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Stability of hyperbolic space under Ricci flow

Oliver C. Schnürer, Felix Schulze and Miles Simon

We study the Ricci flow of initial metrics which are C0-perturba-
tions of the hyperbolic metric on H

n. If the perturbation is bounded
in the L2-sense, and small enough in the C0-sense, then we show
the following: In dimensions four and higher, the scaled Ricci har-
monic map heat flow of such a metric converges smoothly, uni-
formly and exponentially fast in all Ck-norms and in the L2-norm
to the hyperbolic metric as time approaches infinity. We also prove
a related result for the Ricci flow and for the two-dimensional con-
formal Ricci flow.

1. Introduction

We investigate stability of hyperbolic space under Ricci flow

(1.1)

{
∂
∂tgij = −2 Ric(g(t)), on H

n × (0,∞),
g(0) = g0, on H

n.

As hyperbolic space expands under Ricci flow, it is convenient to consider
the following modified Ricci flow:

(1.2)

{
∂
∂tgij = −2 Ric(g(t)) − 2(n− 1)gij(t), on H

n × (0,∞),
g(0) = g0, on H

n.

The hyperbolic metric h of sectional curvature −1 is a stationary point to
(1.2).

Note that by Lemma A.4, up to rescaling, this flow equation is equivalent
to (1.1). As (1.1) and (1.2) are degenerate parabolic equations, we consider
the following modified (or rescaled) Ricci harmonic map heat flow which is
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similar to DeTurck flow [3]:

(1.3){
∂
∂tgij = −2 Ric(g(t)) + ∇iVj + ∇jVi − 2(n− 1)gij(t), on H

n × (0,∞),
g(0) = g0, on H

n,

where Vi = gik

(
gΓk

rs − hΓk
rs

)
grs and h is the hyperbolic metric on H

n of sec-
tional curvature equal to −1. Once again, up to rescaling, this is equivalent
to standard Ricci harmonic map heat flow.

We consider perturbations that are close to hyperbolic space.

Definition 1.1. Let g be a metric on H
n. Let ε > 0. Then g is ε-close to

h if

(1 + ε)−1h ≤ g ≤ (1 + ε)h

in the sense of matrices.

Let (λi)1≤i≤n denote the eigenvalues of (gij) with respect to (hij). Then
this is equivalent to (1 + ε)−1 ≤ λi ≤ 1 + ε for 1 ≤ i ≤ n.

We denote with Mk(Hn, I) the space of families (g(t))t∈I of sections in
the space of Riemannian metrics on H

n which are Ck on H
n × I. Similarly,

we define M∞, Mk
loc and use Mk(Hn) if the metric does not depend on t. We

wish to point out that we use Ck on non-compact sets to denote the space,
where covariant derivatives with respect to the hyperbolic metric h of order
up to k are continuous and in L∞. We also use Ck

loc. For our convenience,
we define M∞

0 (Hn, [0,∞)) to be the set of all metrics in M∞(Hn, (0,∞)) ∩
M∞

loc(H
n, [0,∞)) which are smooth for positive times and, when restricted

to time intervals of the form [δ,∞), δ > 0, are uniformly bounded in Ck for
any k ∈ N.

We use |Z| ≡ h|Z| to denote the norm of a tensor Z with respect to
the hyperbolic metric h. Unless stated otherwise, BR(0) denotes a geodesic
ball around a fixed point in hyperbolic space which we denote by 0. ‖ · ‖L2

denotes the L2-Norm with respect to the hyperbolic metric h. Sometimes, we
write x→ ∞ instead of |x| → ∞. Moreover, we use the Einstein summation
convention and denote generic constants by c.

Our main theorem is

Theorem 1.1. Let n ≥ 4. For all K > 0 there exists ε1 = ε1(n,K) > 0
such that the following holds. Let g0 ∈ M0(Hn) satisfy

∫
Hn |g0 − h|2 dvolh ≤



Stability of hyperbolic space under Ricci flow 1025

K and supHn |g0 − h| ≤ ε1. Then there exists a solution g ∈ M∞
0 (Hn, [0,∞))

to (1.3) such that

sup
Hn

|g(t) − h| ≤ C(n,K) · e− 1
4(n+2)

t
.

Moreover, g(t) → h exponentially in Ck as t→ ∞ for all k ∈ N.

There might be different solutions to the ones obtained by our construc-
tion. The following theorem does not assume that the solution in question
comes from the theorem above.

Theorem 1.2. Let n ≥ 4. For all K > 0 there exists ε1 = ε1(n,K) > 0
such that the following holds. Let g ∈M∞

0 (Hn × [0,∞)) be a solution to (1.3)
that satisfies

∫
Hn |g(0)−h|2 dvolh ≤ K, limr→∞ ‖g(0)−h‖L∞(Hn\Br(0)) = 0

and supHn |g(t) − h| ≤ ε1 for all t ≥ 0. Then

sup
Hn

|g(t) − h| ≤ C(n,K) · e− 1
4(n+2)

t
.

Moreover, g(t) → h exponentially in Ck as t→ ∞ for all k ∈ N.

If g(0) ∈ M∞
loc (Hn), solutions of (1.3) correspond to solutions of (1.2).

Theorem 1.3. Let n ≥ 4. Let g be a solution to (1.3) as in Theorem 1.1
or Theorem 1.2. Assume in addition that g is smooth. Then there exists a
smooth family of diffeomorphisms of H

n, ϕ0 = idHn, such that for g̃(t) :=
ϕ∗

t g(t) the family (g̃(t))t≥0 is a smooth solution to (1.2) satisfying

g̃(t) → (ϕ∞)∗h in M∞(
H

n
)

as t→ ∞

for some smooth diffeomorphism ϕ∞ of H
n which satisfies ϕt → ϕ∞ in

C∞ (Hn,Hn) as t→ ∞ and, if limr→∞ ‖g(0) − h‖L∞(Hn\Br(0)) = 0,

|ϕ∞(x) − x| → 0 as |x| → ∞.

Linearized stability of hyperbolic space under Ricci flow has been inves-
tigated before by Suneeta [11]. Ye considered stability of negatively curved
manifolds on compact spaces in the paper [12]. Li and Yin [6] have shown
stability of hyperbolic space in dimensions n ≥ 6 under the assumptions
that the deviation of the curvature of the initial metric from hyperbolic
space decays exponentially and the initial metric is close to h (in the sense
of Definition 1.1).
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Similar results and methods to those found in this paper may be found
in the authors’ paper [8] addressing the stability of Euclidean space under
Ricci flow. For further references, we refer to the introduction therein.

After this paper had appeared as a preprint, a preprint of Bamler with
similar results appeared: see [1]. He does not exclude the case n = 3.

Here we outline the proofs of the main results of this paper, and explain
the structure of these proofs and of the paper.

In the first part of the paper (Sections 2 and 3) we consider the rescaled
Ricci harmonic map heat flow.

There we prove short time existence using the same techniques as those
presented in [8–10], see Theorem 2.1.

In Section 3, we show that the L2-norm of g(t) − h is an exponentially
decaying function of time (see Theorem 3.1, Corollary 3.1). This is the key
ingredient to the proofs of our stability results. The calculations to prove this
depend on an eigenvalue estimate for the Laplacian on hyperbolic domains
due to McKean [7] and the closeness of the evolving metric to that of hyper-
bolic space. In contrast to the corresponding Euclidean result [8], we need
strict monotonicity of our integral quantity to establish long-time existence.
The decay of the L2-norm implies that the C0-norm of g(t) − h is exponen-
tially decaying in time (Theorem 3.2). Interpolating between the C0-norm
and Ck-norms, k ∈ N, and using interior estimates, we see that all of the Ck-
norms are exponentially decaying in time (for t ≥ 1). This leads to long-time
existence and convergence.

In Section 4, we consider the related scaled Ricci flow g̃(t) to the solution
g(t) obtained in Sections 2 and 3 . The two flows are related by time depen-
dent diffeomorphisms ϕt : H

n → H
n: g̃(t) := ϕ∗

t g(t). As in the paper [8], we
show that the estimates we obtained for g(t) imply that g̃(t) → ψ∗h as
t→ ∞ in the Ck-norms. Here ψ is a diffeomorphism, and this diffeomor-
phism is the Ck-limit of the time-dependent diffeomorphisms ϕt which relate
the two flows. We also show (as in [8]) that ψ → id as |x| → ∞, if the initial
metric g0 satisfies g0 − h→ 0 as x→ ∞ (see Theorem 4.2). The proofs of
this section are the same (up to some minor modifications) as those of the
paper [8].

In Appendix A, we gather various standard results which we use in the
paper.

In Appendix B, we show that the arguments used here may be used in
the Euclidean case to obtain analogous results (compare with [8]).

In Appendix C, we address conformal Ricci flow in two dimensions and
obtain a result similar to the two-dimensional result in [8] without assuming
that |g − h| → 0 near infinity.
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2. Existence

We first collect some evolution equations from [9], and then treat the ques-
tion of short time existence.

In the following computations we always assume that in appropriate
coordinates, we have at a fixed point and at a fixed time hij = δij and
(gij) = diag(λ1, λ2, . . . , λn), λi > 0.

According to [9, Lemma 2.1], we get

∂

∂t
gij = gabh∇a

h∇bgij − gklgiph
pqRjkql(h) − gklgjph

pqRikql(h)

+
1
2
gabgpq

(
h∇igpa

h∇jgqb + 2
h∇agjp

h∇qgib − 2
h∇agjp

h∇bgiq

−2
h∇jgpa

h∇bgiq − 2
h∇igpa

h∇bgjq

)
− 2(n− 1)gij .

Using that

Rijkl(h) = −(hikhjl − hilhjk)

is the curvature tensor of hyperbolic space of sectional curvature −1, we get

− gklgiph
pqRjkql(h) − gklgjph

pqRikql(h) − 2(n− 1)gij

= gklgiph
pq(hjqhkl − hjlhkq)

+ gklgjph
pq(hiqhkl − hilhkq) − 2(n− 1)gij

= 2
(
gklgijhkl − hij

)
− 2(n− 1)gij

= 2
(
gkl(hkl − gkl)

)
gij + 2(gij − hij)

and hence

Lemma 2.1. A metric (gij) solving (1.3) fulfills

∂

∂t
gij = gabh∇a

h∇bgij + 2gij

(
gkl(hkl − gkl)

)
+ 2(gij − hij)

+
1
2
gabgpq

(
h∇igpa

h∇jgqb + 2
h∇agjp

h∇qgib − 2
h∇agjp

h∇bgiq

−2
h∇jgpa

h∇bgiq − 2
h∇igpa

h∇bgjq

)
.
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For later use, we derive the evolution equation of Z := |g − h|2. We use
the following notation in this Lemma and in the rest of the paper.

Notation: We write On(ε) for any number in R satisfying |On(ε)| ≤ c(n)ε
where c(n) is some fixed big number (n ∈ N). Similarly |On,m(ε)| ≤ c(n,m)ε
where c(n,m) is some fixed big number (n,m ∈ N).

Lemma 2.2. Let g ∈ M∞ (Hn, (0, T )), T > 0, be a solution to (1.3) which
is ε-close to the hyperbolic metric h of sectional curvature −1. Assume that
ε > 0 is sufficiently small, ε ≤ ε0(n). Then

∂

∂t
|g − h|2 ≤ gij∇i∇j |g − h|2 − (2 −On(ε)) |∇(g − h)|2

+ (4 +On(ε))|g − h|2,(2.1)

where we write ∇ for
h∇.

Proof. Note that the norm of a tensor Z of order m fulfills

h|Z|2 ≡ |Z|2 ≤ (1 +On,m(ε)) · g|Z|2 ≤ (1 +On,m(ε))) · h|Z|2

for g which are ε-close to h. Choose coordinates such that hij = δij and
gij = λiδij . We use ∗ similarly as in [4, Ch. 13] to denote contractions with
respect to h, g or their inverses. Let Z = g − h. Lemma 2.1 yields

∂

∂t
|Z|2 ≡ ∂

∂t
|g − h|2 = 2

∑
i

(gii − hii)
(
∂

∂t
gii

)

= gij∇i∇j |g − h|2 − (2 −On(ε))|∇g|2

+ 2
∑

i

(gii − hii)

[
2(gii − hii) − 2gii

∑
k

(
gkk(gkk − hkk)

)]

+
∑

i

(gii − hii)(∇g ∗ ∇g)ii
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≤ gij∇i∇j |g − h|2 − (2 −On(ε))|∇(g − h)|2

+ 4
∑

i

(gii − hii)

[
(gii − hii) − gii

∑
k

(
gkk(gkk − hkk)

)]
.

Let us examine the zeroth-order term S of the above equation.

S = 4
∑

(gii − hii)
[
(gii − hii) − gii

∑ (
gkk(gkk − hkk)

)]
= 4

∑
i

(λi − 1)2 − 4
∑

i

λi(λi − 1)
∑

k

(
1 − 1

λk

)

≤ (4 +On(ε))|Z|2 − 4

(∑
i

(λi − 1)

)2

.

The claim follows. �

We use this to show that we can solve Dirichlet problems for (1.3) on a
short-time interval. In the following we pick a point p0 and fix it throughout.
For simplicity of notation we will denote this point with 0. All balls BR(0)
are geodesic balls with respect to the hyperbolic metric h.

The following result also extends readily to (1.3) on all of H
n provided

that a non-compact maximum principle is applicable.

Corollary 2.1. Let g ∈ M∞
0 (BR(0), [0, T )), 0 < T <∞, be a solution to

(1.3) on BR(0) ⊂ H
n instead of H

n with g(t)|∂BR(0) = h|∂BR(0). Let 0 <
δ. Then there exists ε1 = ε1(n, T, δ) > 0 such that supBR(0) |g(0) − h| ≤ ε1
implies

sup
BR(0)×[0,T )

|g − h| ≤ δ.

Proof. Fix ε1 := δe−5T , and let ε be given with ε ≤ ε1. Without loss of gen-
erality

√
δ ≤ ε0 of Lemma 2.2, and On(ε) appearing on the right-hand side

of (2.1) satisfies On(ε) ≤ 1. Then Lemma 2.2 and the maximum principle
imply that

sup
BR(0)

|g(t) − h|2e5(T−t) ≤ sup
BR(0)

|g0 − h|2e5T ≤ ε1e5T = δ

as long as supBR(0) |g(t) − h| ≤ ε0 remains true. But supBR(0) |g(t) − h|2 ≤
δ implies supBR(0) |g(t) − h| ≤ √

δ ≤ ε0 and hence the condition supBR(0)

|g(t) − h| ≤ ε0 is not violated for all t ∈ [0, T ]. The result follows. �
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If solutions to (1.3) stay sufficiently close to the hyperbolic metric h of
sectional curvature −1, they exist for all times.

Theorem 2.1. For all n ∈ N there exists a δ̃(n) > 0 such that the following
holds. Let 0 < ε < δ ≤ δ̃(n). Then every metric g0 ∈ M0 (Hn) with ‖g0 −
h‖L∞ ≤ ε has a δ-maximal solution g ∈ M

∞
0 (Hn, [0, Tg0)) to (1.3), where

Tg0 > 0 and ‖g(t) − h‖L∞ < δ for all t ∈ [0, Tg0). The solution is δ-maximal
in the following sense. Either Tg0 = ∞ and ‖g(t) − h‖L∞ < δ for all 0 ≤ t or
we can extend g to a solution on H

n × [0, Tg0 + τ), for some τ = τ(n) > 0,
and ‖g(Tg0) − h‖L∞ = δ.

Proof. The proof follows directly from the corresponding proofs in [8–10]: we
mollify g0 and obtain gi

0, i ∈ N. Then we consider gi,R
0 := ηgi

0 + (1 − η)h,R ≥
1, where η : H

n → H
n is a smooth function fulfilling η = 1 in BR(0), η = 0

outside B2R(0) and |∇η| ≤ 2/R. Hence
∥∥gi,R

0 − h
∥∥

L∞ ≤ ∥∥gi
0 − h

∥∥
L∞ ≤ ‖g0 −

h‖L∞(Hn) ≤ ε. Arguing as in [8–10] (see Section 3 of [9]), and using that gi,R
0

is δ̃(n) close to h, we see that there exist solutions gi,R ∈ M∞ (B3R(0), [0, τ ])
with 0 < τ = τ(n) <∞ to (1.3) on B3R(0) with gi,R(0) = gi,R

0 on B3R(0) and
gi,R = h on ∂B3R(0) × [0, τ ]. From Lemma 5.1 of [10] we see that we have
interior estimates of the form |∇jgi,R|2 ≤ c/tj on balls of radius R/2 for all
t ∈ [0, τ ] for all j ∈ N. Taking a diagonal subsequence and using the theorem
of Arzelà–Ascoli, we obtain a solution g ∈ M∞ (Hn, (0, τ ]). Furthermore,
g(t) → g0 as t→ 0 in the C0

loc-norm as we see from Theorem 5.2 in [10].
If ‖g(t) − h‖L∞ < δ for all t ∈ [0, τ ], then we may repeat this argument

in view of the fact that δ ≤ δ̃(n). By induction we obtain a solution g ∈
M∞

0 (Hn, [0, S)) where either

(a) S = ∞ and ‖g(t) − h‖L∞ < δ for all t > 0, or

(b) S = Nτ for some N ∈ N and ‖g(t) − h‖L∞ < δ for all t ∈ [0, (N − 1)τ ]
but there exists at least one time t̃ ∈ ((N − 1)τ,Nτ ] with ‖g (

t̃
) −

h‖L∞ = δ.

In the case (a), we set Tg0 = ∞ and we are finished.
So assume we are in case (b) for the rest of the argument. In view

of Lemma 2.2, the maximum principle, and the way we constructed our
solutions, we see that in fact there is a first time Tg0 ∈ ((N − 1)τ,Nτ ]
with ‖g(Tg0) − h‖L∞ = δ and ‖g(t) − h‖L∞ < δ for all t ∈ [0, Tg0). Using that
g(Tg0) is δ close to h and δ ≤ δ̃ we may repeat the first part of the proof to
obtain a solution defined on [0, Tg0 + τ ]. This completes the proof. �
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Proposition 2.1. Assume everything is as in Theorem 2.1, and T̂ > 0
be given. If we choose ε = ε

(
n, δ, T̂

)
> 0 small enough in the above Theo-

rem, then the solution g ∈ M
∞
0 (Hn, [0, Tg0 + τ)) from Theorem 2.1 satisfies

Tg0 ≥ T̂ .

Proof. By Corollary 2.1, we can choose ε = ε
(
n, δ, T̂

)
small enough so that

‖g(t) − h‖L∞ < δ for all t ∈ [
0, T̂

] ∩ [0, Tg0 ]. Theorem 2.1 yields a contradic-
tion if Tg0 < T̂ . �

3. Convergence

Convergence is based on a Lyapunov function.

Theorem 3.1. Let n ≥ 4. There exists δ0 = δ0(n) > 0 such that the fol-
lowing holds. Let g ∈ M∞(BR, [0, T )) be a solution to (1.3) with g = h on
∂BR(0) × [0, T ) and assume that supBR(0)×[0,T ) |g − h| ≤ δ0. Then we have

∫
BR(0)

|g(t) − h|2 dvolh ≤ e−αt

∫
BR(0)

|g(0) − h|2 dvolh

for α(n) := (2(n− 1)2 − 17)/4 ≥ 1
4 .

Proof. Assume that δ0 is such that g is ε(n)-close to h for some sufficiently
small 1 ≥ ε(n) > 0. We compute for Z = g − h, using Lemma 2.2,

∂

∂t

∫
BR(0)

|Z|2 dvolh ≤
∫

BR(0)
gij∇i∇j |Z|2 − (2 −On(ε))|∇Z|2

+ (4 +On(ε))|Z|2 dvolh

=
∫

∂BR(0)
νig

ij∇j |Z|2 −
∫

BR(0)
∇jg

jk∇k|Z|2 dvolh

+
∫

BR(0)
−(2 −On(ε))|∇Z|2 + (4 +On(ε))|Z|2 dvolh

≤
∫

Br(0)
−(2 −On(ε))|∇|Z||2 + (4 +On(ε))|Z|2 dvolh ,

where we used that
∣∣∇ig

ij∇j |Z|2
∣∣ ≤ On(ε)|∇Z|2 and that on ∂BR(0) the

gradient ∇|Z|2 is anti-parallel to the outer unit normal ν. Furthermore we
apply Kato’s inequality |∇|Z||2 ≤ |∇Z|2 which is valid whenever |Z| �= 0 and
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for Sobolev functions. More explicitly

|∇ig
ij∇j |Z|2| ≤ c(n)|∇g||Z||∇Z|

≤ c(n)|Z||∇Z|2
≤ On(ε)|∇Z|2,

since |Z| = |g − h| ≤ On(ε) and |∇g| = |∇(g − h)| = |∇Z|.
Using McKean’s inequality [7] for the first eigenvalue

σ1 ≥ (n− 1)2

4

on hyperbolic domains we see

∂

∂t

∫
BR(0)

|Z|2 dvolh ≤
∫

BR(0)
−(2 −On(ε))|∇|Z||2 + (4 +On(ε))|Z|2 dvolh

≤ (8 − (n− 1)2 + c(n)ε)
2

∫
BR(0)

|Z|2 dvolh .

Assuming that ε < 1/(2c(n)), we can choose

α := (2(n− 1)2 − 17)/4. �

Since for the proof of existence of a solution to (1.3) we use Dirichlet
problems as above, this monotonicity extends to the constructed solutions
on H

n × [0, T ): let gi,R(t) be as in Theorem 2.1. Then we get

∥∥gi,R(t) − h
∥∥2

L2(B3R(0))
≤ e−αt

∥∥gi,R
0 − h

∥∥2

L2(B3R(0))
≤ e−αt‖g0 − h‖2

L2(Hn)

As R→ ∞, we obtain

Corollary 3.1. Let n ≥ 4 and T > 0 be given. Assume that g0 ∈ M∞ (Hn)
satisfies ‖g0 − h‖L2(Hn) <∞. Then there exists ε0 = ε0(n, T ) such that, if
supHn |g0 − h| ≤ ε0 then a solution g ∈M∞(Hn, [0, T )) to (1.3) with g(·, 0) =
g0(·) exists and supHn×[0,T ) |g − h| ≤ δ0, where δ0 is as in Theorem 3.1. Fur-
thermore we have the estimate

‖g(t) − h‖2
L2(Hn) ≤ e−αt‖g0 − h‖2

L2(Hn)

for all t ∈ [0, T ), where α = α(n) ≥ 1
4 .
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Proof. Existence and closeness to h follow from Corollary 2.1, Proposition
2.1 and Theorem 2.1. �

Using the gradient estimate we see that the exponential convergence of
the L2-norm of |g − h| also implies exponential convergence in the sup-norm,
compare [8, Lemma 7.1].

Theorem 3.2. Let n ≥ 4. Assume that g ∈ M∞(Hn, [0, T )) is a solution
to (1.3) with ‖g(0) − h‖L2(Hn) =: K <∞, supHn×[0,T ) |g − h| ≤ δ0 and

‖g(t) − h‖2
L2(Hn) ≤ e−αt‖g(0) − h‖2

L2(Hn) ,

where δ0 is as in Theorem 3.1. Then

(3.1) sup
Hn

|g(t) − h| ≤ C(n,K)e−βt,

where β = α
n+2 = 2(n−1)2−17

4(n+2) > 0.

Proof. We can assume w.l.o.g. that δ0 < 1. We choose τ := n+1
α ln(δ−1

0 ) > 0.
Note that this implies

sup
Hn

|g(t) − h| ≤ e−βt

for t ∈ [0, τ) and β := α/(n+ 1). By the interior estimates of the form∣∣h∇g(t)∣∣ ≤ c · t−1/2, there exists a constant C ′ = C ′(n), such that∣∣∣h∇g(·, t)
∣∣∣h ≤ C ′

for t ∈ [τ, T ). Fix such a t ∈ [τ, T ). Let γ := supHn |g(t) − h| and choose a
point p0 ∈ H

n such that |g(p0, t) − h(p0)| ≥ 1
2γ. By the gradient estimate,

we have
|g(·, t) − h| ≥ 1

4
γ

on Bγ/(4C′)(p0). This implies

‖g(t) − h‖2
L2(Hn) ≥ ωn(C ′)−n

(γ
4

)n+2
,

where ωn is the measure of the unit ball in R
n. This yields

γ ≤ 4(C ′)
n

n+2

(
K2

ωn

) 1
n+2

e−
α

n+2
t .

Choosing C(n,K) = 1 + 4(C ′)
n

n+2
(

K2

ωn

) 1
n+2 we have (3.1). �
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This sup-estimate allows us to construct a solution which exists for all
times.

Theorem 3.3. Let n ≥ 4. For all K > 0 there exists ε1 = ε1(n,K) > 0
such that the following holds. Let g0 ∈ M∞ (Hn) satisfy ‖g0 − h‖L2(Hn) ≤ K
and supHn |g0 − h| ≤ ε1. Then there exists a solution g ∈ M∞(Hn, [0,∞))
to (1.3) with g(0) = g0 such that

(3.2) sup
Hn

|g(t) − h| ≤ C(n,K)e−βt

for β = β(n) as in Theorem 3.2.

Proof. According to Theorem 2.1, we obtain existence for all times if we
can prove the estimate ‖g(t) − h‖L∞ ≤ δ̃ = δ̃Thm. 2.1 for all t for any a priori
solution (that is, we must prove the estimate for all t that the solution is
defined). Given any T > 0, we can choose ε(n, T ) > 0 small enough so that
such an estimate will hold, in view of Proposition 2.1 and Theorem 2.1
for 0 ≤ t < T . Theorem 3.1 implies integral bounds which combined with
Theorem 3.2 yields |g(t) − h| ≤ δ̃ if t ≥ T and T is chosen sufficiently large.
Choose T and ε(n, T ) so that both of these requirements are satisfied.

This implies long-time existence.
Theorem 3.2 also implies (3.2) for t ≥ T . Fixing C(n,K) such that

C(n,K) ≤ δ · eβT we obtain (3.2) for all times. �

By interpolation the exponential decay extends to higher derivatives of
the evolving metric.

Theorem 3.4. Let n ≥ 4. Let g0 ∈ M∞ (Hn) and g ∈ M∞(Hn, [0,∞)) be
as in Theorem 3.3. We have additionally

sup
Hn

∣∣∣h∇j
g(t)

∣∣∣ ≤ C(n, j,K, (βj))e−βjt

where 0 < βj < β(n), β(n) as in Theorem 3.2, is arbitrary. In particular,

lim
t→∞ sup

Hn

‖g(t) − h‖Ck(Hn) = 0,

where ‖S‖Ck :=
∑n

i=0 supHn |∇jS|2.

Proof. From the interior estimates in Lemma A.1, we have supHn |∇jg|2(t) ≤
c(n, j)/(t− L), for all t ∈ [L,L+ 1]. In particular, supHn |∇jg|2(L+ 1) ≤
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c(n, j). Hence, as L > 0 was arbitrary, we get

sup
Hn

∣∣∇jg
∣∣2 (·, t) ≤ c(n, j)(3.3)

for all t ≥ 1. Interpolating on a ball of radius one (see Lemma A.6) gives us

sup
Hn

∣∣∇jg
∣∣2 (t) ≤ c̃(n, j)

(
sup
Hn

|g(t) − h|
) 1

2j−1

≤ C(n, j,K)e−
β

2j−1 t

in view of (3.3) and (3.1). Iterated interpolation yields the result, see
e. g., [8]. �

Proof of Theorem 1.1. As the decay of |g(t) − h| as t→ ∞ obtained in this
section does not depend on the smoothness of g0, we can approximate g0 ∈
M0 (Hn) and pass to a limit to obtain Theorem 1.1. �

Proof of Theorem 1.2. Local closeness estimates (see Lemma A.2) show that

lim
r→∞ ‖g(t) − h‖L∞(Hn\Br(0)) = 0

is preserved during the flow, even uniformly on compact time intervals.
Hence

max
{|g(t) − h|2 − δ, 0

} ≡ (|g − h|2 − δ
)
+

has compact support on H
n × [0,K] for all K <∞ and we may consider

the integral Iδ :=
∥∥ (|g − h|2 − δ

)
+

∥∥
L1(Hn)

for any δ > 0, which is similar to
the integral Im,p

δ defined in [8, Theorem 6.1] or to Ip
δ in Appendix B. The

techniques of the proof of Theorem 3.1 and approximations as in [8, Th. 6.1]
imply for R� 1 that

IR
δ (t) :=

∥∥ (|g(t) − h|2 − δ
)
+

∥∥
L1(BR(0))

≤ e−αt · IR
δ (0)

≤ e−αt · ‖g(0) − h‖2
L2(Hn).

The rest of the proof is similar to the proof of Theorem 1.1. �

4. Getting back to Ricci Flow

Theorem 4.1. Assume that g ∈ M∞(Hn, [0,∞)) is a solution to (1.3)
coming from Theorem 3.3. Then there exists a smooth map ϕ : H

n × [0,∞)
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→ H
n such that ϕ(·, t) =: ϕt : H

n → H
n is a diffeomorphism, ϕ0 = id and

g̃(·, t) := (ϕt)∗g(·, t) is a smooth solution to the scaled Ricci flow

∂

∂t
g = −2 Ric−2(n− 1)g

with g̃t → g0 as t↘ 0. Furthermore there exists a smooth diffeomorphism ψ :
H

n → H
n with ϕt → ψ as t→ ∞ and g̃t → ψ∗g0 as t→ ∞. Here convergence

is in Ck on H
n for all k.

Proof. This argument is the same as in Lemma 9.1 and Theorem 9.2 of [8]
with some minor differences. We explain here where the argument of [8]
must be modified in order for it to work in this case.

As explained in Lemma 9.1 in [8], we can construct smooth maps ϕ :
H

n × [0,∞) → H
n such that

{
∂
∂tϕ

α(x, t) = V α(ϕ(x, t), t), (x, t) ∈ H
n × [0,∞),

ϕ(x, 0) = x, x ∈ H
n,

where V α(y, t) := −gβγ
(
gΓα

βγ − hΓα
βγ

)
(y, t) and ϕt := ϕ(·, t) : H

n → H
n are

diffeomorphisms. (Compared to [8], we have changed the sign in the defi-
nition of V in order to correct a typo there.) This part of the proof is the
same. A direct calculation shows that g̃(t) := ϕ∗

t g(t) solves the scaled Ricci
flow equation.

In Theorem 9.2 of [8] it is shown that ϕt → ϕ∞ as t→ ∞ where ϕ∞ :
H

n → H
n is a smooth diffeomorphism, and the convergence is in Ck (for all

k) on H
n. The proof of this is carried out in three steps.

In step 1 it is shown that | ∂
∂tϕt(x)| ≤ 1

tr for some r > 1, for all t ≥ 1,
and |ϕt(x) − x| ≤ c for all t.

In step 2, the existence of a smooth function ϕ∞ : H
n → H

n with ϕt →
ϕ∞ ≡ ψ as t→ ∞ is shown.

The proofs of steps one and two carry over to this situation without any
changes.

In step 3, it is shown that ϕ∞ is a diffeomorphism. This proof carries
over with some minor modifications which we describe in the rest of the
proof here.
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Letting l(t) := ϕ∗
t g(t), we know that l solves the scaled Ricci flow (1.2)

on H
n, and that

sup
Hn

l(t)|Ric(l(t)) + 2(n− 1)l(t)|

= sup
Hn

g(t)|Ric(g(t)) + 2(n− 1)g(t)|

≤ sup
Hn

g(t)|Ric(g(t)) − Ric(h)| + sup
Hn

g(t)|Ric(h) + 2(n− 1)g(t)|

= sup
Hn

g(t)|Ric(g(t)) − Ric(h)| + sup
Hn

g(t)| − 2(n− 1)h+ 2(n− 1)g(t)|
≤ e−βt,

for all t > 0 form some β > 0. The last inequality may be seen easily by
writing the terms in local coordinates and then using the estimates of
Theorem 3.4.

Hence l(t) converges locally uniformly (smoothly) to a smooth metric
l∞ on H

n as explained in [8].
Choose geodesic coordinates for h centred at y in B1(y). Now using the

definition of l, and the uniform convergence of l we get

1
c
δαβ ≤ lαβ(x, t) =

∂ϕs
t

∂yα
(x, t)

∂ϕk
t

∂yβ
(x, t) gsk(ϕt(x), t)

≤ (1 + ε̃)
∂ϕs

t

∂yα

∂ϕk
t

∂yβ
(x, t)hsk(ϕt(x))

≤ c(1 + ε̃) (Dϕt) (Dϕt)
T (x, t).

In particular, we see that det (Dϕt)
2 (x) ≥ 1

(1+ε̃)nc > 0 for x ∈ B1(y) , where
Df is the Jacobian of f . As explained in [8], this shows that ϕ∞ is a diffeo-
morphism. �

Theorem 4.2. Let everything be as in the above Theorem 4.1, with the
extra assumption that sup(Hn\Br(0)) |g0 − h| → 0 as r → ∞. Then the diffeo-
morphism ψ appearing in the above Theorem satisfies ψ → id as x→ ∞ (in
Ck for all k). In particular, for every η > 0, there exists an R > 0 such that

sup
Hn\BR(0)

|ϕt(x) − x| ≤ η,

for all t.

Proof. The proof is completely analogous to the proof of Lemma 9.3 in [8].
Let η > 0. From Lemma A.2 and the estimates of Theorem 3.3 we can choose



1038 Oliver C. Schnürer, Felix Schulze & Miles Simon

R > 0 large so that

|g(t) − h| ≤ η on H
n \BR(0),

for all t > 0. From the interior estimates of [10] (see Lemma A.1) we get

|∇2g| ≤ c

t
,

for t ∈ [0, 1], and hence

|∇2g| ≤ c

t
,

for all t ∈ [0,∞), in view of Theorem 3.3 and interpolation with higher-order
derivatives, see Lemmas A.1 and A.6. Interpolating between the C0-norm
and the C2-norm on a ball of radius one for t ≤ 1 (see Lemma A.6) we get

|∇g| ≤
√
c
√
η√
t
,

for all t ∈ [0,∞) on H
n \BR(0). Arguing as in Step 1 of the above theorem

gives us the result. �

A. Scaling and interior estimates

Lemma A.1. Let (Hn, g(t))t∈[0,T ) be a solution to equation (1.3), with
|g(t) − h| ≤ ε(n) for ε(n) > 0 small enough. Then

sup
Hn

∣∣∣h∇j
g(·, t)

∣∣∣2 ≤ c(j, n)
tj

for all t ≤ min{1, T}.
Proof. This is Theorem 4.3 in [10]. �

Lemma A.2. Fix a point p0 ∈ H
n and let g ∈ M∞(Hn, [0, T )), where T ∈

(0,∞], be a solution to (1.3) such that

sup
Hn\Br(p0)

|g(·, 0) − h| → 0 as r → ∞

and g is ε-close to h, where ε ≤ ε(n) is sufficiently small. Then for every
0 < τ < T and 0 < σ ≤ 1 there exists an R0 > 0 such that

sup
(Hn\BR0 (p0))×[0,τ ]

|g − h| ≤ σ.
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Proof. Choose a smooth function η : R → R, 0 ≤ η ≤ 1, such that η ≡ 0 on
(−∞, 1], η ≡ 1 on [2, 3], η ≡ 0 on [4,∞). We can furthermore assume that
|η′′| ≤ 100 and |η′|2 ≤ 1000η.

Let ρp0(·) denote the distance to the point p0 ∈ H
n with respect to the

hyperbolic metric, and define the cut-off function

γp0,R := η
(ρp0

R

)
.

Then we have, suppressing in the following the subscripts p0 and R:

|∇γ| ≤ |η′|
R
, |∇2γ| ≤ c(n)

R
+
c(n)
R2

.

Define ψ := γ|Z|2, where Z = g − h. Using Lemma 2.2 and the above esti-
mates we see that

∂

∂t
ψ ≤ gij∇i∇jψ − 2gij∇iγ∇j |Z|2 − |Z|2gij∇i∇jγ

− (2 − ε)γ|∇Z|2 + (4 + ε)ψ

≤ gij∇i∇jψ + (4 + ε)ψ +
c(n)ε
R

+
c(n)ε
R2

,

where we used the estimates on the derivatives of γ and Kato’s inequality
to estimate the terms appearing in the first inequality. More explicitly

||Z|2gij∇i∇jγ| ≤ c(n)ε2
(
c(n)
R

+
c(n)
R2

)

and

−(2 − ε)γ|∇Z|2 − 2gij∇iγ∇j |Z|2 ≤ −(2 − ε)γ|∇Z|2 + c(n)|∇γ||Z||∇Z|
≤ −(2 − ε)γ|∇Z|2 + (c(n)/R)

√
γ|Z||∇Z|

≤ −(2 − ε)γ|∇Z|2 + γ|∇Z|2
+ (c(n)/R)2|Z|2

≤ ε
c(n)
R2

.

Now choosing R big enough, we may apply the maximum principle to the
differential inequality for ψ and obtain the desired estimate. �
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Lemma A.3. The scaled Ricci flow and the scaled Ricci harmonic map
heat flow are related as follows. Assume ϕt : H

n → H
n solves

∂

∂t
ϕt(x, t) = −V (ϕt(x, t), t),

where the components of V are given by V α := gβγ
(

gΓα
βγ − hΓα

βγ

)
and that

the ϕt : H
n → H

n are smooth and diffeomorphisms for all time. Let
(Hn, g(t))t∈[0,T ) be a solution to the scaled Ricci harmonic map heat flow
(1.3), Vi = giαV

α. Then (Hn, g̃(t))t∈[0,T ) solves the scaled Ricci flow (1.2),
with g̃(0) = g(0), where here g̃(t) := ϕ∗

t (g(t)).

Proof. For g̃(t) := ϕ∗
t g(t), we get

∂

∂t
(g̃(t)) = (ϕt)∗

(
∂

∂t
g

)
+

∂

∂s

∣∣∣∣
s=0

(ϕ∗
t+sg(t))

= −2 Ric(g̃(t)) − 2(n− 1)g̃(t) + ϕ∗
t (LV (t)g(t))

− L(ϕ−1
t )∗V (t)(ϕ

∗
t g(t))

= −2 Ric(g̃(t)) − 2(n− 1)g̃(t),

where here LWk is the Lie-derivative of k in the direction W (in coordinates
(LWk)ij = k∇iWj + k∇jWi), see [2, Chapter 2, Section 6]. �

Lemma A.4. The Ricci flow

∂

∂t
g = −2 Ric(g)

and the scaled Ricci flow (1.2) are equivalent in the following sense.
Let

(
H

n, g̃
(
t̃
))

t̃∈[0,T̃ )
be a solution to the scaled Ricci flow. Define

(Hn, g(t))t∈[0,T ) by

g(·, t) := (1 + 2(n− 1)t)g̃
(·, t̃(t)) ,

where

t̃(t) :=
log(1 + 2(n− 1)t)

2(n− 1)

and T := e2(n−1)T̃−1
2(n−1) .
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Then (Hn, g(t))t∈[0,T ) solves the Ricci flow. Alternatively, let
(Hn, g(t))t∈[0,T ) be a solution to the Ricci flow. Define

(
H

n, g̃
(
t̃
))

t̃∈[0,T̃) by

g̃(·, t̃) := e−2(n−1)t̃g
(·, t (t̃)) ,

where t(t̃) := e2(n−1)t̃−1
2(n−1) and T̃ := log(1+2(n−1)T )

2(n−1) . Then g̃ solves the scaled
Ricci flow.

Proof. We prove the first claim by calculating. The second claim is shown
in a similar way. We calculate at t0, and let t̃0 := log(1+2(n−1)t0)

2(n−1) .

(
∂

∂t
g

)
(·, t0) = 2(n− 1)g̃

(·, t̃0) +
(
∂

∂t̃
g̃

) (·, t̃0)
= 2(n− 1)g̃

(·, t̃0) − 2 Ric
(
g̃, t̃0

) − 2(n− 1)g̃
(·, t̃0)

= −2 Ric
(
g̃

(
t̃0

))
= −2 Ric (g(t0))

where the last line follows from the fact, that the Ricci tensor is invariant
under scaling of the metric. �

Lemma A.5. Let u ∈ C2 on [0,∞) or R. Then

‖Du‖2
L∞ ≤ 32 · ‖u‖L∞ · ∥∥D2u

∥∥
L∞ .

Proof. Assume without loss of generality that Du(0) ≥ 1
2‖Du‖L∞ =: 1

2M .
Then Du(x) ≥ 1

4M for all 0 ≤ x ≤ M
4·‖D2u‖L∞

. Hence

2‖u‖L∞ ≥
∣∣∣∣u

(
M

4 · ‖D2u‖L∞

)
− u(0)

∣∣∣∣ ≥ M

4
· M

4 · ‖D2u‖L∞
.

The claim follows. �

Lemma A.6. Let B be a compact subset of a Riemannian manifold M .
Assume that B has C2-boundary. Let u ∈ C2(M). Then

‖∇u‖2
L∞(B) ≤ c(B) · ‖u‖L∞(B) ·

(∥∥∇2u
∥∥

L∞(B)
+ ‖∇u‖L∞(B)

)
.

Proof. For every point p ∈ B and every unit vector ξ ∈ TpM there exists
a curve γ : [0,∞) → B, parameterized by arc-length, such that γ(0) = p,
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γ′(0) ∈ ±{ξ} and

|(u ◦ γ)′(t)| ≤ |∇u(γ(t))|,
|(u ◦ γ)′′(t)| ≤ c(B) · (∣∣∇2u(γ(t))

∣∣ + |∇u(γ(t))|) .
Note that c(B) depends on the curvature of γ but can be chosen uniformly
for all p ∈ B. Choosing p and ξ such that ∇u attains its maximum at p in
direction ξ, Lemma A.5 yields the statement. �

B. Euclidean space

We consider the situation of the main theorem, Theorem 1.3, in [8]. Instead
of a Lyapunov function involving ϕm + ψm − 2n =

∑n
i=1

1
λm

i
(λm

i − 1)2, how-
ever, we study a Lyapunov function involving |g − h|p, p ≥ 2. This simplifies
the proof.

Recall that the Ricci harmonic map heat flow with Euclidean background
metric is

∂

∂t
gij = gab∇a∇bgij + 1

2g
abgpq(∇igpa∇jgqb + 2∇agjp∇qgib

− 2∇agjp∇bgiq − 2∇jgpa∇bgiq − 2∇igpa∇bgjq),

where ∇ denotes covariant differentiation w. r. t. the Euclidean metric h.
Calculating as in Lemma 2.2, we see that

(B.1)
∂

∂t
|g − h|2 − gij∇i∇j |g − h|2 ≤ −

(
2

1 + ε
− 9ε(1 + ε)2

)
|∇g|2 ≤ 0

if 0 < ε ≤ 1
7 . Note that there is no zeroth-order term in the evolution equa-

tion on Euclidean space. Hence |g(t) − h| ≤ ε is preserved during the flow
and we obtain long-time existence, see [10]. Define

Ip
δ (t) :=

∫
Rn

(|g − h|p − δ)+ .

Using (B.1), and calculating as in [8], we get

d

dt
Ip
δ (t) ≤ −

∫
{|g−h|p>δ}

p

2
· 2 − (11 + 9ε)(1 + ε)2ε

1 + ε
· |g − h|p−2 · |∇g|2 ≤ 0

for 0 < ε ≤ 1
8 . The rest of the proof is similar to [8]. If we further restrict p

to 2 ≤ p < n then we can argue as in the paper [8] to prove Theorem 1.4 of
that paper.
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C. Conformal Ricci flow in two dimensions

Let us consider the Euclidean ball B := B1(0) ⊂ R
2 equipped with the met-

ric (gij) =
(
ef+uδij

)
, where f = log 4 − 2 log

(
1 − |x|2) and u = u(x, t). For

u ≡ 0, we get hyperbolic space of sectional curvature equal to −1. Consider
rescaled Ricci flow

∂

∂t
gij = −2Rij − 2gij .

As Rij = −1
2δijΔδ(u+ f), this is equivalent to

(C.1)
u̇ = e−u−fΔδu+ 2

(
e−u − 1

)
= e−uΔhu+ 2

(
e−u − 1

)
= Δgu+ 2

(
e−u − 1

)
.

In contrast to Theorem 1.3, we do not have to assume that the eigenvalues
(λi) of g(0) with respect to h are close to one. This is similar to [8, Theorem
A.1]. There, however, we had to assume that λi(x, 0) → 1 for |x| → ∞ in
order to obtain convergence to R

2, see [8, Th. A.2].

Theorem C.1. Let u0 ∈ C0(B) satisfy ‖u0‖L∞ <∞. Then there exists u ∈
C∞(B × (0,∞)) solving (C.1) such that u(·, t) → u0 in C0

loc(B) as t↘ 0. As
t→ ∞, u(·, t) → 0 exponentially in C∞ w. r. t. the hyperbolic metric.

If an arbitrary solution u is uniformly bounded for small times, we also
get exponential convergence.

Proof. Assume |u0| ≤ c0. Mollify and modify u0 to ui
0 with |ui

0| ≤ 2c0 and
ui

0 = 0 near ∂B1− 1
i
(0) and ui

0 = u0 on B1− 2
i
(0). We can construct solutions

ui : B1− 1
i
(0) × [0, Ti) to C.1 with ui(·, 0) = u0 on B1− 1

i
(0) and ui(·, t) = 0

on ∂B1− 1
i
(0) using the arguments presented in Chapter VI of [5]. These

solutions remain bounded by 2c0 from the maximum principle. Hence, the
arguments of Chapter VI of [5] imply that Ti = ∞.

Spatially constant barriers b = b(t) = log
(
1 + ae−2t

)
, a > −1, solving

(C.1) converge exponentially to 0 as t→ ∞. Hence the maximum princi-
ple applied to each ui on B1− 1

i
(0) implies that the ui remain uniformly

bounded and approach zero exponentially (uniformly in i) as t→ ∞.
Now we address smooth convergence: Writing li := eui

we obtain the
evolution equation

∂

∂t
li = (1/li)Δhl

i − (1/(li)2)|h∇li|2 + 2
(
1 − li

)
.

We can assume without loss of generality, that |li − 1| ≤ ε for some small
ε. The interior estimates of Lemma A.1 hold here as the equation for li has
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the same form as the equation studied in Theorem 4.3 of [10]. Hence, by
taking a diagonal subsequence, we get a solution l = eu which approaches 1
exponentially. Interpolating between the C0-norm and Ck-norms and using
Lemma A.1 again, we see that l approaches 1 in all Ck-norms exponentially.

�

To treat the question of uniqueness of such solutions we work in the
unrescaled setting. Note that by Lemma A.4 this is equivalent to the rescaled
equation.

With respect to the hyperbolic metric h on H
2 as a background metric,

a solution eu(p,t)h to the Ricci flow satisfies

(C.2) u̇ = e−uΔhu+ 2e−u .

We first prove a non-compact maximum principle.

Lemma C.1. Let v ∈ C∞ (
H

2, [0, T )
)

be a bounded solution to

(C.3) v̇ ≤ aΔhv + c v

with a, c ∈ L∞ (
H

2, [0, T )
)
, a > 0. If v(·, 0) ≤ 0 then v(·, t) ≤ 0 for all t ∈

[0, T ).

Proof. Pick a fixed point p0 ∈ H
2 and let r(·) := disth(·, p0). Then the func-

tion ρ :=
√
r2 + 1 is a smooth function on H

2 with ρ(p) → ∞ as p→ ∞
and

aΔhρ ≤ C

for a constant C > 0. Let us first assume that v satisfies

v̇ ≤ aΔhv − c′v

with a function c′ ≥ 0. Then for any δ > 0 the function

w := v − δρ− 2δCt− δ

satisfies at the first non-negative interior maximum

ẇ < aΔhw.

Since w(·, t) → −∞ as p→ ∞ an application of the maximum principle
proves the estimate as δ → 0. In the general case let |c(p, t)| ≤ K and v′ :=
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e−Ktv which satisfies

v̇′ ≤ aΔhv
′ − (K − c)v′ .

The previous estimate can be applied. �
This gives us a uniqueness statement.

Lemma C.2. Let u, ũ ∈ C∞(H2, (0, T )) ∩ C0(H2, [0, T )) be two bounded
solutions of (C.2) s.t.

u(·, t) → u0 and ũ(·, t) → u0

uniformly as t→ 0 for some continuous function u0 on H
2. Then u ≡ ũ.

Proof. Define for γ > 0

uγ(p, t) := u(p, e−γt) + γ .

Then uγ again solves (C.2) with initial values u0 + γ. Since the initial values
are attained uniformly we have uγ > ũ for a short-time interval [0, 2δ], δ > 0.
By interior estimates as in Lemma A.1 the functions uγ , ũ are bounded
uniformly in C∞ on time intervals [δ, T ). Interpolating between the two
solutions, we see that the difference satisfies an equation of the form (C.3),
to which the non-compact maximum principle applies. Thus uγ > ũ for all
γ > 0 and γ → 0 gives the desired estimate. �

If u0 is uniformly continuous then also u(·, t) converges uniformly as
t→ 0.

Lemma C.3. Let u ∈ C∞ (
H

2, (0, T )
) ∩ C0

(
H

2, [0, T )
)

be a bounded solu-
tion of (C.2) s.t. u0 := u(·, 0) is uniformly continuous. Then u(·, t) → u0

uniformly.

Proof. Pick a point p0 ∈ H
2 and let up0(t) be the solution to (C.2), which is

constant in space and has initial value u(p0). It is a direct computation to
check that

∂

∂t
(u− up0)

2 = e−uΔh(u− up0)
2 − 2e−u|∇hu|2 + 2(u− up0)(e

−u − e−up0 )

≤ e−uΔh(u− up0)
2 − 2e−u|∇hu|2.

By a similar argument as in Lemma A.2, but now for small radii, one obtains
the desired closeness-estimate. �
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Corollary C.1. Any bounded solution to (C.1) in C∞ (
H

2, (0,∞)
) ∩ C0(

H
2, [0, T )

)
with initial data u0, which is uniformly continuous with respect

to the hyperbolic metric, is unique. As t→ ∞, u(·, t) → 0 exponentially
in C∞.
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