0, for all t ∈ [0, T̂ ]. Applying Lemma
2.1, again to g̃(t) and centred at z0, we deduce that |Rm|g̃(t)(z0) ≤
C0/t < c0/t for t ∈ [0, T̂ ], but by hypothesis, |Rm|g̃(T̂ )(z0) = c0

T̂
, which

is a contradiction. Thus, we’ve proved that

|Rm|g(t) ≤
c0

t
over t ∈ (0, T̃ ]

where T̃ := T̂ /(100c0). Lemma 2.2, applied this time to g(t), then gives
the bound

Ricg(t) ≥ −100c0K for t ∈ [0, T̃ ],

which is the second conclusion of the (global) theorem. Finally, Lemma
2.3 gives the desired volume lower bounds of the first conclusion of the
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theorem, and this completes the sketch proof of the main theorem in
the global case.

The main subtlety that arises in the proof of the local Theorem 1.1 is
that the contradiction point z0 in the argument above could arise near
the boundary of our local region. To overcome this we will need the full
strength of the local aspects of our three main ingredients, and more.
The proof can be found in Section 10.

3. Nested balls

At the heart of this work is the remarkable behaviour of the dis-
tance function under Ricci flow. In this section we use local versions
of the estimates of Hamilton [14, §17] and Perelman [19], valid in any
dimension, to establish sharp control on when balls of different radii at
different times are nested. None of the Ricci flows in this section need
be complete.

Lemma 3.1 (The expanding balls lemma). Suppose K > 0 and 0 <
r < R < ∞, and define T0 := 1

K log(R/r) > 0. Suppose (M, g(t)) is a
Ricci flow for t ∈ [0, T ] on a manifold M of any dimension. Suppose that
x0 ∈M and that Bg(t)(x0, R) ⊂⊂M and Ricg(t) ≥ −K on Bg(t)(x0, R)
for each t ∈ [0, T ]. Then

(3.1) Bg(0)(x0, r) ⊂ Bg(t)(x0, re
Kt) ⊂ Bg(t)(x0, R)

for all t ∈ [0, T ] ∩ [0, T0].

Proof of the Lemma 3.1. By scaling, we may assume that R = 1. Define
(3.2)
T1 := sup

{
s ∈ [0,min{T, T0}] : Bg(0)(x0, r) ⊂ Bg(t)(x0, 1) ∀t ∈ [0, s)

}
∈ (0,min{T, T0}].

Because Bg(0)(x0, r) ⊂ Bg(t)(x0, 1) for all t ∈ [0, T1), we can exploit the
Ricci lower bound hypothesis to find that for all x ∈ Bg(0)(x0, r), we
have

dg(t)(x, x0) ≤ eKtdg(0)(x, x0),

for all t ∈ [0, T1), and by continuity, even for t ∈ [0, T1]. In particular,
we have

(3.3) dg(t)(x, x0) < reKt ≤ e−K(T0−T1)

by definition of T0, and hence that

Bg(0)(x0, r) ⊂ Bg(t)(x0, e
−K(T0−T1))

for all t ∈ [0, T1]. If T1 < min{T, T0}, so that e−K(T0−T1) < 1, then
this would contradict the definition of T1. Therefore we have T1 =
min{T, T0}, and (3.3) implies (3.1) as required. q.e.d.
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With an upper Ricci bound, we can nest balls in the opposite sense.
By convention, balls with negative radii are empty.

Lemma 3.2 (The shrinking balls lemma). Suppose (M, g(t)) is a
Ricci flow for t ∈ [0, T ] on a manifold M of any dimension n. Then
there exists a constant β ≥ 1 depending only on n such that the following
is true. Suppose x0 ∈ M and that Bg(0)(x0, r) ⊂⊂ M for some r > 0,

and Ricg(t) ≤ (n − 1)f2(t) on Bg(0)(x0, r), or merely on Bg(0)(x0, r) ∩
Bg(t)

(
x0, r − β

2

∫ t
0 f
)

, for each t ∈ (0, T ], where f : (0, T ]→ [0,∞) is a

continuous integrable function. Then

(3.4) Bg(0)(x0, r) ⊃ Bg(t)
(
x0, r − β

2

∫ t
0 f
)

for all t ∈ [0, T ].

Noting that |Rm| bounds the size of the largest sectional curvature,
we instantly have the following corollary, which will account for most
applications in this paper.

Corollary 3.3 (The shrinking balls corollary). Suppose (M, g(t)) is a
Ricci flow for t ∈ [0, T ] on a manifold M of any dimension n. Then with
β = β(n) ≥ 1 as in Lemma 3.2, the following is true. Suppose x0 ∈ M
and that Bg(0)(x0, r) ⊂⊂ M for some r > 0, and |Rm|g(t) ≤ c0/t, or

more generally Ricg(t) ≤ (n−1)c0/t, on Bg(0)(x0, r)∩Bg(t)(x0, r−β
√
c0t)

for each t ∈ (0, T ] and some c0 > 0. Then

(3.5) Bg(0)(x0, r) ⊃ Bg(t)
(
x0, r − β

√
c0t
)

for all t ∈ [0, T ]. More generally, for 0 ≤ s ≤ t ≤ T , we have

Bg(s)
(
x0, r − β

√
c0s
)
⊃ Bg(t)

(
x0, r − β

√
c0t
)
.

Proof of Lemma 3.2. It is a result of Hamilton and Perelman (embed-
ded in the discussion in [14, §17] and [19, Lemma 8.3(b)], using the
idea of Bonnet-Myers) that if g(t) is a Ricci flow on M for t in a non-
trivial interval containing t0 ∈ R, and γ : [0, 1]→ M is any minimising
geodesic with respect to g(t0) such that Ricg(t0) ≤ (n−1)K at all points
along γ, then

(3.6)
d

dt

∣∣∣∣
t=t0

Lg(t)(γ) ≥ −β
2

√
K,

where β := 8
√

2/3(n − 1) ≥ 1. This β is to be the value of β in the
lemma.

To prove the lemma, it suffices to show that for arbitrary ε > 0, we
have

(3.7) Bg(0)(x0, r) ⊃ Bg(t)
(
x0, r − β

2

∫ t
0 f − ε(1 + t)

)
for all t ∈ [0, T ].
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Suppose instead that this is false for some Ricci flow, ε > 0 and
function f etc. Then there exists a first time t0 ∈ (0, T ] at which it
fails, and we can find a point

y ∈ Bg(t0)

(
x0, r − β

2

∫ t0
0 f − ε(1 + t0)

)
such that dg(0)(y, x0) = r. We can then find a minimising geodesic γ
connecting x0 and y with length

(3.8) Lg(t0)(γ) ≤ r − β

2

∫ t0

0
f − ε(1 + t0),

all of which lies within both Bg(0)(x0, r) and Bg(t0)

(
x0, r − β

2

∫ t0
0 f

)
,

where Ricg(t0) ≤ (n − 1)f2(t0) has been assumed. In particular, by
(3.6), we have

(3.9)
d

dt

∣∣∣∣
t=t0

Lg(t)(γ) ≥ −β
2
f(t0).

On the other hand, because t0 is the first time at which (3.7) fails, and

y /∈ Bg(0)(x0, r), for all s ∈ [0, t0) we have dg(s)(x0, y) > r − β
2

∫ s
0 f −

ε(1 + s), and in particular,

Lg(s)(γ) > r − β

2

∫ s

0
f − ε(1 + s).

Subtracting from (3.8), we obtain

Lg(t0)(γ)− Lg(s)(γ) < −β
2

∫ t0

s
f − ε(t0 − s),

and hence
d

dt

∣∣∣∣
t=t0

Lg(t)(γ) ≤ −β
2
f(t0)− ε,

which contradicts (3.9). q.e.d.

The following lemma gives the nesting of balls whose centre is different
from the centre of the balls on which we have curvature control. It also
gives control on the distance function, for possible future use.

Lemma 3.4 (Displaced balls and distance comparison lemma). Sup-
pose that (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], and that for some
x0 ∈ M and r > 0, we have Bg(t)(x0, 5r) ⊂⊂ M for all t ∈ [0, T ].
Suppose further that for some K > 0 we have

Ricg(t) ≥ −K on Bg(t)(x0, 5r),

for all t ∈ [0, T ]. Then for any t ∈ [0,min{T, 1
K log 3

2}] there holds:
1) For any x ∈ Bg(0)(x0, r) and radius s ∈ [0, 2r], we have

Bg(0)(x, s) ⊂ Bg(t)(x, seKt) ⊂ Bg(t)(x0, 5r);

2) For any x, y ∈ Bg(0)(x0, r), we have dg(t)(x, y) ≤ eKtdg(0)(x, y).
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If in addition |Rm|g(t) ≤ c0/t, or more generally Ricg(t) ≤ (n − 1)c0/t,
on Bg(t)(x0, 5r), for some c0 > 0 and for all t ∈ [0, T ], then taking

β = β(n) ≥ 1 as in Lemma 3.2, and taking any t ∈ [0,min{T, 1
K log 5

4}],
there holds:

3) For any x ∈ Bg(0)(x0, r) and radius s ∈ [0, 3r], we have

Bg(0)(x, s) ⊃ Bg(t)
(
x, s− β

√
c0t
)
;

4) For any x, y ∈ Bg(0)(x0, r), if additionally t ≤ r2

4c0β2 , then we have

(3.10) dg(0)(x, y)− β
√
c0t ≤ dg(t)(x, y).

Proof of Lemma 3.4. By Lemma 3.1, with R = 2r, we have

x ∈ Bg(0)(x0, r) ⊂ Bg(t)(x0, 2r)

for t ∈ [0, T ] such that t ≤ 1
K log 2, and hence

(3.11) Bg(t)(x, 3r) ⊂ Bg(t)(x0, 5r).

Since this is where we have the Ricci lower bound, we can apply Lemma
3.1 again, this time centred at x, and with r there equal to s ∈ [0, 2r]
and R = 3r to find that

(3.12) Bg(0)(x, s) ⊂ Bg(t)(x, seKt) ⊂ Bg(t)(x, 3r),

for t ∈ [0, T ] with t ≤ 1
K log 3

2 , as required in the first part of the lemma.
For the second part, we can take s = dg(0)(x, y), in which case

y ∈ Bg(0)(x, s) ⊂ Bg(t)(x, seKt)

as required for part 2.
Now assume that we have the additional upper curvature bound,

which by (3.11) will hold throughout Bg(t)(x, 3r). Part 3 then follows
instantly from Corollary 3.3. To prove part 4, we will apply part 3 with
s := dg(t)(x, y) + β

√
c0t. Part 2 of the lemma tells us that dg(t)(x, y) ≤

5
4dg(0)(x, y) ≤ 5r

2 , and so s ≤ 3r as required for an application of part
3, which then tells us that

y ∈ Bg(t)(x, dg(t)(x, y)) = Bg(t)(x, s− β
√
c0t) ⊂ Bg(0)(x, s),

i.e. that dg(0)(x, y) ≤ s, as required. q.e.d.

Proof of Proposition 1.3. By parabolically scaling up the Ricci flow g(t)
so that the balls of radius 1 become of radius 2, we can apply Theorem
1.1 with σ = 1. Scaling back to the original flow, we are left with
bounds Ricg(t) ≥ −K̃ and |Rm|g(t) ≤ c0

t on Bg(t)(x0, 1/2), for each

t ∈ [0, T ) ∩ (0, T̃ ), where T̃ , c0 and K̃ depend only on v0 and K. We
can therefore apply Lemma 3.4 with r = 1/10. The second and fourth

parts of that lemma imply the proposition, for a possibly smaller T̃ > 0.
q.e.d.
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4. Prior inclusion lemma

Any smooth locally defined Ricci flow will enjoy c0/t curvature decay
over some short time interval. The following useful lemma tells us that
while this is true on a rapidly shrinking local ball, we can take any point
z0 in one of these rapidly shrinking balls, say at time t0, and be sure
that there is a well-controlled space-time region centred at z0, that lives
within the region with c0/t curvature decay. The closer this space-time
‘cylinder’ gets to time t0, the thinner we must make it in space.

Lemma 4.1 (Prior inclusion lemma). Given an integer n ≥ 2, take
β ≥ 1 as in Lemma 3.2. Suppose that (Mn, g(t)) is a Ricci flow for
t ∈ [0, T ), x0 ∈ M , r0 > 0, c0 > 0, L > 0 and t0 ∈ (0, T ) with t0 <

r20
β2c0(L+1)2

. Suppose further that Bg(0)(x0, r0) ⊂⊂ M , and |Rm|g(t) ≤
c0
t , or more generally Ricg(t) ≤ (n − 1) c0t throughout Bg(0)(x0, r0) ∩
Bg(t)(x0, r0 − (L+ 1)β

√
c0t) for t ∈ (0, t0]. Then for any

z0 ∈ Bg(t0)(x0, r0 − (L+ 1)β
√
c0t0)

and for all α ∈ (0, 1) and t ∈ [0, α2t0], we have

Bg(t)(z0, L(1−α)β
√
c0t0) ⊂ Bg(t)(x0, r0−(L+1)β

√
c0t) ⊂ Bg(0)(x0, r0).

Proof. The shrinking balls Corollary 3.3, with c0 there equal to (L+
1)2c0 here, and r there equal to r0 here, tells us that Bg(t)(x0, r0 −
(L + 1)β

√
c0t) ⊂ Bg(0)(x0, r0) for all t ∈ [0, t0]. We then make a sec-

ond application of the shrinking balls Corollary 3.3, but now with c0

there equal to c0 here, and with r < r0 chosen so that the rapidly
shrinking ball Bg(t)(x0, r0 − (L+ 1)β

√
c0t) above agrees with the (pre-

viously smaller) ball Bg(t)(x0, r − β
√
c0t) at time t0. That is, we take

r = r0 − Lβ
√
c0t0 > 0. The output of the shrinking balls corollary is

now, for each t ∈ [0, t0], the inclusion

Bg(t)
(
x0, r − β

√
c0t
)
⊃ Bg(t0)

(
x0, r − β

√
c0t0

)
= Bg(t0)(x0, r0 − (L+ 1)β

√
c0t0),

and so by definition of r, we have

z0 ∈ Bg(t)
(
x0, r0 − Lβ

√
c0t0 − β

√
c0t
)
.

Fattening by an amount Lβ
√
c0(
√
t0 −

√
t), we find that

Bg(t)

(
z0, Lβ

√
c0(
√
t0 −

√
t)
)
⊂ Bg(t)

(
x0, r0 − (1 + L)β

√
c0t
)
.

If we further constrain t ≤ α2t0, then this smaller ball contains the ball
Bg(t)(z0, L(1− α)β

√
c0t0) as required. q.e.d.

One key application of the lemma above is the following, in which z0

is further constrained to be a first point where good curvature decay
fails.
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Lemma 4.2. Given an integer n ≥ 2, take β ≥ 1 as in Lemma 3.2.
Suppose that (Mn, g(t)) is a Ricci flow for t ∈ [0, T ), x0 ∈ M , r0 > 0,
c0 > 0 and L > 0. Suppose further that Bg(0)(x0, r0) ⊂⊂ M . Then at
least one of the following assertions is true:

1) For each t ∈ (0, T ) with t <
r20

β2c0(L+1)2
, we have Bg(t)(x0, r0− (L+

1)β
√
c0t) ⊂ Bg(0)(x0, r0) and

|Rm|g(t) <
c0

t
throughout Bg(t)(x0, r0 − (L+ 1)β

√
c0t).

2) There exist t0 ∈ (0, T ) with t0 <
r20

β2c0(L+1)2
and

z0 ∈ Bg(t0)(x0, r0 − (L+ 1)β
√
c0t0) such that

Q := |Rm|(z0, t0) =
c0

t0
,

and for all α ∈ (0, 1) and t ∈ (0, α2t0], we have

Bg(t)(z0, L(1−α)β
√
c0t0) ⊂ Bg(t)(x0, r0−(L+1)β

√
c0t) ⊂ Bg(0)(x0, r0),

and |Rm|(x, t) < c0/t for all x ∈ Bg(t)(z0, L(1− α)β
√
c0t0).

Proof. Suppose first that for each t ∈ (0, T ) with t <
r20

β2c0(L+1)2
, we

have

|Rm|g(t) <
c0

t
throughout Bg(t)(x0, r0 − (L+ 1)β

√
c0t).

Then the shrinking balls Corollary 3.3 tells us that Bg(t)(x0, r0 − (L +

1)β
√
c0t) ⊂ Bg(0)(x0, r0) and we are clearly in case 1 of the lemma.

Otherwise, there must exist a first time t0 ∈ (0, T ) with t0 <
r20

β2c0(L+1)2

and z0 ∈ Bg(t0)(x0, r0 − (L+ 1)β
√
c0t0) such that

Q := |Rm|(z0, t0) =
c0

t0
.

In this case, Lemma 4.1 tells us that we must be in case 2. q.e.d.

5. Curvature decay under Ricci lower bounds –
Proof of Lemma 2.1

Arguably, the most logical order for this paper would now see us
proving Lemma 2.3. However, we relegate that proof to Section 11 for
the reasons discussed in Section 2.

Before beginning the proof of Lemma 2.1, we give a simple but impor-
tant lemma clarifying that our Ricci flows either enjoy good curvature
decay properties or they contain a point of large curvature, with no
point of much larger curvature nearby.
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Lemma 5.1 (Curvature decay or no decay lemma). Given an integer
n ≥ 2, take β > 0 as in Lemma 3.2. Suppose that (Mn, g(t)) is a Ricci
flow for t ∈ [0, T ], x0 ∈ M , r0 > 0 and c0 > 0. Suppose further that
Bg(t)(x0, r0) ⊂⊂M for each t ∈ [0, T ]. Then at least one of the following
assertions is true:

1) For each t ∈ (0, T ] with t <
r20
β2c0

, we have Bg(t)(x0, r0 − β
√
c0t) ⊂

Bg(0)(x0, r0) and

|Rm|g(t) <
c0

t
throughout Bg(t)(x0, r0 − β

√
c0t).

2) There exist t̄ ∈ (0, T ] with t̄<
r20
β2c0

and x̄ ∈ Bg(t̄)
(
x0, r0 − 1

2β
√
c0t̄
)

such that
Q := |Rm|(x̄, t̄) ≥ c0

t̄
,

and

(5.1) |Rm|(x, t) ≤ 4Q = 4|Rm|(x̄, t̄)

whenever dg(t̄)(x, x̄) < βc0
8 Q−1/2 and t̄− 1

8c0Q
−1 ≤ t ≤ t̄.

Note that in Assertion 2, we are obtaining the control of (5.1) for

x ∈ Bg(t̄)(x̄, βc08 Q−1/2) ⊂ Bg(t̄)
(
x̄, β8

√
c0t̄
)
⊂ Bg(t̄)(x0, r0).

This lemma has as content a point picking argument of Perelman. It
is philosophically important to appreciate that although the region in
Assertion 1 is always a subset of the ball Bg(0)(x0, r0), and in Assertion
2 the point x̄ that we find is always within Bg(t̄)(x0, r0), in contrast x̄
could be a vast distance from x0 with respect to g(0).

Proof of Lemma 5.1. By parabolically rescaling g(t), we may assume
that r0 = 1. We begin by proving an initial claim that under the
conditions of the lemma, either Assertion 1 holds (with r0 = 1) or the
following holds (or both hold).

3) There exist t̄ ∈ (0, T ] with t̄< 1
β2c0

and x̄∈Bg(t̄)
(
x0, 1− 1

2β
√
c0t̄
)

such that |Rm|(x̄, t̄) ≥ c0/t̄, and so

r̄ := dg(t̄)(x̄, x0) +
βc0

4
|Rm|(x̄, t̄)−1/2 ≤ 1− 1

4
β
√
c0t̄ ≤ 1,

but also so that for all t ∈
(
0, t̄
]

and x ∈ M with dg(t)(x, x0) < r̄,
and |Rm|(x, t) ≥ c0/t, we have

|Rm|(x, t) ≤ 4|Rm|(x̄, t̄).
By smoothness, for sufficiently small t > 0, we will have Bg(t)(x0, 1 −
β
√
c0t) ⊂⊂ M and |Rm|g(t) < c0/t within that ball. By the shrinking

balls Corollary 3.3, while these facts are true, we must have Bg(t)(x0, 1−
β
√
c0t) ⊂ Bg(0)(x0, 1), and in particular the only way that Assertion 1 of

the lemma can fail is if there exists some first time t1 ∈ (0, T ] with t1 <
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1
β2c0

and a point x1 ∈ Bg(t1)(x0, 1− β
√
c0t1) such that |Rm|(x1, t1) =

c0/t1.
If t1 and x1 serve as the t̄ and x̄ that we seek for Assertion 3 to hold,

then we have proved our initial claim. If not, then there must exist
some t2 ∈ (0, t1] and x2 ∈M with

(5.2)

dg(t2)(x2, x0) < dg(t1)(x1, x0) +
βc0

4
|Rm|(x1, t1)−1/2

≤ (1− β
√
c0t1) +

1

4
β
√
c0t1

= 1− (1− 1

4
)β
√
c0t1

≤ 1− 3

4
β
√
c0t2

such that |Rm|(x2, t2) ≥ c0/t2 and |Rm|(x2, t2) > 4|Rm|(x1, t1). Again,
if t2 and x2 serve as the t̄ and x̄ that we seek, then our initial claim is
proved. If not, we pick t3 ∈ (0, t2] and x3 ∈M with
(5.3)

dg(t3)(x3, x0) < dg(t2)(x2, x0) +
βc0

4
|Rm|(x2, t2)−1/2

≤ dg(t1)(x1, x0) +
βc0

4
|Rm|(x1, t1)−1/2 +

1

2

βc0

4
|Rm|(x1, t1)−1/2

≤ 1− (1− 1

4
− 1

8
)β
√
c0t1

≤ 1− 5

8
β
√
c0t3

such that |Rm|(x3, t3) ≥ c0/t3 and |Rm|(x3, t3) > 4|Rm|(x2, t2). After
k − 1 iterations of this procedure, we have tk ∈ (0, T ] with tk <

1
β2c0

,

and xk ∈M with

(5.4)

dg(tk)(xk, x0) < 1−
(

1− 1

4
− 1

8
− 1

16
· · · − 1

2k

)
β
√
c0t1

= 1− (
1

2
+ 2−k)β

√
c0t1

≤ 1− 1

2
β
√
c0tk

such that |Rm|(xk, tk) ≥ c0/tk and |Rm|(xk, tk) > 4k−1|Rm|(x1, t1).
Since the curvature is blowing up under this iteration, but the curvature
is bounded uniformly over t ∈ [0, T ] and Bg(t)(x0, 1), the iteration must
eventually terminate, and our initial claim follows.

To prove the lemma, it suffices to show that when Assertion 3 holds,
then Assertion 2 must hold using the same x̄ and t̄ (and with r0 = 1).

We claim that for t̄− 1
8c0Q

−1 ≤ t ≤ t̄, and x ∈M with dg(t)(x, x0) < r̄,
we have (5.1). For such a value of t, because Q = |Rm|(x̄, t̄) ≥ c0/t̄, we
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deduce that 7
8 t̄ ≤ t. Thus if the claim were not true for some x, t, then

we would have

|Rm|(x, t) > 4Q ≥ 4c0

t̄
≥ 7c0

2t
≥ c0

t
,

and so by Assertion 3, we deduce that (5.1) must hold after all, giving
a contradiction.

It remains to show that the ball Bg(t̄)(x̄,
βc0
8 Q−1/2) considered in As-

sertion 2 lies within the ball Bg(t)(x0, r̄) where we have just established
the curvature bound (5.1). Using the curvature bound, we can apply

Lemma 3.2 with constant f = 2Q1/2 and r = r̄ to find that

Bg(t)(x0, r̄) ⊃ Bg(t̄)(x0, r̄ − βQ1/2(t̄− t)).

But by the constraint on t, we have

r̄ − βQ1/2(t̄− t) ≥ r̄ − 1

8
βc0Q

−1/2 = dg(t̄)(x̄, x0) +
βc0

8
Q−1/2,

and so

Bg(t)(x0, r̄) ⊃ Bg(t̄)(x0, dg(t̄)(x̄, x0) +
βc0

8
Q−1/2) ⊃ Bg(t̄)(x̄,

βc0

8
Q−1/2),

as required. q.e.d.

We now turn to the proof of Lemma 2.1. A global version of this
result can be found in [21, Lemma 4.3]. After this paper appeared
in preprint form in 2016, it was shown in [17] that the proof below
extends word-for-word to higher dimensions if one adapts the curvature
hypothesis appropriately.

Proof of Lemma 2.1. By Bishop-Gromov, VolBg(0)(x0, γ) has a positive
lower bound depending only on v0, K and γ. Applying Lemma 2.3 to
g(t), we see that there exists ε0 > 0 depending only on v0, K and γ

such that for each c0 < ∞, there exists T̂ depending on v0, K, γ and
c0 such that prior to time T̂ and while |Rm|g(t) ≤ c0/t still holds on
Bg(t)(x0, γ), we have a lower volume bound

(5.5) VolBg(t)(x0, 1) ≥ ε0.

From this we deduce that it suffices to prove the lemma with the
additional hypothesis that (5.5) holds for each t ∈ [0, T ). In particular,
we can ignore the second conclusion (2.3).

Let us assume that the lemma is false, even with the extra hypothesis
(5.5), for some v0,K > 0 and γ ∈ (0, 1). Then for any sequence cn →∞,
we can find Ricci flows that fail the lemma (despite the extra hypothesis
(5.5)) with C0 = cn in an arbitrarily short time, and in particular within
a time tn that is sufficiently small so that cntn → 0 as n → ∞. By
reducing tn to the first time at which the desired conclusion fails, we have
a sequence of three-dimensional Ricci flows (Mn, g̃n(t)) for t ∈ [0, tn]
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with tn ↓ 0, and even cntn → 0, and a sequence of points xn ∈Mn with
Bg̃n(t)(xn, 1) ⊂⊂Mn for each t ∈ [0, tn], such that

(5.6) VolBg̃n(0)(xn, 1) ≥ v0,

(5.7) VolBg̃n(t)(xn, 1) ≥ ε0 for all t ∈ [0, tn],

(5.8) Ricg̃n(t) ≥ −K on Bg̃n(t)(xn, 1) for all t ∈ [0, tn],

and

(5.9) |Rm|g̃n(t) <
cn
t

on Bg̃n(t)(xn, γ) for t ∈ (0, tn),

but so that

(5.10) |Rm|g̃n(tn) =
cn
tn

at some point in Bg̃n(tn)(xn, γ).

As a consequence, if we apply Lemma 5.1 to each g̃n(t), with r0 =
(1 +γ)/2 and c0 = cn (after deleting a finite number of the initial terms
so that cntn is small enough) we find that Assertion 1 cannot hold, and
thus Assertion 2 must hold for each, giving times t̄n ∈ (0, tn] and points

x̄n ∈ Bg̃n(t̄n)(xn, r0 − 1
2β
√
cnt̄n) such that

(5.11) |Rm|g̃n(t)(x) ≤ 4|Rm|g̃n(t̄n)(x̄n)

whenever dg̃n(t̄n)(x, x̄n) < βcn
8 Q

−1/2
n and t̄n − 1

8cnQ
−1
n ≤ t ≤ t̄n, where

Qn := |Rm|g̃n(t̄n)(x̄n) ≥ cn/t̄n →∞.
Conditions (5.7) and (5.8), together with Bishop-Gromov, imply that

we have uniform volume ratio control

(5.12)
VolBg̃n(t̄n)(x̄n, r)

r3
≥ η > 0

for all 0 < r < (1− γ)/2, where η depends on ε0, K and γ.
We then perform a parabolic rescaling to give new Ricci flows defined

by
gn(t) := Qng̃n( t

Qn
+ t̄n),

for t ∈ [−1
8cn, 0]. The scaling factor is chosen so that

(5.13) |Rm|gn(0)(x̄n) = 1

but by (5.11) the curvature of gn(t) is uniformly bounded for t ∈
[−1

8cn, 0] and x ∈ Bgn(0)(x̄n,
1
8βcn). The volume ratio estimate (5.12)

transforms to

(5.14)
VolBgn(0)(x̄n, r)

r3
≥ η > 0

for all 0 < r < 1−γ
2 Q

1/2
n →∞.

With this control we can apply Hamilton’s compactness theorem to
give convergence (Mn, gn(t), x̄n) → (N, g(t), x∞), for some complete
bounded-curvature Ricci flow (N, g(t)), for t ∈ (−∞, 0], and x∞ ∈ N .
By Hamilton’s refinement of Hamilton-Ivey pinching, in particular its
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application given by Chow and Knopf [7, Corollary 9.8], we know that
every three-dimensional complete ancient Ricci flow of bounded curva-
ture, and in particular g(t), must in fact have nonnegative sectional
curvature.

Moreover, (5.14) passes to the limit to force g(t) to be κ-noncollapsed
at all scales, and to have positive asymptotic volume ratio. This in turn
tells us that g(t) is a κ-solution in the sense of Perelman [19, §11]. But
Perelman’s theorem [19, §11.4] then tells us that the asymptotic volume
ratio at each time must be zero, which is a contradiction. q.e.d.

6. Pseudolocality improvement lemma

In this section we develop Lemma 2.1 using Perelman’s pseudolocality
lemma. In order to apply that result, we need to assume that we are
working on a complete bounded-curvature Ricci flow.

The idea is that whereas before we assumed that the Ricci curvature
was bounded below for all times, now we only assume such a lower bound
for some initial time period. This improvement will ultimately help us
to localise our results. A previous instance where pseudolocality was
used in a localisation argument is [23, Theorems 1.1 and 1.5] although
the argument in the current paper is considerably shorter. R. Hochard
used a related method to prove [15, Theorem 2.4].

Lemma 6.1. Given v0 > 0 and K > 0, there exist T̂ ∈ (0, 1], C0 ∈
[1,∞) and α ∈ (0, 1), such that the following is true. Suppose that
(M3, g(t)) is a complete bounded-curvature Ricci flow for t ∈ [0, T ],

with 0 < T ≤ T̂ . If, for some x0 ∈M , we have

(6.1) VolBg(0)(x0, 1) ≥ v0 > 0

and

(6.2) Ricg(t) ≥ −K on Bg(t)(x0, 1) for all t ∈ [0, α2T ],

then for all t ∈ (0, T ] we have

(6.3) |Rm|g(t)(x0) ≤ C0

t
.

We will need a slight extension of Perelman’s second pseudolocality
result:

Theorem 6.2 (cf. Perelman [19, §11.3], [2, 18]). Given n ∈ N and
ṽ0 > 0, there exists ε > 0 such that if r0 > 0 and (Mn, g(t)) is a complete
bounded-curvature Ricci flow for t ∈ [0, T ], 0 < T ≤ (εr0)2, with the
properties that |Rm|g(0) ≤ r−2

0 on Bg(0)(x0, r0) and VolBg(0)(x0, r0) ≥
ṽ0r

n
0 , for some x0 ∈ M , then |Rm|g(t) ≤ (εr0)−2 for any t ∈ [0, T ],

throughout Bg(t)(x0, εr0).
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Proof of Theorem 6.2. By scaling, we may assume that r0 = 1. The
only difference to what was stated by Perelman is that he assumed
that VolBg(0)(x0, 1) was almost the volume of the unit ball in Euclidean
space. To reduce to that case, note that our weaker volume hypoth-
esis, coupled with the curvature hypothesis, implies a positive lower
bound on the injectivity radius injg(0)(x0) depending only on n and

v0. Gunther’s theorem [10, §3.101] then tells us that the volume ratio
VolBg(0)(x0, r)/r

n is large enough to invoke Perelman’s version for r > 0
sufficiently small depending on n and v0, giving a curvature bound at
later times on balls of an even smaller radius. q.e.d.

Proof of Lemma 6.1. For the v0 and K as in the lemma, we can pick
T̂ to be the constant T̂ (v0,K, 1/2) given by Lemma 2.1, or take T̂ =
1, whichever is the smaller. For each α ∈ (0, 1), that lemma then
applies to our Ricci flow g(t) to give that for each t ∈ (0, α2T ] we have
|Rm|g(t) < C0/t on Bg(t)(x0, 1/2) and VolBg(t)(x0, 1) ≥ η0 > 0, with C0

and η0 depending only on v0 and K. Without loss of generality, we may
assume that C0 ≥ 1.

Thus we have established the desired conclusion for t ∈ (0, α2T ]. We
now need to show that we can establish a curvature bound at x0 for
the remaining time t ∈ [α2T, T ], provided we choose α ∈ (1/2, 1) large
enough.

Defining r0 := 1
2

√
T
C0
≤ 1

2 , we have shown that

|Rm|g(α2T ) <
C0

α2T
≤ 4C0

T
= r−2

0 on Bg(α2T )(x0, 1/2) ⊃ Bg(α2T )(x0, r0).

Bishop-Gromov will give us the volume bound VolBg(α2T )(x0, r0) ≥ ṽ0r
3
0

for some ṽ0 > 0 depending only on η0 and K, and hence only on v0 and
K. We can then apply the pseudolocality Theorem 6.2, starting at time
α2T , to deduce a curvature bound

|Rm|g(t) ≤ (εr0)−2 =
4C0

ε2T

for t ∈ [α2T, α2T + (εr0)2] ∩ [0, T ] over Bg(t)(x0, εr0), where ε ∈ (0, 1)
depends only on ṽ0, i.e. only on v0 and K.

Thus we have established the desired conclusion provided we pick
α ∈ (1/2, 1) large enough so that α2T + (εr0)2 ≥ T , e.g. we can take
α2 = 1 − ε2/(4C0), albeit with (6.3) holding for C0 replaced with C ′0
sufficiently large so that C ′0/t dominates 4C0

ε2T
over this time interval

[α2T, α2T + (εr0)2] ∩ [0, T ] (e.g. we can choose C ′0 = 4C0ε
−2). q.e.d.

7. Perelman cut-off functions

In this section we explain how it is possible to construct useful cut-
off functions that are sub-solutions to the heat equation on manifolds
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evolving by Ricci flow using the estimates and methods of Perelman
[19].

Lemma 7.1. Let c0 > 0, ε ∈ (0, 1), 0 < r1 < r2 and n ∈ N be
arbitrary. Suppose that (Mn, g(t)) is a smooth Ricci flow for t ∈ [0, T ),
and x0 ∈ M satisfies Bg(t)(x0, r2) ⊂⊂ M for all t ∈ [0, T ). We assume
further that

Ricg(t) ≤
c0(n− 1)

t
on Bg(t)(x0,

√
t),

for all t ∈ (0, T ). Then there exist constants T̂ = T̂ (c0, r1, r2, n) >
0, k = k(r1, r2, ε) > 0, V = V (r1, r2, ε) > 0, and a locally Lipschitz

continuous function h : M × [0, T̂ ) ∩ [0, T )→ R, such that

(i) h(·, t) = e−kt on Bg(t)(x0, r1) and h(·, t) = 0 outside Bg(t)(x0, r2)

for all t ∈ [0, T̂ ) ∩ [0, T ), and h(x, t) ∈ [0, e−kt] for all (x, t) ∈
M × ([0, T̂ ) ∩ [0, T ))

(ii) ∂
∂th ≤ ∆gh and |∇h| ≤ V h1−ε in the following barrier sense.

For any (x, t) ∈ M × (0, T̂ ) ∩ (0, T ) we can find a space-time

neighbourhood O ⊂ M × ((0, T̂ ) ∩ (0, T )) of (x, t) and a smooth
function H : O → [0,∞) such that H ≤ h on O, H(x, t) = h(x, t)
and ∂

∂tH(x, t) ≤ ∆g(t)H(x, t) and |∇H|(x, t) ≤ V |H(x, t)|1−ε.

Remark 7.2. An inspection of the proof shows that in fact we can

take V = α
ε(r2−r1) , k = α

ε(r2−r1)2
, and T̂ = min{r2

1, α
(r2−r1)2

(c0+1)2n2 } for some

universal α > 0.

Remark 7.3. Although we state the lemma for a given k, it will
then also hold if we increase k to some other k̂ ≥ k, simply by replacing

h(x, t) by e(k−k̂)th(x, t).

Proof. The construction is similar to the one given in Perelman [19].
The definition of h will follow [22]. Let φ : R → [0, 1] be a smooth
function with the following properties.

(i) φ(r) = 1 for all r ≤ r1, φ(r) = 0 for all r ≥ r2,
(ii) φ is decreasing: φ′ ≤ 0,

(iii) φ′′ ≥ −aφ,
(iv) |φ′|2 ≤ b
where a and b can each be taken as positive universal constants mul-
tiplied by (r2 − r1)−2. To find such a φ, first construct a function φ̃
having the properties (i)-(iv) for r1 = 1, r2 = 2 and for some universal

constants a, b > 0, and then define φ(x) = φ̃(x+r2−2r1
r2−r1 ).

For 0 < r1 < r2 < 1, set ηr1,r2 = η = φp, with p := 1/ε. Then we

have: |η′|2 = |pφp−1φ′|2 = p2φ2p−2|φ′|2 ≤ bp2(φp)
2(p−1)
p = V 2|η|2(1−ε)

with V 2 = bp2, and hence

(7.1) |η′| ≤ V |η|1−ε.
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Furthermore, η′′(x) = p(p − 1)φp−2(φ′)2 + pφp−1φ′′ ≥ −apφp−1φ =
−apφp = −apη, and so with k = ap, we have

(7.2) η′′ ≥ −kη,

Let t ∈ (0, T ) ∩ (0, r2
1). Then we have Ric ≤ (n − 1)K on Bg(t)(x0, r0),

where K := c0
t and r0 =

√
t ≤ r1. Using [19, Lemma 8.3(a)], for

x ∈ Bg(t)(x0, r2) \Bg(t)(x0, r0) we have

(7.3)

(
∂

∂t
−∆

)
d(x, t) ≥ −(n− 1)(

2

3
Kr0 + r−1

0 )

= −(n− 1)(
2

3

c0

t

√
t+

1√
t
)

= −m0√
t

where d(x, t) is shorthand for dg(t)(x, x0), and m0 = (n − 1)(2
3c0 + 1).

This differential inequality is to be understood in the following barrier
sense: Each (x, t) as considered has some space-time neighbourhood
O ⊂ M × (0, T ) on which there exists a smooth function D : O →
[0,∞) with the properties that (i) d(y, s) ≤ D(y, s) for all (y, s) ∈ O,
(ii) d(x, t) = D(x, t), and (iii)

(
∂
∂t −∆

)
D(x, t) ≥ −m0√

t
. (Perelman

proves this by constructing a family of piecewise smooth paths from x0

to points y near x, whose lengths with respect to any smooth metric
represent a smooth function of y. He then sets D(y, s) ≥ d(y, s) to
be the length of the path to y with respect to g(s) and shows that it
satisfies the required differential inequality.) Note that because d is a
Lipschitz function with |∇d| ≤ 1 where it is differentiable, we see that
|∇D|(x, t) ≤ 1 automatically.

Choose r̃1 = r1+r2
2 between r1 and r2, and let η = ηr̃1,r2 be the

cut-off function for 0 < r̃1 < r2 as described above, and define h :
M × ([0, T̂ ) ∩ [0, T ))→ [0, 1] by

h(x, t) = e−ktη(d(x, t) + 4m0

√
t),

where T̂ := min{r2
1,

(r2−r1)2

(8m0)2
}. As demanded by the lemma, if d(x, t) ≥

r2 then h(x, t) = 0. Moreover, if d(x, t) < r1 (note t < T̂ ) then d(x, t) +
4m0

√
t < r1+(r2−r1)/2 = r̃1, and we must have h(x, t) = e−kt. Clearly

h(x, t) ∈ [0, e−kt] always. This settles part (i) of the lemma.
To make sense of the differential inequalities of the lemma, we need

to define a barrier function H near an arbitrary (x, t) ∈ M × ((0, T̂ ) ∩
(0, T )). For the given t, if x lies outside Bg(t)(x0, r2), then we have
already seen that h(x, t) = 0 and we can take the barrier H ≡ 0 on an
arbitrary neighbourhood of (x, t). If x lies within Bg(t)(x0, r0), then we

have already seen that h(x, t) = e−kt, and revisiting that argument we
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see that in fact h(y, s) = e−ks for (y, s) in a neighbourhood of (x, t).
Therefore in this case we can set H(y, s) = e−ks in that neighbourhood.

In the remaining case that x ∈ Bg(t)(x0, r2) \Bg(t)(x0, r0), we define

H(y, s) = e−ksη(D(y, s) + 4m0

√
s),

for (y, s) in the neighbourhood O of (x, t) where D is defined as before,
truncated if necessary so that O lies within the domain of definition of
h. Clearly H(x, t) = h(x, t), and because η is a decreasing function, we
have H(y, s) ≤ h(y, s) for all (y, s) ∈ O. To prove that |∇h| ≤ V h1−ε

in the claimed barrier sense, we must merely prove the same inequality
for H at (x, t), so we compute, using (7.1),

|∇H(x, t)| ≤ e−kt|η′(D(x, t) + 4m0

√
t)|

≤ V e−kt|η(D(x, t) + 4m0

√
t)|1−ε

≤ V |H(x, t)|1−εe−εkt ≤ V |H(x, t)|1−ε,

as desired. Furthermore, using η′ ≤ 0 and (7.2), we see that

(7.4)

(
∂

∂t
−∆)H(x, t) = e−ktη′(D(x, t) + 4m0

√
t) · ( ∂

∂t
−∆)D(x, t)

+ e−ktη′(D(x, t) + 4m0

√
t) · 2m0√

t

− e−ktη′′(D(x, t) + 4m0

√
t)|∇D|2(x, t)

− ke−ktη(D(x, t) + 4m0

√
t)

≤ −e−ktη′(D(x, t) + 4m0

√
t) · m0√

t

+ e−kt · η′(D(x, t) + 4m0

√
t) · 2m0√

t

≤ e−ktη′(D(x, t) + 4m0

√
t) · m0√

t
≤ 0,

which completes the proof. q.e.d.

8. Local lower scalar curvature bounds

In this section we prove local preservation of lower bounds for the
scalar curvature, in preparation for a similar result for Ricci curvature.
Our lemma should be compared with earlier estimates of B.-L. Chen [5,
Proposition 2.1], and the techniques in [22].

Lemma 8.1. Let c0,K > 0, γ ∈ (0, 1) and n ∈ N be arbitrary.
Suppose that (Mn, g(t)) is a Ricci flow for t ∈ [0, T ), and x0 ∈ M
satisfies Bg(t)(x0, 1) ⊂⊂M for all t ∈ [0, T ). We assume further that
(a) Rg(0) ≥ −K on Bg(0)(x0, 1)
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(b) Ricg(t) ≤
c0(n−1)

t on Bg(t)(x0,
√
t) for all t ∈ (0, T ).

Then there exist T̂ = T̂ (c0,K, γ, n) > 0 and σ = σ(K, γ) > 0 such that

Rg(t) ≥ −Keσt ≥ −2K on Bg(t)(x0, 1− γ)

for all t ∈ [0, T ) ∩ [0, T̂ ).

Remark 8.2. In fact, by incorporating the shrinking balls Corollary
3.3, we need only assume that the unit ball centred at x0 is compactly
contained in M at time 0, not at all times, although we will not require
this fact.

Remark 8.3. A slight modification of the proof would allow us to
replace the conclusion of the lemma with the stronger assertion that
Rg(t) ≥ −K on Bg(t)(x0, 1 − γ), provided we impose a lower bound on
K, depending on γ. We do not use this fact.

Proof. Let h be a cut-off function of the type defined in Lemma 7.1,
with ε = 1

4 , r1 = (1 − γ) and r2 = 1. In particular, there exist k =

k(γ) > 0, T̂ = T̂ (c0, n, γ) > 0 and V = V (γ) > 0 so that h is defined on

M×([0, T )∩[0, T̂ )), h(x, t) ∈ [0, e−kt] throughout, and for all t ∈ [0, T̂ )∩
[0, T ), we have h(·, t) = e−kt on Bg(t)(x0, 1 − γ) and h(·, t) = 0 outside

Bg(t)(x0, 1). Moreover, we have ( ∂∂t −∆g)h ≤ 0 and |∇h|2 ≤ V 2h3/2 in
the barrier sense as in that lemma.

For fixed, arbitrary δ > 0, define the function f : M × ([0, T ) ∩
[0, T̂ ))→ R by

f(x, t) = h(x, t)R(x, t) + (1 + δ)Kebt,

where b := 3V 4/K. Clearly we have f(·, 0) > 0 throughout M , and

f(x, t) > 0 for each t ∈ [0, T ) ∩ [0, T̂ ) and x outside Bg(t)(x0, 1).

Claim. We have f > 0 throughout M × ([0, T ) ∩ [0, T̂ )).

Assuming the claim for a moment, for each t ∈ [0, T ) ∩ [0, T̂ ) and
throughout Bg(t)(x0, 1− γ), we have e−ktR + (1 + δ)Kebt > 0, i.e. R >

−(1 + δ)Ke(b+k)t, and because δ > 0 was arbitrary, this implies

R ≥ −Ke(b+k)t.

By reducing T̂ > 0 if necessary so that e(b+k)T̂ ≤ 2, this implies the
lemma.

Proof of Claim. Suppose contrary to the claim that there exists some
first time t0 ∈ (0, T ) ∩ (0, T̂ ) at which there exists a point p0 ∈ M
where f(p0, t0) = 0. It is clear that R(p0, t0) < 0 and h(p0, t0) > 0. By
Lemma 7.1, there is a neighbourhood O of (p0, t0) where a nonnegative
barrier function H ≤ h is defined, with H(p0, t0) = h(p0, t0), and both

( ∂∂t − ∆g)H ≤ 0 and |∇H|2 ≤ V 2H3/2 at (p0, t0). By restricting O
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further, we may assume that R < 0 throughout O. Therefore, if we
define

F (x, t) = H(x, t)R(x, t) + (1 + δ)Kebt,

within O, then we can be sure that F ≥ f ≥ 0 in O∩ (M × [0, t0]), with
F (p0, t0) = f(p0, t0) = 0. From this we can deduce that at (p0, t0) we
have three facts. First,

(8.1) 0 = ∇F = ∇(HR) = H∇R + R∇H.

Second, also using (8.1),

(8.2)

0 ≤ ∆F = ∆(HR) = H∆R + R∆H + 2g(∇H,∇R)

= H∆R + R∆H − 2
R

H
|∇H|2

≤ H∆R + R∆H − 2V 2RH1/2.

Third,

(8.3)
0 ≥ ∂F

∂t
=

∂

∂t
(HR) + b(1 + δ)Kebt0

≥ H∂R

∂t
+ R

∂H

∂t
+ bK.

Keeping in mind the evolution equation

∂R

∂t
= ∆R + 2|Ric|2 ≥ ∆R +

2

3
R2,

(see e.g. [26, Proposition 2.5.4 and Corollary 2.5.5]) and the definition
b := 3V 4/K, these three facts tell us that

(8.4)

0 ≥ H(∆R +
2

3
R2) + R∆H + bK

≥ 2

3
HR2 + 2V 2RH1/2 + bK

≥ −3

2
V 4 + bK =

3

2
V 4

> 0,

which is a contradiction. q.e.d.

9. Local lower Ricci curvature bounds: the double bootstrap
argument

In this section we show that local Ricci lower bounds persist for a
short time, in the presence of c0/t upper Ricci control.

The argument is unorthodox in that we have to make two iterations
in our estimates to control Ricci from below, initially only gaining a
weaker Lp control before obtaining effectively L∞ control on the second
attempt.
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Lemma 9.1 (Local lower Ricci bounds). Let c0 ≥ 1, K > 0 and
γ ∈ (0, 1) be arbitrary. Suppose that (M3, g(t)) is a Ricci flow for
t ∈ [0, T ), and x0 ∈ M satisfies Bg(t)(x0, 1) ⊂⊂ M for all t ∈ [0, T ).
We assume further that
(a) Ricg(0) ≥ −K on Bg(0)(x0, 1)
(b) |Rm|g(t) ≤ c0

t on Bg(t)(x0, 1) for all t ∈ (0, T ).

Then there exists a T̂ = T̂ (c0,K, γ) > 0 such that

Ricg(t) ≥ −100Kc0 on Bg(t)(x0, 1− γ)

for all t ∈ [0, T ) ∩ [0, T̂ ).

In a different direction, it was proved in [6] that nonnegative Ricci
curvature is preserved for unbounded curvature complete smooth Ricci
flows in three dimensions. Since Lemma 9.1 was announced, a result
giving preservation of certain lower curvature bounds has been proved
in higher dimensions in [1]. Although that result is not local, a local
version has been given later in [16].

Proof. By Hypothesis (a), we know that Rg(0) ≥ −3K on Bg(0)(x0, 1),
and so the scalar curvature estimate of Lemma 8.1 tells us that for
t ∈ [0, T ) with t < T̂ , for some T̂ = T̂ (c0,K, γ) ∈ (0, 1], we have

(9.1) Rg(t) ≥ −6K on Bg(t)(x0, 1−
γ

4
).

On the other hand, Hypothesis (b) of the lemma implies that

(9.2) |Rg(t)| ≤
6c0

t
on Bg(t)(x0, 1) for all t ∈ (0, T ).

For 0 < r1 < r2 ≤ 1, and with ε := 1
10 fixed for the duration of the

proof, we can reduce T̂ > 0 and let h : M × ([0, T̂ ) × [0, T )) → [0, 1]
be the corresponding Perelman cut-off function from Lemma 7.1. Note
that T̂ then depends on r1 and r2, but in practise, these values will be
specific functions of γ. We define the (0, 2) tensor F by

(9.3) F (x, t) := h(x, t)Ric(x, t) + [LKR(x, t)tα + tε + 7K] g(x, t),

for α ∈ [1/2, 1] to be chosen depending on the context. Just as for
ε, we fix the value of L, this time with L = 8. Keeping these values
as symbols helps show how their choice has affected the computations.
Notice that the tensor F depends on α, r1 and r2 in addition to g(t) and
K. There is no dependency on ε or L since we have fixed their values.
(The former affected the definition of h as well as the tε term).

The proof requires a bootstrapping argument involving two steps (a

double bootstrap). First we show that after possibly reducing T̂ to a
smaller positive value (depending only on c0, K and γ) we have

Ricg(t) ≥ −t−3ε on Bg(t)(x0, 1−
γ

2
)
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for all t ∈ [0, T̂ )∩[0, T ). This will be achieved by showing that the tensor
F , with r1 = 1 − γ

2 , r2 = 1 − γ
4 and α = 1 − 2ε, remains nonnegative

definite on Bg(t)(x0, 1 − γ
4 ) for all t ∈ [0, T̂ ) ∩ [0, T ). See Step One

below for details.
In Step Two we use Step One to show that the tensor F , with

r1 = 1− γ, r2 = 1− γ
2 and α now given by α = 1, remains nonnegative

definite on Bg(t)(x0, 1− γ
2 ) for all t ∈ [0, T̂ )∩[0, T ) after possibly reducing

T̂ again, still with the same dependencies. This will then imply the
desired estimate: See Step Two below for details.

Before performing Steps One and Two, we derive evolution equations
and facts that are valid for F in the case that α ∈ [1

2 , 1], and r1, r2

are given by r1 = 1 − γ
2 , r2 = 1 − γ

4 or r1 = 1 − γ, r2 = 1 − γ
2 .

That is, the statements and estimates that we derive in the following
are valid in both Steps One and Two, though the h etc. in each case
will be different. We can reduce T̂ > 0 so that both cut-offs h, and
hence both tensors F are defined for t ∈ [0, T̂ ] ∩ [0, T ), and we will

always assume that t is in that range, though we will reduce T̂ > 0
further when necessary. Both cut-offs satisfy ( ∂∂t − ∆g(t))h ≤ 0 and

|∇h| ≤ V |h|1−ε ≤ V h
1
2 (recall h ≤ 1) in the barrier sense explained

in Lemma 7.1, where V = V (γ) and k = k(γ) can each be taken to
be the maximum of the two values corresponding to the two cut-offs
h. (See Remark 7.3.) By definition, h(x, t) = e−kt on Bg(t)(x0, r1) and
h(x, t) = 0 outside Bg(t)(x0, r2), (r1 = 1− γ

2 , r2 = 1− γ
4 or r1 = 1− γ,

r2 = 1− γ
2 ).

From the definition of F and the initial conditions, we see that
F (·, 0) > 0 on Bg(0)(x0, r2). If there is a time t0 ∈ [0, T ) ∩ [0, T̂ ) for

which F (·, t0) > 0 on Bg(t0)(x0, r2) does not hold, then there must
be a first time t0 for which this is the case. That is there must be
a time t0 ∈ (0, T ) ∩ (0, T̂ ) and a point p0 ∈ Bg(t0)(x0, r2), and some
direction v ∈ Tp0M , for which F (p0, t0)(v, v) = 0, F (·, t) > 0 on

Bg(t)(x0, r2) for all t ∈ [0, t0), and F (·, t0) ≥ 0 on Bg(t0)(x0, r2). Let
λ ≤ µ ≤ ν denote the eigenvalues of Ricg(t0), with corresponding eigen-

vectors {ei}3i=1 at p0 that are orthonormal with respect to g(t0). That is,
Ric(e1, e1) = λ, Ric(e2, e2) = µ, Ric(e3, e3) = ν and Ric(ei, ej) = 0 for
i 6= j, i, j ∈ {1, 2, 3}. Then F (p0, t0)(e1, e1) = 0 and F (p0, t0)(ei, ej) = 0

for all i 6= j ∈ {1, 2, 3}. Using R(·, t) ≥ −6K on Bg(t)(x0, r2), from (9.1),
we see that we also have

(9.4) LKR(x, t)tα + tε + 7K ≥ −6LK2tα + 7K > 6K

everywhere on Bg(t)(x0, r2) if t < T̂ is sufficiently small, depending
on K, (remember α ∈ [1/2, 1] and L is fixed) which we can without

loss of generality assume by reducing T̂ . In particular this shows that
p0 ∈ Bg(t0)(x0, r2): if it were not, then we would have F (p0, t0) =
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(LKR(p0, t0)tα0 + tε0 + 7K)g(p0, t0) > 6Kg(p0, t0) > 0, which is a con-
tradiction. (Note that normally in the paper we suppress the metric in
expressions such as this.) Combining this with F (p0, t0)(e1, e1) = 0, we
see that

λ · h(p0, t0) = −(LKR(p0, t0)tα0 + tε0 + 7K) < −6K,

and hence

(9.5) λ < −6K

since h ≤ 1.
In principle, we would like to derive differential inequalities for F

near (p0, t0), but because h is not smooth, we take the barrier function
H ≤ h from Lemma 7.1 corresponding to h at (p0, t0), which is defined
in a space-time neighbourhood O of that point. This allows us to define
what is essentially a tensor barrier by

(9.6) F(x, t) := H(x, t)Ric(x, t) + [LKR(x, t)tα + tε + 7K] g(x, t),

and its corresponding (1, 1) tensor

(9.7) F̃(x, t) := H(x, t)Rc(x, t) + [LKR(x, t)tα + tε + 7K] ,

obtained by contracting the tensor F with the metric in the first posi-
tion, where Rc denotes the (1, 1) tensor one obtains by contracting the
tensor Ric in the first position.

It will be convenient to extend the frame {ei} at p0 to an adapted
local orthonormal frame on a neighbourhood of p0 within (M, g(t0)).
Thus we have ∇ei = 0 at time t0. This frame can then be extended
backwards and forwards in time, being constant in time (so no longer
orthonormal at different times). Because Ric(e1, e1) = λ < 0 at (p0, t0),
we can restrict O to be sure that R11 := Ric(e1, e1) < 0 throughout.
Working in index notation with respect to {ei}, we then have

F11 ≥ F11 ≥ 0 throughout O ∩ {t ≤ t0}

possibly after restricting O further, with equality throughout at (p0, t0),
and consequently

∇(F11) = 0, ∆(F11) ≥ 0,
∂

∂t
(F11) ≤ 0,

at (p0, t0). The first two of these facts immediately pass from statements
about derivatives of coefficients of F to statements about coefficients of
covariant derivatives of F and F̃ . For example, we have

(9.8) (∇XF̃)1
1 = 0 for any X ∈ Tp0M and (∆F̃)1

1 ≥ 0.
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Statements concerning time derivatives need care because the metric is
evolving. However, we have

(
∂F̃
∂t

)1
1 = g(

∂F̃
∂t

(e1), e1) = g(
∂

∂t
F̃(e1), e1)

=
∂

∂t
g(F̃(e1), e1)− ∂g

∂t
(F̃(e1), e1)

=
∂

∂t
(F11) ≤ 0

at (p0, t0) because F̃(e1) = 0 there. We can compute the time derivative

of F̃ using the standard evolution equation

∂

∂t
Rc = ∆Rc + P,

where the tensor P is given in coordinates (see e.g. [26, §9.3]) by

P ij = 2RikjlR
kl, and hence P 1

1 = P11 = (µ− ν)2 + λ(µ+ ν) at (p0, t0),

(9.9)

and the evolution equation for the scalar curvature ∂
∂tR = ∆R + 2|Ric|2

(see e.g. [26, Proposition 2.5.4]). At (p0, t0) we have

0 ≥ (
∂F̃
∂t

)1
1 = H · ( ∂

∂t
Rc)1

1 + λ
∂H

∂t

+ LK
∂R

∂t
tα0 + LKRαtα−1

0 + εtε−1
0

= H · (∆Rc + P )1
1 + λ(

∂

∂t
−∆)H + Rc1

1∆H

+ LKtα0 (∆R + 2|Ric|2) + LKRαtα−1
0 + εtε−1

0

= (∆F̃)1
1 − 2g(∇H,∇Rc)1

1 + (HP )1
1 + λ(

∂

∂t
−∆)H

+ 2LKtα0 |Ric|2 + LKRαtα−1
0 + εtε−1

0

≥ −2g(∇H,∇Rc)1
1 + (HP )1

1

+ 2LKtα0 |Ric|2 + LKRαtα−1
0 + εtε−1

0 ,

(9.10)

where we used the second part of (9.8). Here −2g(∇H,∇Rc)ij =

−2gkl∇kH · ∇lRcij .
We now proceed to estimate the term −2g(∇H,∇Rc)1

1(p0, t0) ap-
pearing in Equation (9.10). If we had H(p0, t0) = h(p0, t0) ≤ C3t0, with
C3 := K

c0
> 0, then by (9.4) and Hypothesis (b) of the lemma we would
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have

(9.11)

0 = h(p0, t0)λ+ LKR(p0, t0)tα0 + tε0 + 7K

≥ −h(p0, t0)
2c0

t0
+ 6K

≥ −2c0C3 + 6K

> 0,

which would be a contradiction. Hence, we have

(9.12) H(p0, t0) > C3t0.

At (p0, t0) we calculate

−2g(∇H,∇Rc)1
1 = −2g(∇H, ∇(HRc)

H
)1

1 + 2λ
|∇H|2

H

= −2g(∇H, ∇F̃
H

)1
1 +

2LKtα0
H

g(∇H,∇R) + 2λ
|∇H|2

H

=
2LKtα0
H

g(∇H,∇R) + 2λ
|∇H|2

H

≥ 2LKtα0
H

g(∇H,∇R) + 2V 2λ(9.13)

where we used the definition of F̃ , the first part of (9.8) and the facts

that λ < 0 and |∇H|
2

H (p0, t0) ≤ V 2.
To estimate the first term on the right-hand side of (9.13) we use Shi’s

estimates to control |∇R|. Because p0 ∈ Bg(t0)(x0, r2) and r2 ≤ 1− γ
4 , we

have p0 ∈ Bg(t0)(x0, 1− γ
4 ). Using Corollary 3.3 with r = 1− γ

4 +β
√
c0t0,

we see that p0 ∈ Bg(t0)(x0, 1− γ
4 ) = Bg(t0)(x0, r−β

√
c0t0) ⊂ Bg(t)(x0, r−

β
√
c0t) ⊂ Bg(t)(x0, 1− γ

4 +β
√
c0t0) ⊂ Bg(t)(x0, 1− γ

8 ) for all t ∈ [0, t0], if

β
√
c0t0 ≤ γ

8 , which we may assume is the case by reducing T̂ if necessary.
Hence Bg(t)(p0,

γ
16) ⊂ Bg(t)(x0, 1− γ

16) for all t ∈ [0, t0]. This means that
|Rm|g(t) ≤ c0

t on Bg(t)(p0,
γ
16) for all t ∈ (0, t0] and, in particular, that

|Rm|g(t) ≤ 2c0
t0

on Bg(t)(p0,
γ
16) for all t ∈ [(1−σ)t0, t0] for any σ ≤ 1

2 ; we

choose σ = log 2
4c0

. Lemma 3.1 with K there equal to 4c0
t0

and r there equal

to γ
32 then tells us that Bg((1−σ)t0)(p0,

γ
32) ⊂ Bg(t)(p0, e

(t0σ)
4c0
t0

γ
32) =

Bg(t)(p0,
γ
16) for all t ∈ [(1 − σ)t0, t0], and hence |Rm|g(t) ≤ 2c0

t0
on

Bg((1−σ)t0)(p0,
γ
32) for all t ∈ [(1 − σ)t0, t0]. Shi’s estimates (see for

example Theorem 6.15 of [8]) applied on Bg((1−σ)t0)(p0,
γ
64) now tell us

that for universal C we have |∇Rm(p0, t0)| ≤ C · c0t0 ( 1
γ2

+ 1
σt0

+ c0
t0

)
1
2 , and

hence |∇R(p0, t0)| ≤ C4(γ, c0)t
− 3

2
0 .
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Using this, and Hε ≥ Cε3tε0 at (p0, t0) by (9.12), we estimate the first
term on the right-hand side of (9.13) by∣∣∣∣2LKtα0 g(∇H,∇R)

H

∣∣∣∣ ≤ 2LKtα0

( |∇H|
H

)
|∇R|

≤ 2LKtα0

( V
Hε

)(C4(γ, c0)

t
3
2
0

)
(9.14)

= 2LKV C4t
α− 3

2
0

1

Hε

≤ 2LKV C4

(C3)ε
t
α− 3

2
−ε

0

= C5t
α− 3

2
−ε

0 ,

where C5 = 2LKV C4
(C3)ε is a constant depending on γ, c0,K (as usual L = 8

and ε = 1
10 are fixed). Using the estimate (9.14) in the equation (9.13),

we obtain

(9.15) −2g(∇H,∇Rc)1
1(p0, t0) ≥ −C5t

α− 3
2
−ε

0 + 2V 2λ.

We now estimate all the remaining terms in (9.10) (except εtε−1
0 ), i.e.

we consider

Z := (HP )1
1(p0, t0) + 2LKtα0 |Ric|2(p0, t0) + LKR(p0, t0)αtα−1

0 .

Using the expression for P in (9.9), we compute at (p0, t0),
(9.16)
Z = (HP )1

1 + 2LKtα0 |Ric|2 + LKαRtα−1
0

= H[(µ− ν)2 + λ(µ+ ν)] + 2LKtα0 (λ2 + µ2 + ν2) + LKαRtα−1
0

≥ Hλ(µ+ ν) + 2LKtα0 (λ2 + µ2 + ν2) + LKαRtα−1
0

= −(LKtα0 R + tε0 + 7K)(µ+ ν) + 2LKtα0 (λ2+µ2 + ν2) + LKαRtα−1
0

= LKtα0 [−(λ+ µ+ ν)(µ+ ν) + 2(λ2 + µ2 + ν2)]− (tε0 + 7K)(µ+ ν)

+ LKαRtα−1
0

= LKtα0 [−λ(µ+ ν) + (µ− ν)2 + 2λ2]− (tε0 + 7K)(µ+ ν)

+ LKαRtα−1
0 .

Since R(·, t0) ≥ −6K on Bg(t0)(x0, r2), by (9.1), and we are at a point
where λ < −6K, by (9.5), we must have (µ+ν) ≥ 0 and hence the term
−LKtα0λ(µ+ ν) appearing above is nonnegative: −LKtα0λ(µ+ ν) ≥ 0.
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The terms −(tε0 + 7K)(µ+ ν) + LKαRtα−1
0 of (9.16) can be written as

(9.17)

−(tε0 + 7K)(µ+ ν) + LKαRtα−1
0

= −(tε0 + 7K)(λ+ µ+ ν) + (tε0 + 7K)λ+ LKαRtα−1
0

= (−tε0 − 7K + LKαtα−1
0 )R + (tε0 + 7K)λ

≥ −6LK2tα−1
0 + 8Kλ

after possibly reducing T̂ > 0 (depending on K) so that 0 ≤ −tε0 −
7K+LKαtα−1

0 ≤ LKαtα−1
0 ≤ LKtα−1

0 and tε0 ≤ K, where we used that
R(p0, t0) ≥ −6K and the facts that α ∈ [1/2, 1] and L = 8 > 7 (required
in the case that α ∈ [8

9 , 1], say).
Substituting these inequalities into the inequality (9.16) gives us

(9.18) Z ≥ 2LKtα0λ
2 − 6LK2tα−1

0 + 8Kλ.

Putting the estimates (9.15) and (9.18) into the equation (9.10), we
obtain
(9.19)

0 ≥ (
∂F̃
∂t

)1
1(p0, t0)

≥ −C5t
α− 3

2
−ε

0 + (2V 2 + 8K)λ+ 2LKtα0λ
2 − 6LK2tα−1

0 + εtε−1
0 .

In both Steps One and Two, we will use (9.19) in order to obtain a

lower bound on t0, or equivalently to obtain a contradiction for T̂ chosen
small enough. In both steps, this will tell us that F (·, t) ≥ 0 for any

t ∈ [0, T )∩ [0, T̂ ) and throughout Bg(t)(x0, r2). In particular, for such t,
by (9.2) and the definition of F we will have

(9.20) Ricg(t) ≥ −6LKektc0t
α−1 − ekttε − 7Kekt

within the smaller ball Bg(t)(x0, r1) where we know that h = e−kt.
Now we perform Step One.

Step One. Let F be defined as above with r1 = 1− γ
2 and r2 = 1− γ

4

in the definition of h (which appears in the definition of F ) and ε = 1
10 ,

L = 8, (as always) and α = 1 − 2ε. In particular h(x, t) = e−kt on
Bg(t)(x0, 1 − γ

2 ), and h(x, t) = 0 outside Bg(t)(x0, 1 − γ
4 ), in view of

the values of r1, r2 we have chosen. Let t0 ∈ (0, T̂ ) be a first time at

which there is a point p0 ∈ Bg(t0)(x0, r2) where F (p0, t0) > 0 fails to

hold. Using Young’s inequality coarsely to estimate (2V 2 + 8K)λ ≥
− (2V 2+8K)2

K t−α0 −Kλ2tα0 in (9.19), and the fact that 2L = 16 ≥ 1, we
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see that
(9.21)

0 ≥ (
∂

∂t
F̃)1

1(p0, t0)

≥ −C5t
α− 3

2
−ε

0 + (2V 2 + 8K)λ+ 2LKtα0λ
2 − 6LK2tα−1

0 + εtε−1
0

≥ −C5t
α− 3

2
−ε

0 − (2V 2 + 8K)2

K
t−α0 − 6LK2tα−1

0 + εtε−1
0

= −C5t
− 1

2
−3ε

0 − (2V 2 + 8K)2

K
t−1+2ε
0 − 6LK2t−2ε

0 + εtε−1
0

> 0,

if t0 < T̂ (γ, c0,K) is small enough: the dominating term is εtε−1
0 because

we took ε = 1
10 . This is a contradiction.

We have shown F (·, t) ≥ 0 on Bg(t)(x0, 1− γ
4 ) for all t ∈ [0, T )∩ [0, T̂ ),

and in particular, by (9.20) with our choice of α, we have

(9.22)
Ricg(t) ≥ −6LKektc0t

−2ε − ekttε − 7Kekt ≥ −7LKc0t
−2ε

≥ −t−3ε,

on Bg(t)(x0, 1− γ
2 ), where we have reduced T̂ again if necessary, and used

that k = k(γ). This is the first step in the double bootstrap argument.
End of Step One

Step Two. For the new definition of F , we choose r1 = 1 − γ and
r2 = 1 − γ

2 in the definition of h (which appears in the definition F )

ε = 1
10 , L = 8 as always, and set now α = 1. In particular h(x, t) = e−kt

on Bg(t)(x0, 1 − γ), and h(x, t) = 0 outside Bg(t)(x0, 1 − γ
2 ), for all

t ∈ [0, T ) ∩ [0, T̂ ), in view of the values of r1, r2 we have chosen. Let

t0 ∈ (0, T̂ ) be a first time at which there is a point p0 ∈ Bg(t0)(x0, r2)

where F (p0, t0) > 0 fails to hold. Using Ric(x, t) ≥ −t−3ε for x ∈
Bg(t)(x0, 1− γ

2 ), the result of Step One, in (9.19), we see that
(9.23)

0 ≥ (
∂

∂t
F̃)1

1(p0, t0)

≥ −C5t
α− 3

2
−ε

0 + (2V 2 + 8K)λ+ 2LKtα0λ
2 − 6LK2tα−1

0 + εtε−1
0

≥ −C5t
− 1

2
−ε

0 − (2V 2 + 8K)t−3ε
0 + 2LKt0λ

2 − 6LK2 + εtε−1
0

> 0

if t0 < T̂ (γ, c0,K) is small enough, since then the dominating term is
εtε−1

0 . This is a contradiction.

We have shown F (·, t) ≥ 0 on Bg(t)(x0, 1− γ
2 ) for all t ∈ [0, T )∩ [0, T̂ ),

and in particular, by (9.20) with our new choice of α, we have

(9.24) Ricg(t) ≥ −6LKektc0 − ekttε − 7Kekt ≥ −100Kc0
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on Bg(t)(x0, 1 − γ), after possibly reducing T̂ > 0 again (without new
dependencies) since c0 ≥ 1 and L = 8. End of Step Two and the proof.

q.e.d.

10. Proof of the main Theorem 1.1

Observe that without loss of generality, we may always assume that
σ ∈ (0, 3] in Theorems 1.1 and 1.6. Moreover, we observe that these the-
orems are equivalent to the corresponding results in which ṽ0 is allowed
also to depend on σ, as we now clarify. If we have established either of
these theorems allowing this extra dependency, then we may take the
Ricci flow g(t), parabolically scale up so that the ball of radius 1 be-
comes of radius 2, then apply the result to the rescaled flow with σ = 1.
Scaling back, we obtain a positive lower bound on VolBg(t)(x0, 1/2),
which implies Conclusion 1 (or Conclusion 1′).

Next we address the equivalence of Theorems 1.1 and 1.6, allowing
this extra σ dependency of ṽ0. In each direction, we combine what
curvature control we have to relate time t balls to time 0 balls using the
results of Section 3.

Theorem 1.1 implies Theorem 1.6. Given a Ricci flow as in the
theorems, Conclusions 1 and 2 coupled with Bishop-Gromov imply a
positive lower bound for the volume of Bg(t)(x0, 1/2), say. The shrinking
balls Corollary 3.3 tells us that Bg(t)(x0, 1/2) ⊂ Bg(0)(x0, 1) for a definite
period of time, and hence we obtain the positive lower bound for the
volume of Bg(0)(x0, 1) required for Conclusion 1′ (for some different ṽ0

with the correct dependencies).
To obtain Conclusions 2′ and 3′, we parabolically rescale down our

Ricci flow slightly so that balls of radius 1+σ/2 become balls of radius 1,
apply Theorem 1.1 (with the correspondingly smaller σ), rescale back,
and obtain Conclusions 2 and 3 on the larger ball Bg(t)(x0, 1 +σ/2) (for
correspondingly smaller time). At this point, we can apply the expand-
ing balls Lemma 3.1 to deduce that Bg(t)(x0, 1 +σ/2) ⊃ Bg(0)(x0, 1) for
a definite time, and so Conclusions 2′ and 3′ will hold. q.e.d.

Theorem 1.6 implies Theorem 1.1. As above, we can apply the
theorem we know on a slightly (parabolically) scaled down Ricci flow,
in order to obtain Conclusions 2′ and 3′ on the ball Bg(0)(x0, 1 + σ/2).
By the shrinking balls Corollary 3.3 we know that Bg(0)(x0, 1 + σ/2) ⊃
Bg(t)(x0, 1) for a short time, which gives us Conclusions 2 and 3.

To obtain Conclusion 1, we begin by applying Bishop-Gromov to the
initial metric to deduce that VolBg(0)(x0, 1/2) has a positive lower bound
(depending only on v0 andK). If we parabolically scale up our Ricci flow
so that this ball of radius 1/2 becomes of radius 1, we can apply Theorem
1.6 (in particular Conclusion 1′), and scale back down again, to deduce
that Volg(t)(Bg(0)(x0, 1/2)) has a positive lower bound for a definite time.



LOCAL CONTROL ON THE GEOMETRY IN 3D RICCI FLOW 501

But then by the expanding balls Lemma 3.1 (coupled with Conclusion
2 that we have just proved) we know that Bg(0)(x0, 1/2) ⊂ Bg(t)(x0, 1)
over some uniform time interval, which implies then a positive lower
bound for VolBg(t)(x0, 1) as required. q.e.d.

Having proved the equivalence of these theorems, we demonstrate
that it suffices to prove Theorem 1.1 in the case σ = 3 (i.e. the Ricci
lower bound of (1.3) holds on the ball of radius 4). By the equivalence we
have shown above, we would like to deduce Theorem 1.6. Confronted
with a Ricci flow for which we only have the Ricci hypothesis on a
smaller ball Bg(0)(x0, 1 +σ), pick an arbitrary point z0 ∈ Bg(0)(x0, 1) at
which we would like to establish Conclusions 2′ and 3′. By scaling up
our Ricci flow parabolically so that the ball of radius σ centred at z0

becomes of radius 4, we can apply the σ = 3 case of the theorem (with
x0 there equal to z0 here). In particular, Conclusions 1 and 2 restricted
to the centre z0 give a lower Ricci bound and upper sectional bound
that when we return to the unscaled Ricci flow give Conclusions 2′ and
3′ at the arbitrary point z0.

To obtain Conclusion 1′, we can parabolically scale up the Ricci flow
so that the ball Bg(0)(x0, 1) ends up with radius 4, and then apply
the result to give, after scaling back, a positive lower bound on the
volume VolBg(t)(x0, 1/4). By the shrinking balls Corollary 3.3 (together
with Conclusion 3′) we have Bg(t)(x0, 1/4) ⊂ Bg(0)(x0, 1) for a definite
time interval, and hence we have the desired positive lower bound for
Volg(t)(Bg(0)(x0, 1)).

We are thus reduced to proving Theorem 1.1 in the case that σ = 3,
and the remainder of this section is devoted to that task.

By Bishop-Gromov, by reducing v0 it is sufficient to prove the theo-
rem with hypothesis (1.2) replaced by the apparently more restrictive
hypothesis that

VolBg(0)(y0, r) ≥ v0r
3 for all y0 ∈ Bg(0)(x0, 3) and r ∈ (0, 1].

(10.1)

Equipped with this new (lower) v0 and the K from the theorem, we can

appeal to Lemma 6.1 for constants T̂ , C0 and α, in preparation for the
application of this lemma later; the lemma will be applied not to g(t),
but a scaled-up version of g(t). The constant C0 will describe the rate of
curvature decay we can expect in certain situations. We set c0 = C0 +1.
In particular, it is significant that both c0 > 1 and c0 > C0. This c0

and α are now fixed for the rest of the argument and this c0 is the c0

for which we will show that Conclusion 3 is valid.
In the proof below, we will need to apply the double bootstrap Lemma

2.2, once with the lower Ricci curvature bound given by K̃ = K and
once with K̃ = K/(100c0). In both cases we assume the condition
|Rm| ≤ c0

t for the c0 that we have just defined. If necessary, we will
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reduce the T̂ we found above, so that the conclusions of Lemma 2.2 in
each case will now also be valid for t ≤ T̂ .

Equipped with this c0 and α, we are going to apply Lemma 4.2 to
the Ricci flow of the main theorem, with r0 = 3 and the same x0. The
constant L in the statement of Lemma 4.2 will be chosen sufficiently
large to guarantee two things: First, the latest time that is considered

in Lemma 4.2, ie.
r20

β2c0(L+1)2
= 9

β2c0(L+1)2
, should be bounded by the T̂

above – in fact, we ask that it is less than T̂ /(100c0). Ultimately, we
will be taking certain t0 ∈ [0, 9

β2c0(L+1)2
] and scaling the Ricci flow so

that time t0 becomes time T̂ . Under this scaling, we will be stretching
time by a factor of at least 100c0, and the lower Ricci bound hypothesis
Ricg(0) ≥ −K will become Ric ≥ −K/(100c0).

The second constraint on L is that we require that the radius L(1−
α)β
√
c0t0 that is considered in case 2 of Lemma 4.2 is large enough.

After scaling up time by a factor T̂ /t0 as above, this radius becomes

L(1 − α)β
√
c0T̂ , and we ask that this is at least 2 so that we will be

able to apply Lemma 2.2. We will be doing this with K̃ = K/(100c0),
so the output will be a Ricci lower bound Ric ≥ −K on the time t unit
ball centred at x0, for the rescaled flow, as we will see momentarily.

With this choice of L and r0 = 3, Lemma 4.2 gives us two cases.
We now show that case 1 implies the theorem, while case 2 leads to a
contradiction.

Case 1. In this case, we have curvature decay |Rm|g(t) < c0
t throughout

Bg(t)(x0, 3 − (L + 1)β
√
c0t) ⊂ Bg(0)(x0, 3) for each t ∈ (0, T ) with t <

9
β2c0(L+1)2

. We choose T̃ > 0 small enough so the ball on which we

have curvature control always has radius at least 2, i.e. we choose T̃ =
1/(β2(L+1)2c0). Thus we have |Rm|g(t) < c0

t throughout Bg(t)(x0, 2) for

each t ∈ (0, T ) with t < T̃ , which implies Conclusion 3 of the theorem.
Equipped with this curvature decay, we can apply Lemma 2.2 with

K̃ = K and T there equal to T̃ here. The conclusion is a Ricci lower
bound Ricg(t) ≥ −100Kc0 on Bg(t)(x0, 1) for all t ∈ [0, T ) ∩ [0, T̃ ).

(Recall that T̃ ≤ T̂ by our choice of L.) In particular, we deduce
Conclusion 2 of the theorem.

Finally, we can apply Lemma 2.3 with γ = 1 and with K there
equal to 100Kc0 here, to give a later lower volume bound, which implies
Conclusion 1, after possibly reducing T̃ > 0 so that T̃ ≤ T̂ of Lemma
2.3.

Case 2. In this case, we know that there exist t0 ∈ (0, T ) with t0 <
9

β2c0(L+1)2
and z0 ∈ Bg(t0)(x0, 3− (L+ 1)β

√
c0t0) ⊂ Bg(0)(x0, 3) such

that
Q := |Rm|g(t0)(z0) =

c0

t0
,
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and for all t ∈ (0, α2t0], we have |Rm|g(t) < c0/t throughout the ball

Bg(t)(z0, L(1−α)β
√
c0t0), where we are using the α ∈ (0, 1) given earlier.

If we rescale g(t) by stretching time by a factor T̂ /t0, as discussed earlier,
i.e we define

g̃(t) =
T̂

t0
g

(
t0

T̂
t

)
,

then we end up with a Ricci flow g̃(t) defined for t ∈ [0, T̂ ] with the
properties that |Rm|g̃(T̂ )(z0) = c0

T̂
, but so that |Rm|g̃(t) < c0/t for

all t ∈ (0, α2T̂ ] and throughout Bg̃(t)(z0, L(1 − α)β
√
c0T̂ ), and hence

throughout Bg̃(t)(z0, 2) by our choice of L.

Using the facts that z0 ∈ Bg(0)(x0, 3) and Bg(0)(z0, 1) ⊂ Bg(0)(x0, 4),
we see that the initial conditions (10.1) and Ricg(0) ≥ −K also hold
at y0 = z0 respectively on Bg(0)(z0, 1). As discussed when choosing L,

t0 is sufficiently small so that the stretching factor T̂ /t0 is larger than
100c0 > 4, and hence the scaled initial conditions VolBg̃(0)(z0, 1) ≥ v0

and Ricg̃(0) ≥ − K
100c0

on Bg̃(0)(z0, 2) hold. Using this latter condition

and that |Rm|g̃(t) < c0/t for all t ∈ (0, α2T̂ ] throughout Bg̃(t)(z0, 2),

we see that we may apply Lemma 2.2 with g(t) = g̃(t), x0 = z0, K̃ =

K/(100c0) and T = α2T̂ to deduce that Ricg̃(t) ≥ −K on Bg̃(t)(z0, 1)

for all t ∈ [0, α2T̂ ).
Using this lower Ricci bound and VolBg̃(0)(z0, 1) ≥ v0, we see that

we may apply the pseudolocality improvement Lemma 6.1 to g̃(t). The

output is that for all t ∈ (0, T̂ ] we have

|Rm|g̃(t)(z0) ≤ C0

t
,

and in particular for the original unscaled Ricci flow g(t), at time t0 and
at the point z0 we have

|Rm|g(t0)(z0) ≤ C0

t0
.

But this contradicts the assertion of case 2 that

|Rm|g(t0)(z0) =
c0

t0
,

because c0 = C0 + 1.

11. A Ricci flow version of non-collapsing –
Proof of Lemma 2.3

Our task in this section is to restrict the drop in volume of a ball of
fixed radius under Ricci flow, under the curvature hypotheses (i) and
(ii) of Lemma 2.3. There is a simple formula for the evolution of the
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volume of a fixed subset Ω ⊂M under Ricci flow

d

dt
Volg(t)(Ω) = −

∫
Ω

R dµg(t),

and so the decay of volume is controlled by a sufficiently strong upper
curvature bound. However, the natural upper curvature bound is c0/t as
in the lemma, and this just fails to be integrable in time, thus permitting
in theory an arbitrarily quick loss of all volume. Moreover, volume can
be lost by the stretching of distance, sending it outside the ball of fixed
radius rather than shedding it completely. The proof must therefore be
more subtle. The curvature hypotheses we are allowed here will instead
be used initially to uniformly control the evolution of the Riemannian
distance function as time lifts off from zero, as described in Lemma 3.4.
One could deduce uniform estimates for the Gromov-Hausdorff distance
between balls with respect to g(0) and balls with respect to g(t) and
then revisit Cheeger-Colding theory to verify that volume convergence
will apply in this slightly different context of incomplete Riemannian
manifolds and yield uniform volume bounds, depending on time, via a
contradiction argument. Instead, we give a direct, self-contained proof
that uses the curvature hypotheses in additional ways.

The central claim on the way to proving Lemma 2.3 is the following.

Lemma 11.1. Suppose that (Mn, g(t)) is a Ricci flow for t ∈ [0, T ),
such that for some x0 ∈M and all t ∈ [0, T ) we have Bg(t)(x0, 10)⊂⊂M .
Assume further that

(i) Ricg(t) ≥ −1 on Bg(t)(x0, 10) for all t ∈ [0, T ),
(ii) |Rm|g(t) ≤ c0

t on Bg(t)(x0, 10) for some c0 <∞ and all t ∈ (0, T ),
(iii) VolBg(0)(x0, 1) ≥ v0 for some v0 > 0.

Then there exist ε̃0 > 0 depending only on v0 and n, and, for each
A ≥ 1, a time T̃ ∈ (0, A−2] depending only on c0, A, n and v0 such that

for all t ∈ [0, T̃ ] ∩ [0, T ) and all y0 ∈ Bg(t)(x0, 1), we have

(11.1) VolBg(t)(y0, A
√
t) ≥ ε̃0(A

√
t)n.

Before proving Lemma 11.1, we use it to prove Lemma 2.3.

Proof of Lemma 2.3. Let r > 0 be the maximum of 10/γ and
√
K. By

Bishop-Gromov, hypotheses (iii) and (i) imply that VolBg(0)(x0, 1/r) has
a positive lower bound depending only on v0, K, n and γ. Therefore,
making a parabolic rescaling that stretches lengths by a factor of r, we
see that in fact we may assume that the hypotheses of Lemma 11.1
hold, and it then suffices to prove a lower bound VolBg(t)(x0, 1) > ε0 =

ε(v0, n) > 0 for a time T̂ = T̂ (v0, c0, n) > 0.
We will prove that this equivalent version of Lemma 2.3 is true with

(11.2) ε0 =
1

2

(
ε̃0v0

5nΩn

)
,



LOCAL CONTROL ON THE GEOMETRY IN 3D RICCI FLOW 505

provided we take T̂ small enough, where ε̃0 is from Lemma 11.1, and
Ωn is the volume of a ball of radius 1 in the n-dimensional model space
with Ric ≡ −1.

The constraints on T̂ are as follows. To begin with, because we wish
to apply Lemma 11.1, we ask that T̂ is no greater than T̃ from that
lemma, where A there is taken to be R := β

√
c0, with β given by

Lemma 3.2. Next, if necessary we reduce T̂ further so that T̂ ≤ 1
25R2 ,

and

(11.3) 1 +R
√
t ≥ et for all t ∈ [0, T̂ ].

A first consequence of T̂ ≤ 1
25R2 is that Corollary 3.3 tells us that

(11.4) Bg(t)(x0, 1) ⊂ Bg(0)(x0, 2) for all t ∈ [0, T̂ ] ∩ [0, T ),

while Lemma 3.1 tells us that

Bg(0)(x0, 1) ⊂ Bg(t)(x0, e
t) ⊂ Bg(t)(x0, 1 +R

√
t) for all t ∈ [0, T̂ ] ∩ [0, T ),

(11.5)

thanks to (11.3). Finally, by reducing T̂ still further, part 3 of Lemma
3.4 will apply with r = 2 and K = 1 to tell us that for any x ∈
Bg(0)(x0, 2), and s ∈ [0, 6], we have Bg(0)(x, s) ⊃ Bg(t)

(
x, s−R

√
t
)
. By

(11.4), this implies

Bg(0)(x, 5R
√
t) ⊃ Bg(t)(x, 4R

√
t) for all x ∈ Bg(t)(x0, 1),

(11.6)

and all t ∈ [0, T̂ ] ∩ [0, T ).
Suppose our equivalent version of Lemma 2.3 is false with the choice of

ε0 in (11.2) and with T̂ satisfying the constraints above. Then we can fix

t ∈ [0, T̂ ]∩[0, T ) so that VolBg(t)(x0, 1) = ε0. This choice of t determines
a scale for a covering of Bg(t)(x0, 1) by balls as we now explain. Let N

be the largest number of disjoint balls Bg(t)(pi, R
√
t) ⊂ Bg(t)(x0, 1) that

can be chosen. Note that we can be sure that at least one ball exists, i.e.
that N ≥ 1, because we are assuming that t ≤ 1

25R2 <
1
R2 . Moreover, N

is finite because by assumption we know that Bg(t)(x0, 1) ⊂⊂M , so an
infinite sequence pi would have to have a convergent subsequence. In
the following we will estimate N from above explicitly. Fix now such a
choice of points/centres p1, . . . , pN , and the corresponding disjoint balls.
Using the disjointness, and Lemma 11.1 we see that VolBg(t)(pi, R

√
t) ≥

ε̃0(R
√
t)n, and hence

ε0 = VolBg(t)(x0, 1) ≥ Volg(t)(∪Ni=1Bg(t)(pi, R
√
t)) ≥ Nε̃0(R

√
t)n.

(11.7)

Whereas we have Bg(t)(pi, R
√
t) ⊂ Bg(t)(x0, 1), we can be sure that

the larger balls Bg(t)(pi, 3R
√
t) cover Bg(t)(x0, 1) because if there existed

a point y ∈ Bg(t)(x0, 1) outside all N of these larger balls, then we could
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contradict the definition of N as follows. The ball Bg(t)(y, 2R
√
t) would

be disjoint from all the original balls Bg(t)(pi, R
√
t). If y were within

Bg(t)(x0, 1 − R
√
t), then we could add y to our original list of points

p1, . . . , pN , i.e. add Bg(t)(y,R
√
t) to our original collection of balls, thus

contradicting the choice of N immediately. If instead y /∈ Bg(t)(x0, 1−
R
√
t) then this new ball might fall partly outside of Bg(t)(x0, 1), which

is not allowed. In this latter case, we could then slide y a distance
R
√
t along any minimising geodesic from y to x0, to a new point y0 ∈

Bg(t)(x0, 1 − R
√
t). (Note that this minimising geodesic is longer than

R
√
t because we have chosen T̂ ≤ 1

25R2 <
1

4R2 , so that 1−R
√
t > R

√
t.)

Then Bg(t)(y0, R
√
t) would be a ball lying within Bg(t)(x0, 1) that is

still disjoint from all the balls Bg(t)(pi, R
√
t), thus contradicting the

definition of N also in this case.
The fact that the balls Bg(t)(pi, 3R

√
t) cover Bg(t)(x0, 1) is a fact that

has an analogue at t = 0. Indeed, we claim that the balls Bg(0)(pi, 5R
√
t)

will cover Bg(0)(x0, 1). To see this, first note that the larger balls

Bg(t)(pi, 4R
√
t) cover Bg(t)(x0, 1 + R

√
t), and thus by (11.5), they also

cover Bg(0)(x0, 1). By (11.6), the balls Bg(0)(pi, 5R
√
t) then also cover

Bg(0)(x0, 1) as required.
This covering gives us a lower bound on N as follows. By our assump-

tion T̂ ≤ 1
25R2 , the radius 5R

√
t is no more than 1. Therefore, by Bishop-

Gromov, each of these balls has volume no more than Ωn(5R
√
t)n, where

Ωn has already been taken to be the volume of a ball of the maximal
radius 1 in the model space with Ric ≡ −1. Therefore we have

(11.8) v0 ≤ VolBg(0)(x0, 1) ≤
N∑
i=1

VolBg(0)(pi, 5R
√
t) ≤ NΩn(5R

√
t)n.

Combining with the upper bound (11.7) for N , we find that

ε0 ≥
ε̃0v0

5nΩn

which contradicts the value of ε0 chosen in (11.2) at the beginning.
q.e.d.

It remains to prove the key supporting Lemma 11.1. First we give a
hint of the intuition behind the proof in the case A = 1. If the lemma
were false, then even for extremely small ε̃0 > 0, we would be able to
find Ricci flows for which the volume of at least one

√
t-ball was very

small after a very short time. Parabolically rescaling, we would have a
Ricci flow that would have virtually nonnegative Ricci curvature, and
in which there would be a unit ball with very small volume after time 1.
The c0/t decay of curvature would survive the rescaling, and this can be
turned into control on the changes of distances thanks to Lemma 3.4.
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The main task is to play off the consequence of the lower volume
bound at time t = 0 against the smallness of volume at time 1. The
smallness of volume at t = 1 will allow us to make a covering of a unit
ball at time 1 by a relatively small number of geodesic balls. Meanwhile,
our control on the change of distances allows us to transfer this back to
a covering of a unit ball at time t = 0 by a relatively small number of
balls, each of which has a controlled amount of volume as a result of the
almost nonnegative Ricci curvature. This can be made to contradict
the t = 0 lower volume control.

A key subtlety that this brief discussion overlooks is how we go from
smallness of the volume of a ball at t = 1 to having a covering by
a small number of smaller balls. To make this work, we need more
control on the geometry of the set we are covering, and this we can only
obtain by considering a different ball at t = 1. The key idea is that the
property of not having a ball with a covering by a small number of balls
is something that we can apply at spatial infinity where the manifold
splits. This property then passes to an equivalent space of one lower
dimension. By iteration, we can reduce the discussion to one dimension,
where a contradiction is apparent. The key lemma that articulates this
is the following, which we prove at the end of the section.

Lemma 11.2 (Dimension reduction). Let R ≥ 1 and ε, δ, v > 0 be
arbitrary, and let (Mn, g) be a smooth n-dimensional complete, non-
compact Riemannian manifold without boundary, with n ≥ 2, such that

(i) Ricg ≥ 0, and the norm of the curvature and all covariant deriva-

tives (of any order) is bounded, i.e. |∇kRm|g ≤ C(k) for each
k ∈ 0, 1, . . .;

(ii) VolBg(x, 1) ≥ δ for all x ∈M ;
(iii) If we have a ball Bg(y, L), for y ∈ M and L > 0, that is covered

by N balls of radius r ≥ R (with respect to g) then we must have
N ≥ vLnr−n;

(iv) There exists y∞ ∈M such that VolBg(y∞, R) ≤ εRn.
Then there exists a sequence of points zk ∈M with dg(y∞, zk)→∞ as
k → ∞, such that (M, g, zk) converges in the smooth Cheeger-Gromov
sense to the product manifold R×(M ′, g′) marked with some point (0, y′),
y′ ∈M ′, where (M ′, g′) is a smooth (n− 1)-dimensional complete, non-
compact Riemannian manifold without boundary such that

1) Ricg′ ≥ 0, and the norm of the curvature and all covariant deriva-

tives (of any order) is bounded, i.e. |∇kRm|g′ ≤ C ′(k) for each
k ∈ 0, 1, . . .;

2) VolBg′(x, 1) ≥ δ/2 for all x ∈M ′;
3) If we have a ball Bg′(y, L), for y ∈M ′ and L > 0, that is covered

by N balls of radius r ≥ R (with respect to g′) then we must have

N ≥ η1vL
n−1r−(n−1), for some η1 = η1(n) > 0;

4) There exists y′∞ ∈M ′ such that VolBg′(y
′
∞, R) ≤ C(n) εvR

n−1.
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Proof of Lemma 11.1. As before, let Ωn be the volume of the unit ball
in the n-dimensional model space with Ric ≡ −1. By Bishop-Gromov,
the hypotheses are vacuous unless

(11.9) v0 ≤ Ωn,

and so we assume that throughout the proof.
Assume that Lemma 11.1 fails for some v0 > 0 and dimension n that

we now fix for the remainder of the proof. In this case, if we take any
sequence ε̃` ↓ 0, then for each `, there exist c` < ∞ and A` ≥ 1 so
that the conclusion (11.1) of the lemma (with ε̃0 = ε̃`) will fail in an
arbitrarily short time, for a Ricci flow satisfying the hypotheses of the
lemma with c0 = c` and A = A`. It will be convenient, and no loss
of generality, to assume that c` ≥ 1. By omitting a finite number of
terms in the sequence, we may assume that ε̃` is less than the volume
ωn of the unit ball in Euclidean n-space, and thus for any Ricci flow the
conclusion (11.1) will hold for sufficiently small t > 0; our assumption is
therefore that the length of the time interval is not controlled uniformly
from below.

By assumption then, for each ` there exist a sequence of n-manifolds
Mj , a sequence of points xj ∈Mj , a sequence of Ricci flows g̃j(t) on Mj

for t ∈ [0, t̃j ], with t̃j ↓ 0 (in particular, we may assume t̃j ∈ (0, A−2
` ])

and a sequence of points ỹj ∈ Bg̃j(t̃j)(xj , 1) ⊂Mj such that

(i) Bg̃j(t)(xj , 10) is compactly contained in Mj for all t ∈ [0, t̃j ]

(ii) Ricg̃j(t) ≥ −1 on Bg̃j(t)(xj , 10) for all t ∈ [0, t̃j ]

(iii) |Rm|g̃j(t) ≤
c`
t on Bg̃j(t)(xj , 10) for all t ∈ (0, t̃j ]

(iv) VolBg̃j(0)(xj , 1) ≥ v0

(v) VolBg̃j(t̃j)
(ỹj , A`

√
t̃j) < ε̃`(A`

√
t̃j)

n.

We need to improve our t̃j and ỹj so that in some sense we are consid-
ering the first time when the volume is too small, and the volume is not
much worse nearby. More precisely, with β as in Lemma 3.2, for each

`, j, choose L so that Bg̃j(t̃j)(xj , 2− (L+ 1)β
√
c`t̃j) = Bg̃j(t̃j)(xj , 1), i.e.

so that (L+ 1)β
√
c`t̃j = 1, which implies

(11.10) L ≥ 1

2
β−1(c`t̃j)

−1/2,

after possibly deleting finitely many terms in j so that c`t̃j is small
enough. Now choose tj ∈ (0, t̃j ] to be the first time at which there

exists a point yj ∈ Bg̃j(tj)(xj , 2− (L+ 1)β
√
c`tj) so that

(11.11) VolBg̃j(tj)(yj , A`
√
tj) = ε̃`(A`

√
tj)

n.
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We have picked yj ∈ Bg̃j(tj)(xj , 2), and so by deleting finitely many
terms in j so that tj is small enough, we have

(11.12) yj ∈ Bg̃j(tj)(xj , 2) ⊂ Bg̃j(t)(xj , 3) for each t ∈ [0, tj ],

by the shrinking balls Corollary 3.3. Therefore

(11.13) Bg̃j(t)(yj , 7) ⊂ Bg̃j(t)(xj , 10) for each t ∈ [0, tj ],

where our curvature bounds (ii) and (iii) hold.
Since tj is the first time for which (11.11) holds, we have

(11.14) VolBg̃j(t)(y,A`
√
t) ≥ ε̃`(A`

√
t)n

for all t ∈ [0, tj ] and all y ∈ Bg̃j(t)(xj , 2− (L+ 1)β
√
c`t).

By Bishop-Gromov, we see that

(11.15) VolBg̃j(t)(y,
√
t) ≥ 3ε̃`

4
(
√
t)n

for all t ∈ [0, tj ] and all y ∈ Bg̃j(t)(xj , 2− (L+ 1)β
√
c`t)

after possibly deleting finitely many terms in j so that A`
√
tj is small

enough. Now we need to find a controlled space-time region centred at
yj in which a similar lower volume bound as in (11.15) holds. By the
prior inclusion Lemma 4.1, for each α ∈ (0, 1), the space-time ‘cylinder’
defined for t ∈ [0, α2tj ] and y ∈ Bg̃j(t)(yj , L(1−α)β

√
c`tj) fits within this

region where (11.15) holds. Thus using (11.10) and choosing α so that
1−α = η1c

−1
` ∈ (0, 1

2) for η1 ∈ (0, 1
2) to be chosen later to be sufficiently

small depending only on n (with hindsight, η1 = [100n(n− 1)]−1 would
be fine) we have

(11.16) VolBg̃j(t)(y,
√
t) ≥ 3ε̃`

4
(
√
t)n

for all t ∈ [0, α2tj ] and all y ∈ Bg̃j(t)
(
yj ,

η1

2
c−1
`

√
tj/t̃j

)
.

We need to extend the space-time region where we get such a volume
ratio bound from existing for t ∈ [0, α2tj ] to existing for t ∈ [0, tj ] (even
if the region becomes thinner). More precisely, we claim that

(11.17) VolBg̃j(t)(y,
√
t) ≥ ε̃`

2n+1
(
√
t)n

for t ∈ [0, tj ] and y ∈ Bg̃j(t)
(
yj ,

η1

4
c−1
`

√
tj/t̃j

)
,

and emphasise that we may assume that t ∈ [α2tj , tj ]. We can simplify
the region where y lies in (11.17) by making it independent of t with
the claim that

(11.18) Bg̃j(α2tj)(yj ,
η1

2
c−1
`

√
tj/t̃j) ⊃ Bg̃j(t)(yj ,

η1

4
c−1
`

√
tj/t̃j),
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for t ∈ [α2tj , tj ], after deleting finitely many terms in j so that t̃j is small
enough. To see this, we can apply the second part of the shrinking balls
Corollary 3.3, which tells us that

Bg̃j(α2tj)(yj , r − β
√
c`α2tj) ⊃ Bg̃j(t)(yj , r − β

√
c`t),

for r ≤ 7. Setting r = βα
√
c`tj + η1

2 c
−1
`

√
tj/t̃j (which is less than 7

after deleting finitely many terms in j so that tj is sufficiently small)
this implies

Bg̃j(α2tj)(yj ,
η1

2
c−1
`

√
tj/t̃j) ⊃ Bg̃j(t)(yj , βα

√
c`tj−β

√
c`t+

η1

2
c−1
`

√
tj/t̃j),

but we can estimate

βα
√
c`tj − β

√
c`t ≥ −β(1− α)

√
c`tj = −βη1

√
tj/c` ≥ −

η1

4
c−1
`

√
tj/t̃j

after deleting enough terms in j so t̃j is small enough. Thus (11.18) is
proved, and (11.17) reduces to the claim that

(11.19) VolBg̃j(t)(y,
√
t) ≥ ε̃`

2n+1
(
√
t)n

for t ∈ [α2tj , tj ] and y ∈ Bg̃j(α2tj)(yj ,
η1

2
c−1
`

√
tj/t̃j).

This is a claim about the volume of a ball that is dependent on t, and
we can avoid this dependency with the claim that

(11.20) Bg̃j(α2tj)(y, α
√
tj) ⊂ Bg̃j(t)(y,

√
t)

after deleting finitely many terms in j (so tj is sufficiently small, de-
pending on α). To see (11.20) holds, we apply part 1 of Lemma 3.4 to
deduce that

Bg̃j(α2tj)(y, α
√
tj) ⊂ Bg̃j(t)(y, α

√
tje

t−α2tj ),

(after deleting finitely many terms in j) and therefore to establish (11.20)

we must show that α(
√
tj/t)e

t−α2tj ≤ 1, or equivalently 1
2 log(α2tj/t) +

t− α2tj ≤ 0. But log x ≤ x− 1 for any x ≥ 0, so

1

2
log(α2tj/t)+t−α2tj ≤

1

2
(α2tj/t−1)+t−α2tj = (t−α2tj)(1−

1

2t
) ≤ 0

provided tj ≤ 1
2 (so 1− 1

2t ≤ 0) and we confirm that (11.20) holds. Thus
(11.19), and hence (11.17), reduce to the claim that

(11.21)
Volg̃j(t)Bg̃j(α2tj)(y, α

√
tj) ≥

ε̃`
2n+1

(
√
t)n

for t ∈ [α2tj , tj ] and y ∈ Bg̃j(α2tj)(yj ,
η1

2
c−1
`

√
tj/t̃j).

This we already know for t = α2tj by (11.16). The curvature upper
bound |Rm|g̃j(t) ≤ c`/t will prevent the volume considered in (11.21)
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from dropping too much over short times. More precisely, for y ∈
Bg̃j(α2tj)(yj ,

η1
2 c
−1
`

√
tj/t̃j) and t ∈ [α2tj , tj ], we can estimate

(11.22)
d

dt
Volg̃j(t)Bg̃j(α2tj)(y, α

√
tj) = −

∫
Bg̃j(α2tj)

(y,α
√
tj)

Rg̃j(t)dVg̃j(t)

≥ −C c`
t

Volg̃j(t)Bg̃j(α2tj)(y, α
√
tj),

for C = C(n). Note that for this to be valid, we need that the domain of
integration Bg̃j(α2tj)(y, α

√
tj) lies within the ball Bg̃j(t)(yj , 7) where we

have curvature estimates (by (11.13)); this inclusion follows by part 1 of
Lemma 3.4, for example. Integrating (11.22) from α2tj to t ∈ (α2tj , tj ],
keeping in mind that α ∈ (1/2, 1), we find that[

log Volg̃j(t)Bg̃j(α2tj)(y, α
√
tj)
]t
α2tj
≥ −Cc` logα−2 ≥ −Cc`(1− α)

≥ −Cη1 ≥ log
3

4
,

where we allow the constant C to change at each instance, and finally
choose η1 small enough to achieve the last inequality. By (11.16) (with
t there equal to α2tj here) this implies

(11.23)
Volg̃j(t)Bg̃j(α2tj)(y, α

√
tj) ≥

3

4
VolBg̃j(α2tj)(y, α

√
tj)

≥ (
3

4
)2ε̃`(α

√
tj)

n ≥ ε̃`
2n+1

(
√
t)n,

which is claim (11.21). Thus we have established (11.17), which can be
considered a development of property (v).

Finally we turn to Property (iv), and turn it into a more useful state-
ment about the volume of smaller balls, with more general centres. In-
deed, we see that for all y ∈ Bg̃j(0)(xj , 4), we have

VolBg̃j(0)(y, 5) ≥ VolBg̃j(0)(xj , 1) ≥ v0,

and so by Bishop-Gromov we have

(11.24) VolBg̃j(0)(y, r) ≥ η0v0r
n,

for all r ∈ (0, 1), say, and η0 = η0(n) > 0. By the t = 0 case of (11.12),
the estimate (11.24) holds in particular for all y ∈ Bg̃j(0)(yj , 1).

To summarise the above discussions, we can change our viewpoint
from xj to yj and have the properties
(A) Bg̃j(t)(yj , 7) is compactly contained in Mj for all t ∈ [0, tj ]

(B) Ricg̃j(t) ≥ −1 on Bg̃j(t)(yj , 7) for all t ∈ [0, tj ]

(C) |Rm|g̃j(t) ≤
c`
t on Bg̃j(t)(yj , 7) for all t ∈ (0, tj ]

(D) VolBg̃j(0)(y, r) ≥ η0v0r
n for all r ∈ (0, 1) and y ∈ Bg̃j(0)(yj , 1), for

η0 = η0(n) > 0
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(E) VolBg̃j(tj)(yj , A`
√
tj) = ε̃`(A`

√
tj)

n

(F) VolBg̃j(t)(y,
√
t) ≥ ε̃`

2n+1 (
√
t)n for all t ∈ [0, tj ] and all

y ∈ Bg̃j(t)(yj ,
η1
4 c
−1
`

√
tj/t̃j).

By rescaling the Ricci flows parabolically, expanding distances by a

factor t
− 1

2
j and time by a factor t−1

j , we get a new sequence of Ricci

flows, which we call gj(t), defined for t ∈ [0, 1], such that we have

yj ∈ Bgj(1)(xj , 2t
− 1

2
j ) ⊂Mj and

(a) Bgj(t)(yj , 7t
− 1

2
j ) is compactly contained in Mj for all t ∈ [0, 1]

(b) Ricgj(t) ≥ −tj on Bgj(t)(yj , 7t
− 1

2
j ) for all t ∈ [0, 1]

(c) |Rm|gj(t) ≤
c`
t on Bgj(t)(yj , 7t

− 1
2

j ) for all t ∈ (0, 1]

(d) VolBgj(0)(y, r) ≥ η0v0r
n for all r ∈ (0, t

− 1
2

j ) and y ∈ Bgj(0)(yj , t
− 1

2
j )

(e) VolBgj(1)(yj , A`) = ε̃`A
n
`

(f) VolBgj(t)(y,
√
t) ≥ ε̃`

2n+1 (
√
t)n for all t ∈ [0, 1] and all

y ∈ Bgj(t)(yj ,
η1
4 c
−1
` t̃
− 1

2
j ).

After passing to a subsequence in j, we can extract a smooth complete
pointed limit Ricci flow (Mj , gj(t), yj) → (M, g(t), y∞) for t ∈ (0, 1] by
Hamilton’s compactness theorem.

Moreover, M cannot be compact. If it were, then all Mj would be
compact for sufficiently large j. By the lower volume bound at t = 0
(Property (iv) above), and the Ricci lower bound (Property (ii)), the
diameter of (Mj , g̃j(0)) is uniformly bounded below (independent of j).
Corollary 3.3 then gives us a lower bound for the diameter of (Mj , g̃j(t))
for t ∈ [0, tj ], once tj is sufficiently small. Therefore, the diameter of
(Mj , gj(t)) for t ∈ [0, 1] must blow up, and the limit cannot be compact.

This limit g(t) clearly has the properties
(1) Ricg(t) ≥ 0 for all t ∈ (0, 1]
(2) |Rm|g(t) ≤ c`

t for all t ∈ (0, 1]
(3) VolBg(1)(y∞, A`) = ε̃`A

n
`

(4) VolBg(t)(y,
√
t) ≥ ε̃`

2n+1 (
√
t)n for all t ∈ (0, 1] and all y ∈M .

We can also deduce some further useful properties. First, by Bishop-
Gromov, we see that

(11.25) VolBg(1)(y∞, r) ≤ ε̃`rn, for all r ≥ A`.

Moreover, although we fail to obtain a smooth limit of the flows gj(t)
at t = 0 because of the lack of curvature control, we can apply Bishop-
Gromov to each gj(0) and obtain the limiting statement

(11.26) lim sup
j→∞

VolBgj(0)(zj , r) ≤ ωnrn



LOCAL CONTROL ON THE GEOMETRY IN 3D RICCI FLOW 513

for all r > 0, provided Bgj(0)(zj , r) lies within the region where the t = 0

instance of the lower Ricci bound of Property (b) holds, for sufficiently
large j – for example, if dgj(0)(zj , yj) is uniformly bounded – where ωn
is the volume of the unit ball in Euclidean space as before.

The principal way in which we extract information from time t = 0,
and Properties (iv) and (d) in particular, is by using them to argue that
we cannot cover large balls by too few small balls, even at later times.
This principle will be used in the following claim; to state it, we require
R := max{β√c`, A`, 1}, where β is the constant given by Lemma 3.2,
and also Lemma 3.4. Parts 3 and 1 of Lemma 3.4 tell us that for any

x ∈ Bgj(0)(yj , t
− 1

2
j ) and r ∈ (0, t

− 1
2

j ) (for example) and sufficiently large
j, we have

(11.27) Bgj(0)(x, r +R) ⊃ Bgj(1)(x, r)

and

(11.28) Bgj(0)(x, r) ⊂ Bgj(1)(x, er).

Claim 1. If we have a ball Bg(1)(y, L), for y ∈M and L > 0, that is
covered by N balls of radius r ≥ R (with respect to g(1)) then we must
have N ≥ ηv0L

nr−n for some η = η(n) > 0.

Proof of Claim 1. By the smooth convergence of gj(t) to g(t), we can

be sure that for sufficiently large j, there exist centres pj1, . . . , p
j
N ∈Mj

so that the larger balls Bgj(1)(p
j
i , (r + R)) cover some ball Bgj(1)(ŷj , L)

within Mj , where ŷj remains a j-independent distance from yj . By
(11.28), this latter ball contains the smaller, earlier Bgj(0)(ŷj , L/e), and

by (11.27) the balls Bgj(1)(p
j
i , (r + R)) are contained within the larger,

earlier Bgj(0)(p
j
i , (r + 2R)). Therefore

(11.29)

N∑
i=1

VolBgj(0)(p
j
i , (r + 2R)) ≥ VolBgj(0)(ŷj , L/e) ≥ η0v0

(
L

e

)n
by Property (d), for sufficiently large j. Taking the limit j → ∞ and
using (11.26), we obtain

Nωn(r + 2R)n ≥ η0v0

(
L

e

)n
,

and so for η = η(n) > 0, we conclude

N ≥ ηv0L
nr−n.

q.e.d (Claim 1)

This claim is the final ingredient allowing us to apply Lemma 11.2 to
(M, g(1)). The control on the derivatives of the curvature follow from

Shi’s estimates. Condition (ii) is satisfied with δ = ε̃`
2n+1 by the t = 1
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instance of (4). The v of that lemma can be taken to be ηv0 here, thanks
to the claim. Condition (iv) follows from (11.25), with ε = ε̃`.

The output of Lemma 11.2 is a noncompact (n− 1)-dimensional Rie-
mannian manifold (M ′, g′) with the properties (1) to (4), which allow us
to immediately apply Lemma 11.2 again, with n replaced by n− 1, and
this time with δ = ε̃`

2n+2 , v = η1ηv0, and ε = C ε̃`
v0

. Again, the output
is a manifold of dimension reduced by one, to which we can immedi-
ately reapply the lemma. After n − 1 iterations of this procedure, the
output is a non-compact one-dimensional complete, non-compact Rie-
mannian manifold, i.e. R, for which the volume of an R-ball is simply
2R. Conclusion (4) of the final iteration tells us that

2R ≤ C ε̃`

vn−1
0

R

for some C = C(n) < ∞, which is a contradiction for sufficiently large
` so that ε̃` is sufficiently small. This completes the proof of Lemma
11.1. q.e.d.

It remains to prove our dimension reduction lemma.

Proof of Lemma 11.2. First note that the set of geodesic rays emanating
from y∞ is nonempty, because M is noncompact and complete. Indeed,
choosing a sequence of unit tangent vectors at y∞ that exponentiate to
minimising geodesics of diverging length, a subsequence converges to a
unit tangent vector that exponentiates to a geodesic ray.

For 0 ≤ K < L < ∞, consider the annulus AK,L := Bg(y∞, L) \
Bg(y∞,K) and its nonempty subset

ÃK,L := {p ∈ AK,L | p lies in some geodesic ray emanating from y∞}.

We call ÃK,L the modified annulus. Since Ric ≥ 0, we must have

Vol(AK,L − ÃK,L) ≤ ε(K)Ln where ε : [0,∞) → [0,∞) is a decreas-
ing function, depending on g, with ε(K) → 0 as K → ∞. By Bishop-
Gromov, we also have Vol(AK,L) ≤ ωn(Ln−Kn), where ωn is the volume
of the unit ball in Euclidean n-space.

We first claim that there exists a sequence of points zk ∈ M with
dg(y∞, zk)→∞ as k →∞, each of which lies within some (length min-
imising) geodesic ray γk : [0,∞) → (M, g) of infinite length emanating
from y∞, such that

VolBg(zk, R) < (100R)n
ε

v
.

Suppose the claim is false. Then there exists R̃ > 0 such that for any
p ∈M with dg(y∞, p) ≥ R̃, and with p lying on a geodesic ray, we have
VolBg(p,R) ≥ σ0, where σ0 = (100R)n εv .

Clearly we are free to increase R̃ if helpful, and so we may assume
that R̃ ≥ 10R. We will also need R̃ to be large compared with Rn+1,
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and it will be sufficient to ask that R̃ ≥ C(n)Rn+1/(δv), for C(n) that

will be determined during the proof. Furthermore, we ask that R̃ is
large enough so that ε(R̃) is small enough. It will be sufficient to ask

that ε(R̃) ≤ εδ/(2σ0).
Let N ≥ 1 be the largest number of disjoint balls Bg(pi, R) that we

can pick that lie within AR̃,3R̃, but whose centre points pi lie within the

subset ÃR̃,3R̃. Fix such a collection of centre points p1, . . . , pN . We see

that N has an upper bound because condition (iv) and Bishop-Gromov
tell us that

(11.30) ε(3R̃)n ≥ VolBg(y∞, 3R̃) ≥
N∑
i=1

VolBg(pi, R) ≥ Nσ0.

Moreover, just as in the proof of Lemma 2.3 (see the argument just
after the Inequality (11.7)), we can be sure that the balls Bg(pi, 3R)

cover the modified annulus ÃR̃,3R̃. However for our argument, we need

a covering of AR̃,3R̃. In order to achieve this we consider further points

pN+1, . . . , pN+M , such that {Bg(pN+i, R)}Mi=1 is a maximal disjoint set

of balls with pN+1, . . . , pN+M ∈ AR̃,3R̃ \ ÃR̃,3R̃. Note here that we

don’t require that the balls also live in AR̃,3R̃ \ ÃR̃,3R̃. The set of balls

{Bg(pN+i, 3R)}Mi=1 is then a covering of AR̃,3R̃ \ ÃR̃,3R̃, and hence the

set of balls {Bg(pi, 3R)}N+M
i=1 is a covering of AR̃,3R̃.

If Bg(pN+i, R) intersects ÃR̃,3R̃ for some i ∈ {1, 2, . . . ,M}, then throw

the ball Bg(pN+i, R) away: It will be covered by Bg(pj , 5R), for some

j ∈ {1, 2, . . . , N}, and the new set of balls Bg(pi, 5R)N+M
i=1 of radius 5R

(we do not change the name of the centre points of the balls, or M ,
even though some balls have been removed) still covers AR̃,3R̃. We can

bound the number M of remaining balls because the remaining balls
{Bg(pN+j , R)}Mj=1 with centre points in AR̃,3R̃ \ ÃR̃,3R̃ have very little

volume (relatively), since they are disjoint and completely contained in

AR̃−R,3R̃+R \ ÃR̃,3R̃. Indeed, because R ≥ 1, condition (ii) gives

(11.31)

δM ≤
M∑
j=1

VolBg(pN+j , R)

≤ Volg(AR̃−R,3R̃+R \ ÃR̃,3R̃)

= Volg((AR̃−R,R̃ ∪AR̃,3R̃ ∪A3R̃,3R̃+R) \ ÃR̃,3R̃)

≤ ωn(R̃n − (R̃−R)n) + ωn((3R̃+R)n − (3R̃)n) + ε(R̃)R̃n

≤ C(n)R̃n−1R+ ε(R̃)R̃n

≤ εδ

σ0
R̃n
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if R̃ is as large as we previously asked, where we have used that (a +
R)n−an ≤ C(n)an−1R for a ≥ R, by the mean value theorem, to obtain
the penultimate line. Hence

(11.32)

(N +M) ≤ 2ε

σ0
(3R̃)n

<
vR̃n

(5R)n

from the definition of σ0. Now take a ball Bg(q, R̃) of radius R̃ and

centre q sitting in AR̃,3R̃. We can cover Bg(q, R̃) with the N +M balls

of radius r = 5R that we have just constructed, since they cover AR̃,3R̃.

But then by (iii), we must haveN+M ≥ vR̃n

(5R)n . This contradicts (11.32),

and completes the proof of the claim that we can find the points zk.
We now use the points zk of this claim to extract a limit. Indeed,

by condition (i), and condition (ii) applied to each of the points zk, we
know that we can apply the Cheeger-Gromov-Hamilton compactness
theorem, and passing to a subsequence in k we obtain smooth conver-
gence (M, g, zk) → (M∞, h, z∞) to a limit which still has Ric ≥ 0, but
now also contains a (length minimising) geodesic line through z∞, and
hence splits isometrically as a product R× (M ′, g′), where (M ′, g′) is an
(n−1)-dimensional Riemannian manifold with nonnegative Ricci curva-
ture. This is Conclusion 1. We may write z∞ = (0, y′∞) for some point
y′∞ ∈M ′.

By passing the claim to the limit, we have

(11.33) VolBh(z∞, R) ≤ C(n)
ε

v
Rn.

By Bishop-Gromov, this volume ratio estimate extends to larger radii
(e.g. to radius 2R) and subsequently also to the factor M ′, giving

(11.34) VolBg′(y
′
∞, R) ≤ C(n)

ε

v
Rn−1,

for some (possibly different) C = C(n). This is Conclusion 4. We also
have, for any z ∈ M ′, that 2 VolBg′(z, 1) = Volh(Bg′(z, 1) × [−1, 1]) ≥
VolBh((0, z), 1) ≥ δ and hence VolBg′(z, 1) ≥ δ

2 . This is Conclusion 2.
Next we pass condition (iii) to the limit to find that if we have a ball

Bh(y, L), for y ∈ M∞ and L > 0, that is covered by N balls of radius
r ≥ R (with respect to h) then we must have N ≥ vLnr−n. Because of
the splitting of M∞, this then implies Conclusion 3.

From Conclusion 3, we immediately see that M ′ cannot be compact,
because in that case we would be able to cover the whole space with
N = 1 balls of a fixed radius, and then allow L to diverge to infinity
to obtain a contradiction. This completes the proof of the dimension
reduction Lemma 11.2. q.e.d.
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