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Abstract

In this paper we study the evolution of Lipschitz continuous Riemannian

metrics on smooth manifolds, by the dual Ricci-Harmonic map flow. This

flow is equivalent (up to a diffeomorphism) to the Ricci flow. We show

that a solution g(·, t)t∈(0,T ) exists for a short time [0, T ), (T > 0)

and that the solution is smooth on (0, T ). Furthermore if the curvature

operator (in dimension three Ricci curvature, or sectional curvature) of

the initial Lipschitz metric g0(·) is non-negative in a weak sense (see

definition 1.2) then the curvature operator (in dimension three Ricci

curvature, or sectional curvature) of g(·, t) is non-negative in the usual

smooth sense for all t ∈ (0, T ).

§ 1. Introduction and statement of results

In this paper we are concerned with the Ricci flow of Lipschitz Riemannian
metrics.

In the study of smooth Riemmanina manifolds one often considers Rie-
mannian metrics whose tensor g = {gij} is C2. This allows one to define the
Riemannian curvature tensor which is then continuous. Given a C∞ Rieman-
nian metric g0 on a compact manifold M , we can always find a T > 0 and
a 1-parameter family of C∞ Riemannian metrics {g(t)}t∈[0,T ] on M , denoted
(M, g(t)), such that

∂

∂t
g(t) = −2Ricci(g(t)), for all t ∈ [0, T ]

g(0) = g0,

(1.1)

where g is C∞(M × [0, T ]) (C∞ on the manifold (M × [0, T ]) with the induced
structure), and Ricci(g(t)) is the Ricci curvature of the Riemannian manifold
(M, g(t)). Notice that (1.1) makes no sense if g is not twice differentiable in
space for all t ∈ [0, T ]. The family (M, g(t))t∈[0,T ] is called a solution to the Ricci
flow with initial value g0. Ricci flow was invented, and used by R.Hamilton [Ha
1] to prove that every compact three manifold which admits a C∞ Riemannian
metric g0 with Ricci(g0) > 0 also admits a metric g∞ of constant positive
sectional curvature [Ha 1].

This paper is a further investigation of the Ricci flow of non-smooth metrics
which we started in the paper [Si].

In this paper we shall consider the dual Ricci-Harmonic Map flow (see
section 6. [Ha 3]) as we did in [Si]. This leads to a more general version of
the Ricci DeTurck flow, considered initially by DeTurck in [DeT]. In the paper
[Bem] the authors use Ricci flow to smooth out C2 metrics by introducing
harmonic co-ordinates at appropriately chosen times.
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For a short introduction to the dual Ricci-Harmonic heat and Ricci-DeTurck
flow, see [Si].

In Shi’s paper [Sh], the Ricci-DeTurck flow was written term by term to
obtain the evolution equation for solutions to (1.3) in co-ordinate form. We
present here the evolution equation, in co-ordinate form, for metrics which
solve (1.3) for an arbitrary smooth fixed background metric h. For the rest of
the paper we shall be chiefly concerned with solutions of (1.3) and not solutions
of Ricci flow. For this reason we will use the notation g(t), t ∈ [0, T ] to refer to a
solution of (1.3). Let g(t), t ∈ [0, T ] be a solution to (1.3). Then g(t), t ∈ [0, T ]
solves the evolution equation

∂

∂t
gab =gcd∇̃c∇̃dgab − gcdgapg̃

pqR̃bcqd − gcdgbpg̃
pqR̃acqd

+
1

2
gcdgpq(∇̃agpc · ∇̃bgqd + 2∇̃cgap · ∇̃qgbd

− 2∇̃cgap · ∇̃dgbq − 4∇̃agpc · ∇̃dgbq),

g(0) =g0,

(1.5)

where R̃abcd = Riem(h)abcd and ∇̃ is the co-variant derivative with respect to
h. Note that if h is not twice differentiable, then (1.5) makes no sense, since
then R̃abcd = Riem(h)abcd is not defined. If we choose h = g0, that is we wish
to examine the Ricci DeTurck flow, and g0 is not twice differentiable, then we
cannot make sense of the above equation. For this reason we will always choose
a smooth h not equal to g0 (but close to g0 in some to be specified C0 sense)
when examining (1.5). In [Si] , it is shown that for initial metrics g0(·) which
are C0, the system (1.5) has a short time solution (see statement of theorem A
below). We shall call such solutions, solutions to the ‘h flow‘.

Definition 1.1 . Let M be a complete manifold and g a C0 metric, and
1 ≤ δ < ∞ a given constant. A metric h is said to be a δ fair background
metric for g, or ‘δ fair to g’, if h is C∞ and there exists a constant k0 with

sup
x∈M

h|Riem(h)(x)| = k0 <∞, (1.6)

and
1

δ
h(p) ≤ g(p) ≤ δh(p) for all p ∈M. (1.7)

Remark 1. By the result of Shi [Sh], if g is Riemannian metric and h a smooth
Riemannian metric satisfying (1.6) and (1.7) then there exists a smooth metric
h′ which is δ + ǫ fair to g, and

sup
x∈M

h|h∇Riem(h)(x)| = kj <∞,
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where
h∇

j
is the jth covariant derivative with respect to h.

Remark 2. Let M be a compact manifold, and g a C0 metric on M . Then
for every 0 < ǫ < 1 there exists a metric h(ǫ), for which h(ǫ) is 1 + ǫ fair to g.

Proof (of Remark 2): We may use de Rham regularisation [deR], or a locally
finite partition of unity and Sobolev averaging (see section on mollifiers in [GT])
to obtain a C∞ metric h which is C0 as close as we like to g. A bound on the
curvature follows from the compactness of M . ♦

The following existence result is proved in [Si 1].

Theorem A. There exists an ǫ(n) with the following properties. Let g0 be a

complete metric and h a complete metric onM which is 1+ ǫ(n)
2 fair to g0. There

exists a T = T (n, k0) and a family of metrics g(t), t ∈ (0, T ] in C∞(M × (0, T ])
which solves h flow for t ∈ (0, T ], h is (1 + ǫ) fair to g(·, t), for t ∈ (0, T ] and
satisfies

lim
t→0

sup
x∈Ω′

h|g(·, t) − g0(·)| = 0,

sup
x∈M

|h∇
i

g|2 ≤ ci(n, k0, . . . , ki)

ti
, for all t ∈ (0, T ], i ∈ {1, 2, . . .},

where Ω′ is any open set satisfying Ω′ ⊂⊂ Ω, where Ω is any open set on which
g0 is continuous (see Theorem 5.2).

If the initial metric g0 is Lipschitz, then we are able to show that certain
geometric inequalities will be preserved by this flow. We shall use the notation
R(g) for the curvature operator of a Riemannian manifold with metric g.

Definition 1.2. Let Mn be an n-dimensional manifold, and g be a locally
Lipschitz complete Riemannian metric onM . We say that R(g) ≥ 0 (Ricci(g) ≥
0), if there exists a family {αg}α∈{1,2,...} of smooth metrics on M which satisfy

R(αg) ≥ − 1
α
, (Ricci(αg) ≥ − 1

α
) and limα→∞ supM

g|αg− g| = 0, and
g|Γ(αg)−

Γ(g)| ≤ c0 for all α ∈ {1, 2, . . .}, where c0 is some constant which does not
depend on α, and Γ(g) refers to the Christoffel symbols of g. If M is non-
compact, we further require that

sup
M

|Riem(αg)| <∞,

for some sufficiently large α.

Remark: In [Si] the evolution of Lipschitz metrics on three dimensional
manifolds whose Ricci curvature is non-negative is examined : see theorem
6.5. The extra condition (above) required for the non-compact case was not
included in the definition (definition 6.4) in [Si], but is however required in
the proof there (for the non-compact case) of theorem 6.5. Here the proof is
presented in somewhat more detail than in [Si].

We prove the following theoerem.
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Theorem 1.3. Let Mn be a manifold, and g0 be a complete locally Lipschitz
metric on M which satisfies R(g0) ≥ 0, (Ricci(g0) ≥ 0) in the weak sense of
Definition 1.1, with Lipschitz constant c0. Then the solution g(x, t), t ∈ (0, T ]
to h flow of g0 exists (for some smooth metric h, and T = T (n, c0, h) > 0)
and satisfies R(g(x, t)) ≥ 0 for all t ∈ (0, T ] in the usual smooth Riemannian
sense (see Theorem 6.5). Furthermore, there exists a constant c = c(n, c0, h).

supM

g|Riem(g(t))| < c(n,c0,h)
t

∀t ∈ (0, T ]

§ 2. A priori estimates.

Remark 2.0. Let h be a 1 + ǫ fair complete metric for g0 on a manifold M

such that supM |h∇g0| ≤ c0. W.l.o.g we may assume that

sup
M

|h∇
j

Riem(h)| = kj <∞. (∗)

We will always assume this for the rest of this paper. If not then we flow h

by Ricci flow as in [Sh] for a very short time to obtain a new metric ĥ which

satisfies (*). Note that (Theorem 5.1 , [Sh]) supM |h∇ĥ|2 ≤ c(k0, n), where

k0 = supM |Riem(h)|2 <∞. But then clearly supM

g|ĥ∇g0−
h∇g0| ≤ c(c0, n, k0),

and so supM

h|ĥ∇g0| ≤ c(c0, n, k0). This proves the remark.

Lemma 2.1 . Let g0 be a complete smooth metric on M , and h be 1+ ǫ(n)
2 fair

background metric for g0 for which supM |h∇g0| ≤ c0 also holds. Let g(t),t ∈
[0, T ] be a solution to h − flow where T is as in theorem A (such a solution
always exists: see theorem A above). Then

sup
M

|h∇g(·, t)| ≤ c(c0, n, h)∀t ∈ [0, T ], (2.1)

and

sup
M

|h∇
2
g(·, t)| ≤ c(c0, n, h)√

t
∀t ∈ [0, T ], (2.2)

which clearly implies

sup
M

g|Riem(g, t)| ≤ c(c0, n, h)√
t

. (2.3)

Proof :

i) From the remark above, we may assume, without loss of generality, that

sup
M

|h∇
j

Riem(h)| = kj <∞. (∗)

ii) Proof of the first estimate.
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Let ψ(x, t) = (φ(x, t) + a(n))|h∇g(x, t)|2, where φ : M × [0, T ] → R, is the
function φ(x, t) = gij(x, t)hij(x) first examined by Shi in [Sh] , Lemma 2.2 (for

h = g0). One may calculate, as in [Sh] Lemma 2.2, that ∂
∂t
φ ≤ hijh∇i

h∇jφ +
c(k0, n)φ2, where here c is a constant which depends only on the supremum of
the curvature of h, and the dimension of Mn (see [Si] Lemma 2.1/ [Sh] , Lemma
2.2 for details). The fact that φ satisfies a good evolution equation (notice now
first order gradient times appear on the right hand side!), as was first noticed
by Shi, is crucial in the development of this theory.

In Lemma 2.4 of [Si] it is calculated that

∂

∂t
ψ ≤ gijh∇i

h∇jψ − 1

2
ψ2 + c0(n, k0, k1),

where k1 = supM |Riem(h)|2 and k0 is as in the statement of the theorem.
Let η be the cut-off function defined in Lemma 4.1 of [Si], whose support is
contained in a ball B2r(y0) of radius 2r and which is equal to one on Br(y0).
Then calculating as in that lemma, we get

∂

∂t
ψη ≤ gijh∇i

h∇jηψ − 1

16
ηψ2 + c1(n, k0, k1, r)(1 + ψ),

where we have used (as in the proof of Lemma 4.1 in [Si], upto equation 4.5)
the properties (d1) - (d5) of the cut-off function η. Assume that (x0, t0) is a
point in the domain Br(y0) × (0, T ] where ψη obtains its maximum. Then

0 ≤ ∂

∂t
ψη(x0, t0) ≤ − 1

16
ηψ2 + c1(n, k0, k1, r)(1 + ψ),

which, when multiplied by η(x0), gives us

0 ≤ − 1

16
(ηψ)2 + c1(n, k0, k1, r)(η + ψη),

which implies that

ψη(
1

16
(ηψ) − c1) ≤ c1,

in view of the fact that η ≤ 1. That is

sup
x∈Br(y0),t∈[0,T ]

ψ(x, t) ≤ c2(n, r, k0, k1, sup
M

|h∇g(x, 0)|2),

where here we have used that ψ(x, 0) ≤ c(n)|h∇g(x, 0)|2. Hence supx∈M ψ ≤
c2(n, r, k0, k1), which implies the first estimate, in view of the fact that (φ(x, t)+
a(n)) ≥ a(n).
iii) Proof of the second and third estimate. The next estimate is obtained

similarly. We let w = t(a + |h∇g|2)|h∇
2
g|2 as in [Si] lemma 4.2, where a is a

constant a = a(c0, n, h) > 1. We see that

∂

∂t
w ≤ gijh∇h∇w − (̧c0, h, n)w2 + c(c0, h, n)w + c(c0, h, n).

5



As in the first estimate, we may use a cut off function (see [Si] Lemma 4.2 for
details) to obtain w ≤ c(c0, h, n), which gives us the required estimate.

♦
§ 3. Proof of theorem 1.3.

Before we begin the proof of theorem 1.3 we make the neccesary definitions
and we introduce some notation. We define Λ2(T ∗

xM) = T ∗
xM ∧ T ∗

xM and
Λ2(M) to be the vector bundle over M with fibre Λ2(T ∗

xM). O2(M) will denote
the space of smooth symmetric bi-linear forms on the vector bundle Λ2(M) (a
smooth bi-linear form B on a vector bundle E over M means here a family
(B(p))p∈M where B(p) : Ep × Ep → R is bi-linear ( Ep is the fibre of E over
p) , and for smooth sections v, w of E, we require that B(v, w) be a smooth
function on M , where B(v, w)(p) = B(p)(v(p), w(p))). The curvature operator
R(g) : Λ2(M) → R of a Riemannian manifold (M, g) is then an element of
O2(M), and is defined by

R(φ, ψ) = Rabcdφ
abψcd,

where Rabcd is the Riemannian curvature tensor of (M, g).
In [Ha 2], Hamilton uses time dependent isomorphisms u(t) : (TM, g0) →

(TM, g(t)) to examine the evolution of the curvature operator under Ricci flow.
In particular if (M, gij(t) is a solution to the Ricci flow, then the pull back of
the curvature operator is

R(t)(φ, ψ) = R(t)abcdφ
abψcd,

where R(t)abcd = Riem(g(t))ijklu
i
au

j
bu

k
cu

l
a, and the pull back of the metric is

gab = ui
a(t)uj

b(t)gij(t), and the isomorphisms u(t) are chosen so that gab has
zero time derivative, and hence gab is independent of t. That is

∂

∂t
ui

a = gijRjku
k
a.

Let (φα)α∈{1...p(n)} be a basis for Λ2(M) at some point p in M . Then for an

operator N in O2(M), we write Nαβ(p) for N(φα, φβ)(p). The evolution of R
is then derived in [Ha 2] to be

∂

∂t
R = ∆R + R2 + R#R,

where R2 is the square of the curvature operator, # is the operator given
by T#Nαβ = cγη

α cδθ
β TγδNηθ, and cαγη are the structure constants given by

cαβη = 〈φα, [φβ , φη]〉, where for two forms φ, ψ the inner product G = 〈, 〉 is
defined by

G(φ, ψ) = 〈φ, ψ〉 = gabgcdφacψbd,
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and
[φ, ψ]ab = gcdφacψbd − gcdφbcψad.

Note that the laplacian appearing in the above evolution equation comes from
the naturally occuring connection on (TM, gab): in particular ∇G = 0 (see
[Ha 2] for details). Let us choose an orthonormal basis (φα)α∈{1...p(n)} for the
two forms in the neighbourhood of a point p. Assume also that we choose co-
ordinates on M so that gab = δab at p. Then 1 = 〈φα, φα〉 =

∑

a,b(φ
α
ab)

2, which
shows us that

|cαβη| ≤ c(n), (3.1)

at that point p for this orthonormal basis at p. Assume that we choose the
basis at this point p so that Rαβ is diagonal Rαβ = λαδαβ . Without loss of
generallity λ1 ≤ λ2 ≤ . . . λn(n−1)

2

Then the evolution equation for R at this point and time is

∂

∂t
Rαα = ∆Rαα + λα

2 +
∑

βγ c
2
αβγλβλγ

For the h− flow, the equation is, as calculated in [Si ] Theorem 6.2,

∂

∂t
Rαα = λα

2 +
g∇kRααV

k + R ∗∇V +
∑

βγ

c2αβγλβλγ ,

where ∗ means a tensor product obtained by taking traces with repsect to g.
This tensor product actually has the property that R ∗∇V ≥ −c(n)|λα|

g|∇V |,
as one sees in [Si] thm.6.2.

If g(·, t) is a solution to h flow as in Lemma 2.1, then this implies

∂

∂t
Rαα ≥ λα

2 + (
g∇kRαα)V k +

−c(n, c0, h)√
t

g|Rαα| +
∑

βγ

c2αβγλβλγ ,

in view of (2.1), (2.2) and the fact that
h|h∇V | ≤ c(n)(

h|h∇
2
g| + h|h∇g|2). The

following lemma will be helpful in examining the evolution of the curvature
operator of a Lipschitz metric.

Lemma 3.1. Let g0 be a complete smooth metric on M , and h be 1 + ǫ(n)
2

fair background metric for g0 for which supM

h|h∇g0| ≤ c0 also holds. Let
g(t),t ∈ [0, T ] be a solution to h − flow where T is as in theorem A (such a
solution always exists: see theorem A above). Assume further that

R(g0) ≥ −δ,

where |δ| ≤ 1. Then there exists a T0 = T0(T, n, c0) > 0 such that

R ≥ −2δ∀t ∈ [0, T0).

7



Proof
Step i). A lower bound for R(g0).

w.l.o.g |h∇g|2 + |h∇
2
g|2t ≤ c(n, c0, h) (see Lemma 2.1). In the rest of this paper,

all constants that only depend on n, c0, h will be denoted by c(n, c0, h) and we
will agree that, for example, 2c2(n, c0, h)+5 = c(n, c0, h). Let η be our standard
cutoff function, for a ball of radius one (see Lemma 2.1 above). Then the above
evolution equation gives us

∂

∂t
ηRαα ≥∆(ηR)αα + η

∑

βγ

c2αβγλβλγ

+
g∇k(ηRαα)V k −Rαα(∇kη)V

k

−Rαα

g

∆η − 2〈g∇η, g∇Rαα〉 −
c(n, h, c0)√

t
|Rαα|.

Now use the fact that

c(n, h, c0) ≥
g|h∇h∇η| ≥ g|g∇g∇η| − g|h∇h∇η − g∇g∇η|,

to get
g|g∇g∇η| ≤ c(n, h, c0) +

g|(Γ(g) − Γ(h)) ∗ g∇η| ≤ c(c0, n, h),

in view of the fact that Γ(g(t))−Γ(h) and
h∇η are uniformly bounded (Lemma

2.1). Also,

〈g∇η, g∇Rαα〉 =
〈g∇η, g∇Rααη〉

η
−

g|g∇η|2
η

Rαα

≤ 〈g∇η, g∇Rααη〉
η

+
c(n, h, c0)√

t
,

in view of the estimates (d1 − d4) in [Si], Lemma 4.1, p 1048. Similarly

−Rαα(∇kη)V
k ≥ −c(n,h,c0)√

t
, and hence we get

∂

∂t
(ηRαα) > ∆(ηR)αα + η

∑

βγ

c2αβγηλβλγ

− 2

η
〈∇η,∇(ηRαα)〉 − c(n, h, c0)√

t
(1 + |ηRαα|)

Let b : [0, T ) → R+ be a function dependent on time which is differentiable
for all t > 0, and which satisfies 1 ≤ b ≤ 2 , ∀t ∈ [0, T ). Then the O.D.E.
satisfies

∂

∂t
(ηRαα(t) + b(t)Gαα(t))

=
∂

∂t
(ηRαα(t)) + b(t)

∂

∂t
Gαα(t) + (

∂

∂t
b(t))Gαα

≥η
∑

βγ

c2αβγλβλγ − c(n, h, c0)√
t

(1 + |ηRαα|) + (
∂

∂t
b(t))Gαα

≥η
∑

βγ

c2αβγλβλγ − c(n, h, c0)√
t

(1 + |ηRαα + b(t)Gαα|) + (
∂

∂t
b(t))Gαα,
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in view of 2.3 and the fact that b ≤ 2. Let b(t) = (1 + 2c4
√
t), where c4 =

c4(n, h, c0), will be chosen later. Then for all t ≤ 1
c2
4

we get b(t) ≤ 2, and hence

∂

∂t
(ηRαα(t) + b(t)Gαα(t))

>η
∑

βγ

c2αβγλβλγ − c(n, h, c0)√
t

− c(n, c0, h)√
t

g|ηRαα + b(t)Gαα(t)| + c4√
t
,

where here we have used that b ≤ 2. This gives us

∂

∂t
(ηRαα(t) + b(t)Gαα(t))

>η
∑

βγ

c2αβγλβλγ − c(n, c0, h)√
t

g|ηRαα(t) + b(t)Gαα(t)| + c4

2
√
t
,

(3.2)

if we choose c4

2 ≥ c(n, h, c0).
From the assumptions of the lemma, and the definition of b.

(R + bG)(·, 0) > 0,

and hence ηR(·, 0) + b(0)G(·, 0) > 0. Let T0 = min( 1
c2
4
, T ). If there is a first

time t0 ∈ (0, T0) and point p0 and direction φα where this is no longer true,

then clearly p0 ∈ h

B2(x0), and the above equation will lead to a contradiction:
first note that

ηR(x0, t0) + b(t0)G(x0, t0) ≥ 0, (3.3)

Also, ηRαα(x0, t0)+b(t0)Gαα(x0, t0) = 0 by assumption. Hence we must merely
examine the sum appearing in (3.2). We examine this sum term by term. For
β, γ given, we either have both λβ , λγ ≤ 0 or at least one of λβ , λγ is positive. In
the first case, the term ηc2αβγλβλγ is non-negative. In the second case, w.l.o.g

λβ > 0, and the term ηc2αβγλβλγ at (p0, t0) may be estimated by

ηc2αβγλβλγ = c2αβγλβ(ηλγ + bGγγ) − c2αβγλβbGγγ ≥ −c(n, h, c0)√
t0

,

in view of (3.3) and Lemma 2.1. Hence, the total sum may be estimated by

η
∑

βγ

c2αβγλβλγ ≥ −c(n, h, c0)√
t0

.

Substituting this into (3.2) we get at (p0, t0)

∂

∂t
(ηR + bG)(p0,t0)(φ

α, φα) > ∆(ηR + bG)(p0,t0)(φ
α, φα),
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when we choose c4

2 > c(n, h, c0), which leads to a contradiction when we ar-
gue as in the compact maximum principle of Hamilton [Ha 1]. Hence R ≥
−2 for all t ∈ [0, T0).
Step ii) Compactification of the problem.
Note that g(t) and g0 and h are equivalent due to our setup (see Lemma 2.1).
From step i), we know that R(g) ≥ −2. We construct the following help tensor

as in [Si], theorem 7.3... Let N(x, t) = R(x, t) + δe(1+s
√

t)(1+ρ2(x,t))G(x, t),
where ρ(x, t) = dist(g(t))(x0, x), for some fixed x0, and s = s(n, c0, h) is a
constant to be chosen later. Then as on page 1068 [Si], we calculate that for
t ≤ 1

s2

∆N ≤ ∆R + δeb(x,t)(c(n, h, c0)
g|Riem|(1 + ρ2))G

≤ ∆R + δeb(x,t)(
c(n, h, c0)√

t
(1 + ρ2))G,

in view of (3.3). Also,

∂

∂t
ρ(x, t) =

∫

γ

∂
∂t
gTT√
gTT

ds

=

∫

γ

−2RicciTT√
gTT

ds

≥
∫

γ

−c(n, h, k0)√
t

√
gTT

= −c(n, h, k0)√
t

ρ(x, t).

Hence

(
∂

∂t
− ∆)N ≥ δ(

s− c(n, h, c0))√
t

)(1 + ρ2)eb(x,t)G+
∑

βγ

c2αβγλβλγ

> δ
s

2
√
t
eb(x,t)G+

∑

βγ

c2αβγλβλγ ,

(3.4)

if we choose s
2 > c(n, h, c0).

At time zero, we clearly have N > 0. Either this remains true for all
time, or there is some first time t0 ∈ [0, T0) and point p0 ∈ M and some
direction φα where this is no longer true: this follows from part i), since R(g) ≥
−2 ⇒ N(x) > 0 for all x with dist(x0, x) ≥ D, where D = D(c0, n, h) is
some sufficiently large constant (that is we have compactified the problem).
Assume there is some first time t0 and point p0 and direction φα where this
is no longer true. Using the same trick as in part i), we estimate the sum
∑

βγ c
2
αβγλβλγ term by term to get

∑

βγ c
2
αβγλβλγ ≥ − c(n,h0,c0)√

t
δeb, at (p0, t0).

Hence substituting this into (3.4) we see that ∂
∂t
N(p0, t0)(φ

α, φα) > 0, if we
choose s > 2c(n, h0, c0), which, arguing as in the proof of the compact maximum
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principle of [Ha 1], leads to a contradiction. Hence N(x) > 0. Hence R(x0, ·) ≥
−2δ for all t ∈ [0, T0].

Note: if p0 lies in the cut locus of x0 then we must modify our argument a
little, since dist is then not necessarily smooth at p0. However this causes no
problems: we use the trick of Calabi as explained in [Si], page 1068 in the proof
of the non-compact maximum principle.

We are now in a position to prove our theorem.

(proof of theorem 1.3) Let
α

g0, be the approximating metrics for g0 obtained

in definition 1.2, and let h =
l

g0 for some fixed l ∈ N chosen large so that
h|h−g0| ≤ ǫ(n). Once again we assume w.l.o.g that kj = supM

h|h∇
j
Riem(h)|2 <

∞. Let
α

g(x, t), t ∈ [0, T ] denote the corresponding solutions to the hflow (see
theorem A) , and g(x, t), t ∈ (0, T ] the limit (as α → ∞) solution. Note that

each
α

g0 satisfies supM

h|h∇(
α

g0)| ≤ c0, independent of α , and hence we see,
using lemma 3.1 that

sup
M×(0,T0)

R(gα) ≥ − 2

α
,

where T0 = c(T, n, h, c0). Letting α → ∞, we obtain a smooth solution g(x, t),

t ∈ (0, T ) to the hflow with R(gα) ≥ 0, and
g|Riem(g(t))| ≤ c(c0,n,h)√

t
as re-

quired.

For completeness we mention the following results which are proved using
the same techniques as above. Let M4 be a four manifold and I denote the
isotropic curvature on this manifold (see [Ha 5]).

Theorem 6.7. Let g0 be a Lipschitz metric on a real four manifold M4, such
that I(g0) ≥ 0 in the sense of Definition 1.2 with Lipschitz constant c0. Then
there exists a metric h which is 1+ǫ(4) fair to g0, a T (n, h, c0) > 0, and a family
of smooth Riemannian metrics g(x, t), t ∈ (0, T ] such that g(x, t), t ∈ (0, T ]
solves h flow, g(·, t) → g0(·) uniformly on compact subsets of M as tց 0, and

0 ≤ I(g(x, t)) for all t ∈ (0, T ],

g|Riem(g(t))| ≤ c√
t

for all t ∈ (0, T ].

Proof : In four dimensions one can decompose the real two forms Λ2 into the
direct sum of Λ2

+ and Λ2
−. Then the curvature operator defined on Λ2 ⊗ Λ2

decomposes as a block matrix

R =

(

A B

Bt C

)

.

The manifold has non-negative isotropic curvature if and only if a1 + a2 ≥ 0
and c1 + c2 ≥ 0, where a1 and a2 are the two smallest eigenvalues of A and
c1, c2 are the two smallest eigenvalues of C. The ordinary differential equation
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for the evolution of a (c is the same) under Ricci flow is (see [Ha 5], proof of
Theorem 1.2)

∂

∂t
(a1 + a2) ≥ a2

1 + a2
2 + 2(a1 + a2)a3 + b21 + b22 ∀t ∈ [0, T ], ∀x ∈M,

where b1 and b2 are the two smallest eigenvalues of B (we ignore the lapcaian
term for the moment). We consider the function f(x, t) = a1(x, t) + a2(x, t)
and note that it satisfies the O.D.E.

∂

∂t
f ≥ 2a3f,

where
sup

M×[0,T ]

|a3| ≤
c√
t
.

We then argue exactly as above to show that the limit solution g(x, t) of h-flow
satisfies (a1 + a2) ≥ 0. Similarly we obtain c1 + c2 ≥ 0. The other estimates
are obtained in exactly the same way as in theorem 1.3 ♦
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