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Some integral curvature estimates for the

Ricci flow in four dimensions

Miles Simon

We consider solutions (M4, g(t)), 0 ≤ t < T , to Ricci flow on com-
pact, four dimensional manifolds without boundary. We prove in-
tegral curvature estimates which are valid for any such solution.
In the case that the scalar curvature is bounded and T < ∞, we
show that these estimates imply that the (spatial) integral of the
square of the norm of the Riemannian curvature is bounded by a
constant independent of time t for all 0 ≤ t < T and that the space
time integral over M × [0, T ) of the fourth power of the norm of
the Ricci curvature is bounded.

1. Introduction

We consider arbitrary smooth solutions to Ricci flow, ∂
∂tg(t) = −2Rc(g(t))

for all t ∈ [0, T ), on closed, four manifolds without boundary. We assume
that the scalar curvature satisfies R(·, 0) > −1 at time zero. If this is not
the case, then we can always scale the solution by a constant to obtain a
new solution satisfying this inequality. The Ricci flow was first introduced
and studied by R. Hamilton in [HaThree]. We show that the following (and
other) integral estimates hold.

Theorem 1.1. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow on a
compact four dimensional manifold M4 without boundary and assume that
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the scalar curvature satisfies infM R(·, 0) > −1 at time zero. Then

∫

M

|Rc|2(·, S)

(R(·, S) + 2)
dµg(S) +

∫ S

0

∫

M

|Rc|4(·, t)

(R(·, t) + 2)2
dµg(t)dt

≤ 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2(·, 0)

(R(·, 0) + 2)
dµg(0)

+ 210e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

=: c0(M, g(0), S) + 210e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and
∫

M
|Rc|(·, S)dµg(S) ≤ vol(M, g(S)) + 2c0(M, g(0), S)(1.1)

+ 211e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and
∫ S

0

∫

M
|Rc|2dµg(t)dt ≤

∫ S

0
vol(M, g(t))dt+ 23c0(M, g(0), S)(1.2)

+ 213e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and
∫ S

0

∫

M
|Rm |2dµg(t)dt ≤ 4

∫ S

0
vol(M, g(t))dt(1.3)

+ 25(c0(M, g(0), S) + π2χS)

+ 215e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

for all 0 ≤ S < T , where χ = χ(M) is the Euler-characteristic of M , and

c0(M, g(0), S) := 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2(·, 0)

(R(·, 0) + 2)
dµg(0)(1.4)

is defined in the statement above.

In the case that the scalar curvature is positive everywhere, a minor
modification of the proof of these estimates leads to similar estimates which
don’t contain volume terms: see Theorem 3.4.
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In the remainder of the paper we consider the special case that T < ∞
and that the solution has bounded scalar curvature, supM4×[0,T ) |R| ≤ 1. In
this case we see, that the above estimates (and the proofs thereof) imply

sup
t∈[0,T )

∫

M
|Riem(·, t)|2dµg(t) ≤ c1 < ∞

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt ≤ c2 < ∞(1.5)

for explicit constants c1 = c1(M, g(0), T ) and c2(M, g(0), T ) (see Thm. 3.6).
In another paper, [BZ], which recently appeared, the authors also con-

sider Ricci flow of four manifolds with bounded scalar curvature. Using
different methods, they also independently showed, in this case, that the
L2 norm of the Riemannian curvature remains bounded as t ↗ T , and
they investigate the structure of the limiting space one obtains by let-
ting t ↗ T : see Theorem 1.8 and Corollary 1.11 of [BZ]. In a sequel paper,
[Si], we examine the structure of (possibly) singular Gromov-Hausdorff lim-
its (X, dX) := limt↗T (M,d(g(t))) that occur when the scalar curvature is
bounded and T < ∞. This limit always exists, and we show that (X, dX)
is a C0-Riemannian orbifold, and that it is possible to flow this space for a
short time using the orbifold Ricci flow.

2. Background, previous results and notation

Here we list some integral curvature estimates that have been shown to hold
for the Ricci flow in a general setting. This is by no means an exhaustive
list. For more references, we refer to references in the papers we have listed
here.

In the paper, [HaSurface], the author showed that

∫

M
(R logR)(·, t)dµg(t) ≤

∫

M
(R logR)(·, 0)dµg(0)

for all t > 0, for any solution to the normalised Ricci flow ∂
∂tg = −2Rc + rg

on a surface (that is, on a two dimensional manifold) which has R(·, 0) > 0,

where r(t) :=
∫
M

R(·,t)dµg(t)

vol(M,g(t)) (see Theorem 7.2 in [HaSurface]). In [ChowI], the
author showed that

∫ ∞

0

∫

M
(R(·, t)− r(t))2dµg(t)dt < ∞

for any solution to Ricci flow on the sphere.
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In the paper [TZ], the authors proved integral curvature estimates for
solutions to the normalised Kähler Ricci flow on compact manifolds with
bounded diameter and positive scalar curvature (these solutions exist for
all time and have bounded scalar curvature and diameter due to a result of
Perelman: see [ST]). In particular, they show there, that
∫

Mn(|Riem |2 + |Ricci|4)(·, t)dµg(t) ≤ Λ for all t > 0 for some Λ < ∞. This
estimate is obtained by showing that various integral quantities containing
derivatives of the potential function remain bounded as time increases, and
using then the Chern-Weil Theory (see Section 4 of the paper [TZ] for details,
in particular Lemma 4.2 and Theorem 4.5 there).

As we mentioned in the introduction, in the paper [BZ] the authors
independently recently showed, that if the scalar curvature is bounded on
[0, T ) and Mn = M4 is a four dimensional smooth closed manifold, then the
L2 integral of the Riemannian curvature remains bounded as t ↗ T , and
they investigate the structure of the limiting space one obtains by letting
t ↗ T : see Theorem 1.8 and Corollary 1.11 in [BZ].

Notation. We use the Einstein summation convention, and we use the
notation of Hamilton [HaThree].

For i ∈ {1, . . . , n}, ∂
∂xi denotes a coordinate vector, and dxi is the corre-

sponding one form.
(Mn, g) is an n-dimensional Riemannian manifold with Riemannian met-

ric g.
gij = g( ∂

∂xi ,
∂
∂xi ) is the Riemannian metric g with respect to this coordi-

nate system.
gij is the inverse of the Riemannian metric (gijgik = δjk).
dµg is the volume form associated to g.
Rm(g)ijkl =

g Riemijkl = Riem(g)ijkl = Rijkl is the full Riemannian cur-
vature Tensor.

Weil(g)ijkl is the Weil Tensor.
gRcij = Ricciij = Rij := gklRikjl is the Ricci curvature.
R := Rijklg

ikgjl is the scalar curvature.
g∇T = ∇T is the covariant derivative of T with respect to g. For ex-

ample, locally ∇iT
s
jk = (∇T )( ∂

∂xi ,
∂

∂xj ,
∂

∂xk , dx
s) (the first index denotes the

direction in which the covariant derivative is taken) if locally T = T s
jkdx

j ⊗

dxk ⊗ ∂
∂xs .

|T | = g|T | is the norm of a tensor with respect to a metric g. For example
for T = T s

jkdx
j ⊗ dxk ⊗ ∂

∂xs . |T |2 = gimgjngksT
s
ijT

k
mn.
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Sometimes we make it clearer which Riemannian metric we are consid-
ering by including the metric in the definition. For example R(h) refers to
the scalar curvature of the Riemannian metric h.

We suppress the g in the notation used for the norm, |T | = g|T |, and
for other quantities, in the case that is is clear from the context which
Riemannian metric we are considering.

3. Integral Inequalities in four dimensions

In this paper we consider (unless otherwise stated) smooth families of Rie-
mannian metrics (Mn, g(t))t∈[0,T ) on n dimensional compact, connected man-
ifolds without boundary which solve the Ricci flow equation

∂

∂t
g(t) = −2Ricci(g(t)),

for all t ∈ [0, T ). We will mainly be interested in the case that n = 4.
The following evolution equations hold for the Ricci flow (see [HaThree])

∂

∂t
|Rc|2 = ∆|Rc|2 − 2|∇Rc|2 + 4Rmikjl RcijRckl

∂

∂t
R = ∆R+ 2|Rc|2.

(3.1)

Applying the maximum principle to the evolution equation for R above,
we obtain the following well known fact: if R(x, 0) ≥ c then R(x, t) ≥ c for all
x ∈ M and all t ∈ [0, T ). In the following, we will assume (unless otherwise
stated), that the scalar curvature is bounded from below by −1 for all times:

if it is not then we may scale the solution g(·, t) by g̃(·, t̃) := cg(·, t̃
c), where

c := | infx∈M R(x, 0)| > 0 to obtain a new solution (M, g̃(t̃))t∈[0,T̃ ), where

T̃ := cT , which satisfies infM R̃(x, t̃) ≥ −1 for all 0 ≤ t̃ < T̃ .

This means that the function f := |Rc|2

R+2 is well defined.
In the proof of Lemma 3.2 of [CaoX] the two evolution equations above

were combined to obtain the following evolution equation for f := |Rc|2

R+c at
any point in space time where R + c > 0 (see also ’Main Theorem’ in [Knopf],
where related evolution inequalities are shown).

∂

∂t
f = ∆f − 2

|Z|2

(R + c)3
− 2

|Rc|4

(R + c)2
+ 4

Rm(Rc,Rc)

(R + c)
(3.2)
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where Rm(Rc,Rc) is the function given locally by

Rm(Rc,Rc) = Rmikjl RcijRckl and

Z := (∇Ricci)(R + c)− (∇R)(Ricci)

is the tensor given locally by Zkis := (∇kRc)is(R + c)− (∇k(R + c))(Rcis).
The evolution equation for the integral of f is then given as follows.

Lemma 3.1. Let (Mn, g(t))t∈[0,T ) be a smooth solution to Ricci flow on a
four dimensional compact manifold Mn without boundary and assume that
infM R(·, 0) > c. Then

(3.3)
d

dt

∫

M
fdµg =

∫

M

(

−2
|Z|2

(R + c)3
− 2f2 + 4

Rm(Rc,Rc)

(R + c)
− fR

)

dµg

for f := |Rc|2

R+c .

Proof. Use the above evolution equation for f with the fact that ∂
∂tdµg =

−Rdµg (see [HaThree] for this last fact). □

As we mentioned above, there is no great loss of generality in assuming
infM R(·, t) ≥ −1 for all t ∈ [0, T ), and so we may choose c = 2 (the special
case that R > 0 everywhere, in which case we choose c = 0, will be handled
below separately). We will estimate the last two terms appearing on the right
hand side of the integral equality (3.3) using: (i) the Euler characteristic χ,
(ii) the good (second) negative term on the right hand side of the above
equality

Theorem 3.2. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow on a
four dimensional compact manifold M4 without boundary and assume that
infM R(·, 0) > −1. Then

d

dt

∫

M
fdµg ≤ 28π2χ+

∫

M
(−f2 + 64f + 210R2) dµg(3.4)

for f := |Rc|2

R+2 .

Proof. We estimate the third term appearing on the right hand side of (3.3)

with Young’s inequality (remembering that we have now fixed f = |Rc|2

R+2 in
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the definition of f ):

4
Rm(Rc,Rc)

(R + 2)
≤

|Rc|4

2(R + 2)2
+ 8|Riem |2(3.5)

=
|Rc|4

2(R + 2)2
+ 8(|Riem |2 − 4|Rc|2 +R2) + 32|Rc|2 − 8R2

=
f2

2
+ 8I + 32|Rc|2 − 8R2

where I = |Riem |2 − 4|Rc|2 +R2 is the integrand occurring in the gener-
alised Gauss-Bonnet Theorem, and I satisfies

(3.6)

∫

M
I dµg = 25π2χ

where χ = χ(M) is the Euler characteristic of M (see notes in Appendix A).
Note that if M is not oriented, then this formula is correct with χ(M) :=
1
2χ(M̃) where M̃ is the double cover of M ,which is oriented (see Theorem

13.9 [Lee]), and χ(M̃) is the Euler-characteristic of M̃ . The second last

term of the above inequality is 32|Rc|2 = 32f(R + 2) = 32fR+ 64f ≤ f2

4 +
210R2 + 64f. Hence

4
Rm(Rc,Rc)

(R + 2)
≤

f2

2
+ 8I +

f2

4
+ 210R2 + 64f − 8R2(3.7)

Also,

(3.8) − fR ≤
f2

4
+ R2

Combining these two estimates we obtain

(3.9) − 2f2 + 4
Rm(Rc,Rc)

(R + 2)
− fR ≤ −f2 + 8I + 210R2 + 64f.

Using this inequality in the equality (3.3) of the lemma above, we get

d

dt

∫

M
fdµg =

∫

M

(

−2
|Z|2

(R + 2)3
− 2f2 + 4

Rm(Rc,Rc)

(R + 2)
− fR

)

dµg

≤

∫

M
(−f2 + 8I + 210R2 + 64f)dµg

= 28π2χ+

∫

M
(−f2 + 64f + 210R2)dµg
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as required. □

Integrating this inequality with respect to time, we obtain

Corollary 3.3. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow on
a compact four dimensional manifold M4 without boundary and assume that
infM R(·, 0) > −1. Then

∫

M

|Rc|2(·, S)

(R(·, S) + 2)
dµg(S) +

∫ S

0

∫

M

|Rc|4(·, t)

(R(·, t) + 2)2
dµg(t)dt(3.10)

≤ 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2(·, 0)

(R(·, 0) + 2)
dµg(0)

+ 210e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

=: c0(M, g(0), S) + 210e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt,

∫

M
|Rc|(·, S)dµg(S)(3.11)

≤ vol(M, g(S)) + 2c0(M, g(0), S) + 211e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and

∫ S

0

∫

M
|Rc|2dµg(t)dt ≤

∫ S

0
vol(M, g(t))dt+ 23c0(M, g(0), S)(3.12)

+ 213e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and

∫ S

0

∫

M
|Rm |2dµg(t)dt ≤ 4

∫ S

0
vol(M, g(t))dt+ 25(c0(M, g(0), S)(3.13)

+ π2χS) + 215e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

for all 0 ≤ S < T , where χ = χ(M) is the Euler-characteristic of M , and

(3.14) c0(M, g(0), S) := 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2(·, 0)

(R(·, 0) + 2)
dµg(0)

is defined in the statement above.
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Proof. Using the inequality (3.4), we see that

d

dt
(e−64t

∫

M
f(·, t)dµg(t)) + e−64t

∫

M
f2(·, t)dµg(t)(3.15)

≤ e−64t28π2χ+ e−64t

∫

M
210R2(·, t)dµg(t)

Integrating this inequality from 0 to S implies

e−64S

∫

M
f(·, S)dµg(S) + e−64S

∫ S

0

∫

M
f2(·, t)dµg(t)dt(3.16)

≤ e−64S

∫

M
f(·, S)dµg(S) +

∫ S

0
e−64t

∫

M
f2(·, t)dµg(t)dt

=

∫ S

0

(

d

dt
(e−64t

∫

M
f(·, t)dµg(t)) + e−64t

∫

M
f2(·, t)dµg(t)

)

dt

+

∫

M
f(·, 0)dµg(0)

≤

∫ S

0
e−64t28π2χdt+

∫ S

0
e−64t

∫

M
210R2(·, t)dµg(t)dt

+

∫

M
f(·, 0)dµg(0)

= −4(e−64S − 1)π2χ+

∫ S

0
e−64t

∫

M
210R2(·, t)dµg(t)dt

+

∫

M
f(·, 0)dµg(0)

≤ 4(1− e−64S)π2χ+

∫ S

0

∫

M
210R2(·, t)dµg(t)dt

+

∫

M
f(·, 0)dµg(0)

which, after multiplying by e64S , gives us the first integral inequality (3.10).
The second inequality can be obtained from the first as follows.

|Rc| ≤
|Rc|2

(R + 1)
+

(R + 1)

4
(3.17)

≤
|Rc|2

(R + 1)
+

|R|

4
+

1

4

≤
|Rc|2

(R + 1)
+

|Rc|

2
+

1

4
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in view of the fact that (in four dimensions) |R| ≤ 2|Rc|, and hence

(3.18) |Rc| ≤
2|Rc|2

(R + 1)
+ 1.

The third inequality can be obtained from the first as follows.

|Rc|2 ≤
4|Rc|4

(R + 1)2
+

(R + 1)2

16
(3.19)

≤
4|Rc|4

(R + 1)2
+

|R|2

8
+

1

8

≤
4|Rc|4

(R + 1)2
+

|Rc|2

2
+

1

8

since |R|2 ≤ 4|Rc|2 in four dimensions, and hence

|Rc|2 ≤
8|Rc|4

(R + 1)2
+ 1.

The last inequality follows from the third inequality in view of the gener-
alised Gauss-Bonnet theorem. □

In the case that R > 0 everywhere, we may consider the function f =
|Rc|2

R , that is we choose c = 0. In this case, some of the terms in the integral
inequalities above simplify. In particular, the volume terms don’t appear.

Theorem 3.4. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow on a
compact four dimensional manifold M4 without boundary and assume that
infM R(·, 0) > 0. Then

∫

M
|Rc|(·, S)dµg(S) ≤ 2a0(M, g(0), S)(3.20)

+ 211e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

and

∫ S

0

∫

M
|Rc|2dµg(t)dt ≤ 23a0(M, g(0), S)(3.21)

+ 213e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt
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and

∫ S

0

∫

M
|Rm |2dµg(t)dt ≤ 25π2χS + 25a0(M, g(0), S)(3.22)

+ 215e64S
∫ S

0

∫

M
R2(·, t)dµg(t)dt

for all 0 ≤ S < T , where χ = χ(M) is the Euler-characteristic of M , and

(3.23) a0(M, g(0), S) := 22π2χ(e64S − 1) + e64S
∫

M

|Rc|2

R
(·, 0)dµg(0).

Proof. We repeat the argument given in the proof of Theorem 3.2, but we
use the function f = |Rc|2

R in place of f = |Rc|2

R+2 . We use the fact that |Rc| =
|Rc|2

|Rc| ≤ 2 |Rc|2

R = 2f in four dimensions in the last part of the argument to get

(3.20) and (3.21). The generalised Gauss-Bonnet theorem implies the last
inequality (3.22). □

In the rest of this paper we often consider solutions (M4, g(t))t∈[0,T )

which satisfy the following basic assumptions.

(a) M4 is a smooth, compact, connected four dimensional manifold with-
out boundary

(b) (M4, g(t))t∈[0,T ) is a smooth solution to the Ricci flow ∂
∂tg(t) =

−2Ricci(g(t)) for all t ∈ [0, T )

(c) T < ∞

(d) supM4×[0,T ) |R(x, t)| ≤ 1

If instead of (d) we only have supM×[0,T ) |R(x, t)| ≤ K < ∞ for some con-

stant 1 < K < ∞, then we may rescale the solution g̃(·, t̃) := Kg(·, t̃
K ) to

obtain a new solution (M, g̃(t̃))t∈[0,T̃ ), where T̃ := KT , which satisfies the
basic assumptions.

Note that a solution which satisfies the basic assumptions also satisfies
R(x, t) + 2 > 0 for all x ∈ M for all t ∈ [0, T ) and hence f := |Rc|2

R+2 is a well
defined function.

For solutions satisfying the basic assumptions, a slight modification of
the above arguments leads to the following.
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Theorem 3.5. Let (M4, g(t))t∈[0,T ) be a solution to Ricci flow satisfying
the basic assumptions. Then

(3.24)
d

dt

∫

M
fdµg ≤ 128π2χ+

∫

M
(−f2 + 50f)dµg

for f := |Rc|2

R+2 , where χ = χ(M) is the Euler characteristic of M .

Proof. Using almost the same argument given at the beginning of the proof
of Theorem 3.2, we see that

4
Rm(Rc,Rc)

(R + 2)
≤ f2 + 4I + 16|Rc|2,(3.25)

where I = |Riem |2 − 4|Rc|2 +R2 is the integrand occurring in the gener-
alised Gauss-Bonnet Theorem. The last term of the above inequality is
16|Rc|2 = 16f(R + 2) ≤ 48f since R ≤ 1. Hence

4
Rm(Rc,Rc)

(R + 2)
≤ f2 + 4I + 48f(3.26)

Also,

(3.27) − fR = −f(R + 2) + 2f ≤ 2f.

Combining these two estimates we obtain

(3.28) − 2f2 + 4
Rm(Rc,Rc)

(R + 2)
− fR ≤ −f2 + 4I + 50f.

Using this inequality in the equality (3.3), we get

d

dt

∫

M
fdµg =

∫

M

(

−2
|Z|2

(R + 2)3
− 2f2 + 4

Rm(Rc,Rc)

(R + 2)
− fR

)

dµg

≤

∫

M
(−f2 + 4I + 50f)dµg

= 128π2χ+

∫

M
(−f2 + 50f)dµg

as required. □
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Theorem 3.6. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow sat-
isfying the basic assumptions. Then we have the following estimates:

∫

M
|Rc|2(·, t)dµg(t) ≤ b(g(0), t) ∀ t ∈ [0, T )(3.29)

∫

M
|Riem |2(·, t)dµg(t) ≤ 32π2χ+ 4b(g(0), t) ∀ t ∈ [0, T )(3.30)

∫ t

0

∫

M
|Rc|4(·, t)dµg(t)dt ≤ b(g(0), t) ∀t ∈ [0, T ](3.31)

∫ T

S

∫

M
|Rc|p(·, t)dµg(t)dt ≤ (|b(g(0), T |)

p

4 e
(4−p)T

4 (vol(M, g(0))
(4−p)

4(3.32)

× |T − S|
(4−p)

4 → 0 as S ↗ T

for all 0 < p < 4, where

(3.33) b(g(0), t) := 50e50t
∫

M
|Rc|2(·, 0)dµg(0) + 128π2χ(e50t − 1)

and χ is the Euler characteristic.

Remark 3.7. In the above inequalities, we may estimate b(g(0), t) and
|b(g(0), t)| by

b(g(0), t) ≤ |b(g(0, t)| ≤ c(g(0), T )

:= 50e50T
∫

M
|Rc|2(·, 0)dµg(0) + 128π2|χ|e50T

Remark 3.8. Note that b(h, s) := b(h̃, s) if h̃ = ch and c > 0, s > 0 are ar-
bitrary, in view of the fact that

∫

M |Rc(h)|2dµh =
∫

M |R̃c(h̃)|2dµh̃ in four
dimensions, as one readily verifies using the definition of Riemannian cur-
vature (see for example the definition given in Section 2 of [HaThree]).

Remark 3.9. In a recent paper, [BZ], the authors independently showed
(among other things) that supt∈[0,T )

∫

M |Rc|2(·, t)dµg(t) < ∞ and

supt∈[0,T )

∫

M |Rm |2(·, t)dµg(t) < ∞ if (M4, g(t))t∈[0,T ) is a solution to Ricci
flow satisfying the basic assumptions. Their method uses estimates on the
heat kernel, which are also proved in their paper, and their method is dif-
ferent from the method presented here.
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Proof. From Theorem (3.5) above we have

d

dt

∫

M
fdµg ≤ 128π2χ+

∫

M
(−f2 + 50f) dµg

and hence

(3.34)
d

ds

(

e−50s

∫

M
f(·, s) dµg(s)

)

≤ e−50s128π2χ− e−50s

∫

M
f2dµg(s)

Integrating both sides of this inequality in time from 0 to t < T , we get

e−50t

∫ t

0

∫

M
f2dµg(s)ds+ e−50t

∫

M
fdµg(t)(3.35)

≤

∫

M
f(·, 0)dµg(0) +

128

50
π2χ(1− e−50t).

Using the definition of f and the fact that 1 ≤ (R + 2) ≤ 3 we see that

(3.36)
|Rc|2

3
≤ f =

|Rc|2

R+ 2
≤ |Rc|2

and hence, using this in (3.35), we see that

e−50t

50

∫ t

0

∫

M
|Rc|4dµg(s)ds+

e−50t

50

∫

M
|Rc|2dµg(t)(3.37)

≤ e−50t

∫ t

0

∫

M
f2dµg(s)ds+ e−50t

∫

M
fdµg(t)

≤

∫

M
f(·, 0)dµg(0) +

128

50
π2χ(1− e−50t)

≤

∫

M
|Rc|2(·, 0)dµg(0) +

128

50
π2χ(1− e−50t)

This gives us the first (3.29) and third (3.31) estimate.
The second inequality, (3.30), follows from the first inequality and the

generalised Gauss-Bonnet Theorem:

∫

M
|Riem |2 dµg = 32π2χ+

∫

M
(4|Rc|2 − R2)dµg(3.38)

≤ 32π2χ+ 4b(g(0), t),

as required.
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The equation for the evolution of the volume is (see Sec. 3 of [HaThree])
d
dt vol(M, g(t)) = −

∫

M Rdµg(t), and hence using |R| ≤ 1 we see that

− vol(M, g(t)) ≤
d

dt
vol(M, g(t)) ≤ vol(M, g(t)).

Integrating this inequality from 0 to t we see that

e−T vol(M, g(0)) ≤ vol(M, g(t)) ≤ eT vol(M, g(0)).

Using Hölder’s inequality and these volume bounds we get for p < 4 and
S < U < T

∫ U

S

∫

M
|Rc|p(·, l)dµg(l)dl(3.39)

≤

(
∫ U

S

∫

M
|Rc|4dµg(l)dl

)p/4(∫ U

S

∫

M
dµg(l)dl

)1/q

≤

(
∫ T

0

∫

M
|Rc|4dµg(l)dl

)p/4

|U − S|
1

q e
T

q

(

vol(M, g(0)
)

1

q

≤ |b(g(0), T )|
p

4 e
T

q (vol(M, g(0))
1

q |U − S|
1

q

where 1
q = 1− p

4 = (4−p)
4 . This implies the fourth inequality, (3.32) above.

This completes the proof. □

In four dimensions,
∫

M |Rc|2dµg and
∫

M |Riem |2dµg are scale invariant
quantities: if g̃ = cg, c > 0, then

∫

M
|R̃c|2dµg̃ =

∫

M
|Rc|2dµg and

∫

M
|Rm |2dµg =

∫

M
|R̃m|2dµg̃,

as can be readily verified using the definition of Riemannian curvature, as
we mentioned above.

These facts help us to obtain inequalities for scaled solutions, as ex-
plained below in the proof of the following theorem.

Theorem 3.10. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow

satisfying the basic assumptions. Let g̃(·, t̃) := cg(·, t̃
c) for 0 ≤ t̃ ≤ T̃ := cT
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for any constant c > 0, and let 0 ≤ S̃ < Ũ ≤ T̃ . Then

∫

M
|R̃c|2(·, t̃)dµg(t̃) ≤ b(g(0), t)(3.40)

∫

M
| ˜Riem|2(·, t̃) dµg(t̃) ≤ 32π2χ+ 4b(g(0), t)(3.41)

for all t̃ ∈ [0, T̃ ], where t := t̃
c . In the case that we additionally assume c ≥ 1,

then we also have

∫ Ũ

S̃

∫

M
|R̃c|4(·, l̃)dµg(l̃)dl̃ ≤ 50e50L̃b(g(0), S) + 128π2χ(e50L̃ − 1)

where L̃ = Ũ − S̃, b(g(0), t) is defined above in (3.33) and t̃ = ct, S = S̃
c .

Remark 3.11. Note that b(g(0), t) is not equal to b(g̃(0), t̃) ) in general:
for fixed t ∈ [0, T ), the quantity b(g̃(0), t̃) → ∞ as c → ∞ for t̃ := ct, if for
example χ > 0. As we mentioned above, we do have however b(g(0), t) =
b(g̃(0), t) for all t > 0.

Proof. The first two inequalities follow from the fact that the left hand side
of the inequality is scale invariant (see the explanation given just before
the statement of this theorem). Now we consider the case that c ≥ 1. De-
fine (M,h(t))t∈[0,L̃:=Ũ−S̃) to be h(s) := g̃(·, S̃ + s). Then (M,h(s))s∈[0,L̃) is
a solution satisfying the basic assumptions, and so we may apply the results
above to obtain

∫ Ũ

S̃

∫

M
|R̃c|4(·, t̃)dµg̃(t̃)dt̃

=

∫ L̃

0

∫

M
|Rc|4(·, t)dµh(t)dt

≤ b(h(0), L̃)

= 50e50L̃
∫

M
|Rc|2(·, 0)dµh(0) + 128π2χ(e50L̃ − 1)

= 50e50L̃
∫

M
|R̃c|2(·, S̃)dµg̃(S̃) + 128π2χ(e50L̃ − 1)

≤ 50e50L̃b(g(0), S) + 128π2χ(e50L̃ − 1)

where the last inequality here follows in view of the first (scale invariant)
inequality (3.40). This finishes the proof. □
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The following corollaries are obtained using the above integral estimates.

Corollary 3.12. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow
on a closed four manifold M satisfying the basic assumptions with T < ∞.
Then

∫ T

0

∫

M
|∇Rc|2dµg(t)dt ≤ B(g(0), T )(3.42)

:=

∫

M
|Rc(·, 0)|2dµg(0) + b(g(0), T ) + 29π2χT

+ 26
(

(e50T − 1)

∫

M
|Rc(·, 0)|2dµg(0) + 128π2χ

(

e50T

50
−

1

50
− T

))

Remark 3.13. Note that B(h, s) = B(ch, s) for all c > 0, for all s > 0,
since this is true for b(h, s), and

∫

M |Rc|2dµg is invariant under scaling (as
we explained above).

Proof. As mentioned above, see (3.1), the evolution equation for |Rc|2 is

∂

∂t
|Rc|2 = ∆|Rc|2 − 2|∇Rc|2 + 4Rm(Rc,Rc).

Integrating this over space and time from 0 to T we get

∫ T

0

∫

M
|∇Rc|2(·, t)µg(t)dt(3.43)

≤

∫

M
|Rc|2(·, 0)dµg(0) +

∫ T

0

∫

M
4|Rm(Rc,Rc)|(·, t)dµg(t)dt

≤

∫

M
|Rc|2(·, 0)dµg(0) +

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt

+

∫ T

0

∫

M
16|Rm |2(·, t)dµg(t)dt
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Now we use the inequalities (3.30) and (3.31) to get

∫ T

0

∫

M
|∇Rc|2dµg(t)dt(3.44)

≤

∫

M
|Rc(·, 0)|2dµg(0) + b(g(0), T ) + 16

∫ T

0
(32π2χ+ 4b(g(0), t))dt

=

∫

M
|Rc(·, 0)|2dµg(0) + b(g(0), T ) + 16 · 32π2χT + 16 · 4 ·

∫ T

0
btdt

=

∫

M
|Rc(·, 0)|2dµg(0) + b(g(0), T ) + 29π2χT

+ 26
(

(e50T − 1)

∫

M
|Rc(·, 0)|2dµg(0) + 128π2χ

(

e50T

50
−

1

50
− T

))

=: B(g(0), T )

as required □

Corollary 3.14. Let (M4, g(t))t∈[0,T ) be a smooth solution to Ricci flow on
a closed four manifold M with T < ∞. Let K := supM×[0,T ) |R| < ∞ and
assume K ≥ 1. Then we have the following estimates:

∫

M
|Rc|2(·, t)dµg(t) ≤ b(g(0),Kt) ∀ t ∈ [0, T )(3.45)

∫

M
|Riem |2(·, t) dµg(t) ≤ 32π2χ+ 4b(g(0),Kt) ∀ t ∈ [0, T )(3.46)

∫ T

0

∫

M
|Rc|4(·, t)dµg(t)dt ≤ Kb(g(0),KT )(3.47)

∫ T

0

∫

M
|∇Rc|2dµg(t)dt ≤ K3B(g(0),KT )(3.48)

where b(g(0), s), B(g(0), s) are as defined in (3.33) and (3.42) (s ∈ [0,∞) is
arbitrary in the definition).

Remark 3.15. If K ≤ 1, then we may estimate the integrals involved using
Theorem 3.6 and Corollary 3.12

Proof. Set g̃(·, t̃) := Kg(·, t̃
K ) for t̃ ∈ [0, TK =: T̃ ]. The result now follows

from Theorem 3.6 and Corollary 3.12 applied to the solution g̃(·, t̃)t∈[0,T̃ ) in
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view of the fact that T̃ = TK and the identities

∫

M
|Rc|2(·, t)dµg(t) =

∫

M
|R̃c|2(·, t̃)dµg̃(t̃),

∫

M
|Rm |2(·, t)dµg(t) =

∫

M
|R̃m|2(·, t̃)dµg̃(t̃),

∫ T

0

∫

M
|Rc|4dµg(t)dt = K

∫ T̃

0

∫

M
|R̃c|4dµg̃(t̃)dt̃,

∫ T

0

∫

M
|∇Rc|4dµg(t)dt = K3

∫ T̃

0

∫

M
|∇̃R̃c|4dµg̃(t̃)dt̃,

which all follow from the scaling, that is g̃(·, t̃) = Kg(·, t̃
K ), and the fact that

B(g(0), s) = B(g̃(0), s), b(g(0), s) = b(g̃(0), s) for all s > 0, as we mentioned
above. □

Appendix A. Notes on the Euler characteristic

In the following, we assume that (Mn, g) is an oriented smooth compact Rie-
mannian manifold without boundary (unless otherwise stated). The Pfaffian
is a second order polynomial obtained using the curvature operator: see sec-
tion 3 in [BG], for example, for a definition. In the case that the Riemannian
manifold (M4, g) we consider has dimension four, the Pfaffian Pf may be
written as Pf = c(|Riem |2 − 4|Rc|2 +R2) volg where volg is the Riemannian
volume form. This may be seen by using the Formula 4.1 and Corollary 4.1
in [BG] ( using the orthonormal basis X1, X2, X3, X4 given at p ∈ M com-
ing from Corollary 4.1 in [BG] we can calculate (|Riem |2 − 4|Rc|2 +R2) volg
and we see that it has the same value ( up to a constant) of Pf at p given in
the Formula 4.1 of [BG] ). It is known ([AW], [Chern]), that the generalised
Gauss-Bonnet formula c(n)

∫

M Pf = χ(M) holds: for an intrinsic explanation
using modern day terminology, see [Br]. One may choose the generic vector
field Y occurring in the explanation of Bryant to be ∇f , where f : M → R

is a morse-function (see section 6 in [Mi] to see that such functions ex-
ist). The Euler characteristic is χ(M) := c0 − c1 + c2 − c3 + · · ·+ (−1)ncn =
b0 − b1 + b2 − b3 + · · ·+ (−1)nbn , where here, bi is the ith Betti-number,
and ci is the number of critical values of degree i : see Theorem 5.2 in [Mi].
So we have a

∫

M (|Riem |2 − 4|Rc|2 +R2) volg = χ(M) for some constant a.
To see that the constant a in this formula is 1

32π2 , calculate the left and right
hand side of this formula in the case that (M, g) is the standard sphere with
sectional curvature equal to one everywhere.
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