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Abstract

Given a three-dimensional Riemannian manifold containing a ball with an ex-
plicit lower bound on its Ricci curvature and positive lower bound on its volume,
we use Ricci flow to perturb the Riemannian metric on the interior to a nearby Rie-
mannian metric still with such lower bounds on its Ricci curvature and volume, but
additionally with uniform bounds on its full curvature tensor and all its derivatives.
The new manifold is near to the old one not just in the Gromov-Hausdorff sense,
but also in the sense that the distance function is uniformly close to what it was
before, and additionally we have Hölder/Lipschitz equivalence of the old and new
manifolds.

One consequence is that we obtain a local bi-Hölder correspondence between
Ricci limit spaces in three dimensions and smooth manifolds. This is more than
a complete resolution of the three-dimensional case of the conjecture of Anderson-
Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must
be homeomorphic to manifolds, and we obtain this in the most general, locally non-
collapsed case. The proofs build on results and ideas from recent papers of Hochard
and the current authors.
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1 Introduction

Since its introduction in 1982 by Hamilton, Ricci flow has become central to our efforts
to understand the topology of manifolds that are either low dimensional, or that satisfy
a curvature condition. See for example [14, 22, 3, 4]. Loosely speaking, the strategy is
to allow Ricci flow to evolve such a manifold into one that we can recognise. In this
paper we investigate the use of Ricci flow in a different direction. We study its use as a
local mollifier of Riemannian metrics, taking an initial metric that is coarsely controlled
on some local region, and giving back a smooth metric satisfying good estimates on a
slightly smaller region.
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We will apply our theory in order to understand Ricci limit spaces, i.e. Gromov-Hausdorff
limits of sequences of manifolds with a uniform lower bound on their Ricci tensors, and
a uniform positive lower bound on the volume of one unit ball.

Our main Ricci flow result is the following theorem, which applies to Riemannian 3-
manifolds that are not assumed to be complete. The result without the uniform con-
clusions on Ricci curvature, volume and distance follows from recent work of Hochard
[16], and our proof crucially uses some of his ideas as we describe later. We will use
our uniform conclusions on Ricci curvature, volume and distance in applications to Ricci
limit spaces.

Theorem 1.1 (Mollification theorem). Suppose that (M3, g0) is a Riemannian manifold,
x0 ∈M , Bg0(x0, 1) ⊂⊂M , with geometry controlled by{

Ricg0 ≥ −α0 < 0 on Bg0(x0, 1)

VolBg0(x0, 1) ≥ v0 > 0
(1.1)

Then for any ε ∈ (0, 1/10), there exist T, v, α, c0 > 0 depending only on α0, v0 and ε,
and a Ricci flow g(t) defined for t ∈ [0, T ] on the slightly smaller ball B := Bg0(x0, 1−ε),
with g(0) = g0 on B, such that for each t ∈ [0, T ], Bg(t)(x0, 1 − 2ε) ⊂⊂ B where the
Ricci flow is defined, and{

Ricg(t) ≥ −α on B

VolBg(t)(x0, 1− 2ε) ≥ v > 0.
(1.2)

Moreover, the curvature tensor and all its derivatives are controlled according to{
|Rm|g(t) ≤ c0/t∣∣∇kRm

∣∣
g(t)
≤ C(k, α0, v0, ε)/t

1+ k
2

(1.3)

on B for all t ∈ (0, T ] and k ∈ N. If we fix s ∈ [0, T ] and x, y ∈ Bg(s)(x0, 12 − 2ε), then

x, y ∈ Bg(t)(x0, 12 − ε) for all t ∈ [0, T ] so the infimum length of curves connecting x and
y within (B, g(t)) is realised by a geodesic within Bg(t)(x0, 1 − 2ε) ⊂ B where the Ricci
flow is defined. Moreover, for any t ∈ [0, T ], and such x and y, we have

dg0(x, y)− β
√
c0t ≤ dg(t)(x, y) ≤ eαtdg0(x, y), (1.4)

where β = β(n) ≥ 1, and the Hölder estimate

dg0(x, y) ≤ γ
[
dg(t)(x, y)

] 1
1+4c0

where γ <∞ depends only on c0.

Remark 1.2. We clarify that within a Riemannian manifold (M, g), containing a point
x, we write VolBg(x, r) for the volume (with respect to g) of a ball Bg(x, r) centred at
x of radius r (with respect to g). Later we allow r ∈ R, and if r ≤ 0, the ball is empty
and the volume zero.

There is an implicit subtlety in considering Riemannian distances on incomplete Rie-
mannian manifolds that we avoid in the theorem above through the assertions that

x, y ∈ Bg(t)(x0, 12 − ε) and Bg(t)(x0, 1− 2ε) ⊂⊂ B,

as we explain in the following general remark (with R = 1− 2ε).

Remark 1.3. If we have a Riemannian manifold (N, g), and we are considering a ball
Bg(x0, R) ⊂⊂ N , then we can make sense of the distance between two points x, y ∈
Bg(x0, R) in two ways – either as the infimum length of connecting paths that remain
within Bg(x0, R), or as the infimum length of such paths that may stray anywhere within
N . In general, the latter distance will be shorter. However, we observe that if we are sure
that x and y lie within the half ball Bg(x0, R/2), then these two distances must agree,
and there exists a minimising geodesic between x and y that remains within Bg(x0, R).
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Locally defined Ricci flows were considered by D.Yang, assuming volume bounds from
below, supercritical integral bounds on the initial Ricci curvature and a smallness con-
dition on the Ln/2 norm of the initial Riemannian curvature tensor. See [28, Theorem
9.2]. One could also draw a comparison with the theory of Ricci flows on manifolds
with boundary, see the work of Gianniotis [13] and the references therein. They are also
considered in the work of Hochard [16].

In this paper we apply the local Ricci flow we construct in Theorem 1.1 to understand
the geometry of so-called Ricci limit spaces, i.e. the metric spaces that arise as limits of
manifolds with a uniform lower Ricci bound, and a positive uniform lower bound on the
volume of one unit ball. Such limits need not be smooth; it is easy to see that a metric
cone can arise as such a limit, even in two dimensions, and similarly we can even have
a dense set of cone points (e.g. [6, Example 0.29]). All such cone points are singular
points, defined to be the points in the limit for which there exists a tangent cone that
is not Euclidean space. Nevertheless, the following theorem establishes that in (up to)
three dimensions, Ricci limit spaces are locally bi-Hölder to smooth manifolds.

Theorem 1.4 (Ricci limits in 3D are bi-Hölder homeomorphic to smooth manifolds
locally). Suppose that (M3

i , gi) is a sequence of (not necessarily complete) Riemannian
manifolds such that for all i we have xi ∈Mi, Bgi(xi, 1) ⊂⊂Mi, and{

Ricgi ≥ −α0 < 0 on Bgi(xi, 1)

VolBgi(xi, 1) ≥ v0 > 0.
(1.5)

Then there exist a smooth three-dimensional manifold without boundary M, contain-
ing a point x0, and a metric1 d0 : M ×M → [0,∞) generating the same topology
as M such that Bd0(x0, 1/10) ⊂⊂ M and so that after passing to a subsequence the
compact metric spaces (Bgi(xi, 1/10), dgi) Gromov-Hausdorff converge to (B, d0), where

B = Bd0(x0, 1/10).

Moreover there exists a sequence of smooth maps ϕi :M→ Bgi(xi, 1/2) ⊂Mi, mapping
x0 to xi, diffeomorphic onto their images, such that

dgi(ϕi(x), ϕi(y))→ d0(x, y) uniformly for (x, y) ∈ B × B,

as i→∞, and for all η ∈ (0, 1/100),

Bgi(xi, 1/10− η) ⊂ ϕi(B) ⊂ Bgi(xi, 1/10 + η), (1.6)

for sufficiently large i.

Finally, for any smooth Riemannian metric g on M, the identity map (B, dg)→ (B, d0)
is Hölder continuous. Conversely, the identity map (B, d0)→ (B, dg) is Lipschitz contin-
uous.

Here, and elsewhere in this paper, we assume implicitly that all manifolds are connected.

The assertion concerning the maps ϕi is not only implying the previous Gromov-Hausdorff
convergence, even pointed Gromov-Hausdorff convergence, but is also saying that we may
essentially take the Gromov-Hausdorff approximations to be smooth.

To clarify, when we write (Bgi(xi, 1/10), dgi), we are referring to the metric dgi defined

on the whole of (Mi, gi), which is subsequently restricted to Bgi(xi, 1/10), which need not
agree with the infimum of lengths of connecting paths that remain within this 1/10-ball
itself, cf. Remark 1.3.

1in the sense of metric spaces
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The proof of this theorem, given in Section 6, relies on being able to flow the sequence
(Mi, gi) locally using the Mollification theorem 1.1. In particular, the lower Ricci bounds
of that theorem will be crucial, and these in turn rely on the work in [25].

As indicated earlier, the regular set of a Ricci limit space is the set of points at which all
tangent cones are Euclidean space (here R3). There is a bigger space, the ε-regular set
Rε that is roughly the set of points at which the limit is within ε of being Euclidean on
sufficiently small scales, in a scaled sense. In the example above with a possibly dense set
of cone points, Rε would include the cone points that have sufficiently small cone angle.
It is a theorem of Cheeger-Colding [7, Theorem 5.14] that for sufficiently small ε > 0,
the interior of Rε is bi-Hölder homeomorphic to a smooth manifold. In particular, in the
special case that the singular set is empty, their theorem implies bi-Hölder equivalence.

Theorem 1.4 has various corollaries, for example:

Corollary 1.5 (Conjecture of Anderson, Cheeger, Colding, Tian, 3D case). Suppose
that (M3

i , gi) is a sequence of complete Riemannian manifolds such that for all i we have
yi ∈Mi, and {

Ricgi ≥ −α0 < 0 throughout Mi

VolBgi(yi, 1) ≥ v0 > 0.
(1.7)

Then there exist a three-dimensional topological manifold M and a metric d : M ×M →
[0,∞) generating the same topology as M and making (M,d) a complete metric space,
such that after passing to a subsequence, we have

(Mi, dgi , yi)→ (M,d, y0)

in the pointed Gromov-Hausdorff sense, for some y0 ∈M . The charts of M can be taken
to be bi-Hölder with respect to d.

For the definition of pointed Gromov-Hausdorff convergence, see [5, Definition 8.1.1].

Corollary 1.5 solves the conjecture made in [7], Conjecture 0.7 for three-dimensional
manifolds. See also, for example [8, Remark 1.19] and [6, Remark 10.23]. A related
conjecture of Anderson, see [1, Conjecture 2.3] and [7, Conjecture 0.8], constrains the
singular set when one assumes in addition that the Ricci curvature is bounded from above.
In three dimensions, that conjecture would reduce to the singular set being empty, which
would imply the bi-Hölder equivalence that we have proved. Another situation in which
the singular set can be shown to be empty in three-dimensions is when one assumes, in
addition, Lp control on the curvature tensor, for appropriately large p [8]. In contrast,
our work is allowing cone points in the limit, and indeed cone points that are not close
to being Euclidean.

Of course, the existence of some Gromov-Hausdorff limit, after passing to a subsequence,
is an immediate consequence of Gromov compactness. Our results says that this limit
can be assumed to be homeomorphic to a smooth manifold. This is in contrast to the
higher dimensional case, as can be seen by blowing down the Eguchi-Hanson (Ricci
flat) metric, which will converge to the quotient of R4 by the map x 7→ −x, which is
not homeomorphic to any manifold. The conjecture for higher dimensions is that the
interior of the complement of the codimension 4 stratum of the singular set should be
homeomorphic to a topological manifold [7, Conjecture 0.7].

Note that the noncollapsedness condition in the corollary above is that the volume of
one unit ball is uniformly bounded below. It is expected that it is not possible to start
the Ricci flow globally with such a manifold. If we weaken the claim of the corollary and
assume a uniform lower bound on the volume of all unit balls, i.e. even as we move the
centre-point around, then one now can start the Ricci flow globally (cf. Theorem 1.7 or
[16]) and the result would follow from a combination of [25] and [16]. Raphael Hochard
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has informed us that a future revision of his paper [16] will contain a complete proof of
this latter result. His current preprint proceeds without establishing uniform lower Ricci
bounds. Earlier results of the first author have established this result under additional
hypotheses [23].

We will give the proof of Corollary 1.5 in Section 7. The same proof will work if we
merely assume that for each r > 0, the Ricci curvature is uniformly bounded below on
balls Bgi(yi, r), with the bound depending on r but being independent of i.

The existence part of the Mollification theorem 1.1 will be deduced by rescaling the
following main local (in space) existence theorem. Some important ideas in the proof
arise first in the work of Hochard [16], where related results without the uniform Ricci
control were proved.

Theorem 1.6 (Local existence theorem in 3D). Suppose s0 ≥ 4. Suppose further that
(M3, g0) is a Riemannian manifold, x0 ∈M , Bg0(x0, s0) ⊂⊂M , and{

Ricg0 ≥ −α0 < 0 on Bg0(x0, s0)

VolBg0(x, 1) ≥ v0 > 0 for all x ∈ Bg0(x0, s0 − 1).
(1.8)

Then there exist T, α, c0 > 0 depending only on α0 and v0, and a Ricci flow g(t) defined
for t ∈ [0, T ] on Bg0(x0, s0 − 2), with g(0) = g0 where defined, such that{

Ricg(t) ≥ −α on Bg0(x0, s0 − 2)

|Rm|g(t) ≤ c0/t on Bg0(x0, s0 − 2)
(1.9)

for all t ∈ (0, T ].

The curvature upper and lower bounds in this theorem will give us good control on the
distance function, via a refinement of [25, Lemma 3.4], valid in any dimension, that is
given in Lemma 3.1 below. In particular, although g(t) is not assumed to be complete,
this control will guarantee that the Ricci flow is ‘big enough’.

Theorem 1.6 is stated in a way that allows us to apply it on larger and larger balls within a
complete Riemannian manifold (M3, g0), to give local Ricci flows with enough regularity
to give compactness. That is, a subsequence will converge to a Ricci flow starting with
(M3, g0) that enjoys the same geometric control as the initial data. The existence of a
Ricci flow without the uniform control on Ricci curvature and volume, and without the
control on how the distance function can increase, was first proved by Hochard [16], and
the following result could be proved indirectly by combining the results of [16] and [25].

Theorem 1.7 (Global existence theorem in 3D). Suppose that (M3, g0) is a complete
Riemannian manifold with the properties that{

Ricg0 ≥ −α0 < 0

VolBg0(x, 1) ≥ v0 > 0 for all x ∈M.
(1.10)

Then there exist T, v, α, c0 > 0 depending only on α0 and v0, and a smooth, complete
Ricci flow g(t) defined for t ∈ [0, T ] on M , with g(0) = g0, such that

Ricg(t) ≥ −α
VolBg(t)(x, 1) ≥ v > 0 for all x ∈M
|Rm|g(t) ≤ c0/t throughout M

(1.11)

for all t ∈ (0, T ]. Moreover, for any 0 ≤ t1 ≤ t2 ≤ T , and any x, y ∈M , we have

dg(t1)(x, y)− β
√
c0(
√
t2 −

√
t1) ≤ dg(t2)(x, y) ≤ eα(t2−t1)dg(t1)(x, y), (1.12)

where β = β(n).
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We prove Theorem 1.7 in Section 8.

Finally, as a variation of the ideas above, we record that it is possible to run the Ricci
flow starting with appropriate rough data.

Theorem 1.8 (Ricci flow from a uniformly noncollapsed 3D Ricci limit space). Suppose
that (M3

i , gi) is a sequence of complete Riemannian manifolds such that for all i we have
xi ∈Mi, and {

Ricgi ≥ −α0 < 0 throughout Mi

VolBgi(x, 1) ≥ v0 > 0 for all x ∈Mi.
(1.13)

Then there exists a smooth manifold M , a point x∞ ∈M , a complete Ricci flow g(t) on
M for t ∈ (0, T ], where T > 0 depends only on α0 and v0, and a continuous distance
metric d0 on M such that dg(t) → d0 locally uniformly as t ↓ 0, and after passing to a
subsequence in i we have that (Mi, dgi , xi) converges in the pointed Gromov-Hausdorff
sense to (M,d0, x∞). Furthermore, the Ricci flow satisfies the estimates (1.11) and
(1.12) for some α, v, c0 > 0 depending only on α0 and v0.

We give the proof of Theorem 1.8 in Section 9.

Recent progress: Since this paper was released on arXiv, there have been several refine-
ments and applications of our work made. In [19], Lee and Tam use the ideas in this
work to address a special case of Yau’s uniformisation conjecture. In [20], our work is
refined to give a global version of Corollary 1.5 using pyramid Ricci flows. In [18], Lai
demonstrates that our proof works in higher dimensions if an appropriate substitution for
the Double Bootstrap Lemma 4.2 is made, based on the estimates of Bamler, Cabezas-
Rivas and Wilking [2]. These latter estimates have since been localised by Hochard [17],
giving a higher-dimensional version of our Double Bootstrap Lemma 4.2 for suitably
stronger curvature hypotheses. This subsequently allows a global higher-dimensional
result to be proved [21]. Lai’s work [18] also incorporates the bi-Hölder estimates devel-
oped in Lemma 3.1 of this paper. Finally, it has been pointed out to us by De Philippis,
Mondino and Gigli separately that our work settles the question of whether noncollapsed
Ricci limit spaces coincide with the corresponding RCD spaces – see [27, Remark 3.12]
for a discussion.

Acknowledgements: The first author was supported by the Priority Program ‘Geometry
at Infinity’ (SPP 2026) of the German Research Foundation (DFG). The second author
was supported by EPSRC grant number EP/K00865X/1.

2 Expanding and Shrinking Balls lemmata

In this section we record the two main local ball inclusion lemmas from [25]. In fact, the
first is a refinement of the result from [25], which we will need in Section 6.

Lemma 2.1 (The expanding balls lemma, cf. [25, Lemma 3.1]). Suppose (M, g(t))
is a Ricci flow for t ∈ [−T, 0], T > 0, on a manifold M of any dimension. Suppose
that x0 ∈ M and that Bg(0)(x0, R) ⊂⊂ M and Ricg(t) ≥ −K < 0 on Bg(0)(x0, R) ∩
Bg(t)(x0, Re

Kt) ⊂ Bg(t)(x0, R) for each t ∈ [−T, 0]. Then

Bg(0)(x0, R) ⊃ Bg(t)(x0, ReKt) (2.1)

for all t ∈ [−T, 0].

Proof. It suffices to show that for α ∈ (0, 1) arbitrarily close to 1 we have

Bg(0)(x0, R) ⊃ Bg(t)(x0, Rαe
Kt
α ) for all t ∈ [−T, 0]. (2.2)
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This assertion is clearly true for t = 0, and by smoothness, also for t < 0 sufficiently
close to 0 (depending on α amongst other things). If (2.2) were not true, then we
could let t0 ∈ [−T, 0] be the supremum of the times at which the inclusion fails, and by

smoothness it will fail also at time t0. Thus we can find y ∈ Bg(t0)(x0, Rαe
Kt0
α ) such

that dg(0)(x0, y) = R. Pick a minimising unit speed geodesic γ, with respect to g(t0),

connecting x0 and y that lies within both Bg(t0)(x0, Rαe
Kt0
α ) ⊂ Bg(t0)(x0, Re

Kt0) and

Bg(0)(x0, R) where Ricg(t0) ≥ −K. We have

Lg(t0)(γ) ≤ Rαe
Kt0
α , (2.3)

and by the flow equation

d

dt

∣∣∣∣
t=t0

Lg(t)(γ) = −
∫
γ

Ric(γ̇, γ̇) ≤ KLg(t0)(γ). (2.4)

Because t0 is the supremum time at which the inclusion of (2.2) fails, for t ∈ (t0, 0] we

have Lg(t)(γ) > Rαe
Kt
α , and subtracting (2.3) gives

Lg(t)(γ)− Lg(t0)(γ) > Rα(e
Kt
α − e

Kt0
α ).

Dividing by t− t0 > 0 and taking a limit t ↓ t0 gives

d

dt

∣∣∣∣
t=t0

Lg(t)(γ) ≥ RKe
Kt0
α ≥ 1

α
KLg(t0)(γ),

which contradicts (2.4).

Lemma 2.2 (The shrinking balls lemma, [25, Corollary 3.3]). Suppose (M, g(t)) is a
Ricci flow for t ∈ [0, T ] on a manifold M of any dimension n. Then there exists β =
β(n) ≥ 1 such that the following is true. Suppose x0 ∈ M and that Bg(0)(x0, r) ⊂⊂ M
for some r > 0, and |Rm|g(t) ≤ c0/t, or more generally Ricg(t) ≤ (n − 1)c0/t, on
Bg(0)(x0, r) ∩Bg(t)(x0, r − β

√
c0t) for each t ∈ (0, T ] and some c0 > 0. Then

Bg(0)(x0, r) ⊃ Bg(t)
(
x0, r − β

√
c0t
)

(2.5)

for all t ∈ [0, T ]. More generally, for 0 ≤ s ≤ t ≤ T , we have

Bg(s)
(
x0, r − β

√
c0s
)
⊃ Bg(t)

(
x0, r − β

√
c0t
)
.

3 Distance estimates and bi-Hölder equivalence

In this section we explain how the local control on the curvature that we typically have
in this paper leads to control on the distance function. The main novelty is a Hölder
estimate (3.4).

Lemma 3.1 (Bi-Hölder distance estimate). Suppose (Mn, g(t)) is a Ricci flow for t ∈
(0, T ], not necessarily complete, with the property that for some x0 ∈M and r > 0, and
all t ∈ (0, T ], we have Bg(t)(x0, 2r) ⊂⊂M . Suppose further that for some c0, α > 0, and
for each t ∈ (0, T ], we have 

Ricg(t) ≥ −α

Ricg(t) ≤
(n− 1)c0

t

(3.1)

throughout Bg(t)(x0, 2r). By Remark 1.3, for all x, y ∈ ΩT ⊂M , where

ΩT :=
⋂

t∈(0,T ]

Bg(t)(x0, r),
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the distance dg(t)(x, y) is unambiguous for all t ∈ (0, T ] and must be realised by a min-
imising geodesic lying within Bg(t)(x0, 2r). Then for any 0 < t1 ≤ t2 ≤ T , we have

dg(t1)(x, y)− β
√
c0(
√
t2 −

√
t1) ≤ dg(t2)(x, y) ≤ eα(t2−t1)dg(t1)(x, y), (3.2)

where β = β(n). In particular, the distance metrics dg(t) converge uniformly to a distance
metric d0 on ΩT as t ↓ 0, and

d0(x, y)− β
√
c0t ≤ dg(t)(x, y) ≤ eαtd0(x, y), (3.3)

for all t ∈ (0, T ]. Furthermore, there exists γ > 0 depending on n, c0 and upper bounds
for r and T such that

dg(t)(x, y) ≥ γ [d0(x, y)]
1+2(n−1)c0 , (3.4)

for all t ∈ (0, T ]. Finally, for all t ∈ (0, T ] and R < R0 := re−αT − β
√
c0T < r, we have

Bg(t)(x0, R0) ⊂M ⊂ ΩT and Bd0(x0, R) ⊂⊂M, (3.5)

where M is the component of Interior(ΩT ) containing x0.

To clarify, the first inclusion of (3.5) will be vacuous if T is sufficiently large that R0 is
nonpositive.

Remark 3.2. A consequence of this lemma is that the identity map (M, dg(t)) →
(M, d0) is Hölder continuous with Hölder exponent [1 + 2(n − 1)c0]−1, and the iden-
tity map (M, d0)→ (M, dg(t)) in the other direction is Lipschitz. The Hölder exponent
can be seen to be sharp on solitons coming out of cones in two dimensions.

Remark 3.3. We have stated the lemma for Ricci flows that exist for t ∈ (0, T ], since
that is the situation for limit flows considered in this paper. However, we can apply
the lemma to Ricci flows that exist for t ∈ [0, T ], in which case we automatically have
d0 = dg(0), and the conclusions of the lemma hold on the whole interval [0, T ].

Remark 3.4. Estimate (3.4) only uses the upper curvature bound of the lemma, i.e. the
Ricci lower bound is not required. In contrast to earlier distance estimates, we prove it
by splitting the time interval [0, t] into two subintervals [0, t3] and [t3, t], and controlling
the distance on each using different techniques.

Proof of Lemma 3.1. The function t 7→ dg(t)(x, y) is locally Lipschitz on (0, T ]. At times
at which this function is differentiable, we have

d

dt
dg(t)(x, y) =

d

dt
Lg(t)(γ),

where γ is a unit-speed minimising geodesic from x to y at the given time. On the one
hand, we have

d

dt
dg(t)(x, y) =

d

dt
Lg(t)(γ) = −

∫
γ

Ric(γ̇, γ̇) (3.6)

≤ αdg(t)(x, y), (3.7)

and integrating in time gives the second inequality of (3.2). On the other hand, we know
from Hamilton-Perelman [25, (3.6)] that

d

dt
dg(t)(x, y) =

d

dt
Lg(t)(γ) ≥ −β

2

√
c0/t,

where β = β(n) ≥ 1 is ultimately the β that appears in Lemma 2.2. Integrating in time
now gives the first inequality of (3.2). Having established (3.2), the existence of d0, and
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the estimate (3.3), is obvious. Note that the second inequality of (3.3) guarantees that
d0(x, y) = 0 implies x = y, as required for d0 to be a metric.

The first step to proving (3.4) is to observe that for

0 < t ≤ t3 :=
1

c0

[
1

2β
d0(x, y)

]2
,

the first inequality of (3.3) implies that

dg(t)(x, y) ≥ 1

2
d0(x, y). (3.8)

In particular, for t ≤ t3 we have established a stronger conclusion than our desired (3.4).
On the other hand, to prove (3.4) for times after t3, we first use (3.8) at the last possible
time t3, giving

dg(t3)(x, y) ≥ 1

2
d0(x, y), (3.9)

and then use the consequence of (3.6) that

d

dt
dg(t)(x, y) ≥ −(n− 1)

c0
t
dg(t)(x, y),

at times at which t 7→ dg(t)(x, y) is differentiable, which implies, when integrated from
time t3 to any later time t > t3, that

dg(t)(x, y) ≥ dg(t3)(x, y)

[
t

t3

]−(n−1)c0
.

Inserting the formula for t3, and using (3.9) we obtain

dg(t)(x, y) ≥ γ(n, c0) [d0(x, y)]
1+2(n−1)c0 t−(n−1)c0 , (3.10)

which is a little stronger than required.

It remains to prove the inclusions (3.5). On the one hand, for s ∈ (0, t) we have R0 +
β
√
c0(t− s) < R0 + β

√
c0T = re−αT < r, and so by Lemma 2.2 applied from time s

onwards, we have

Bg(t)(x0, R0) ⊂ Bg(s)(x0, R0 + β
√
c0(t− s))

⊂ Bg(s)(x0, R0 + β
√
c0T ) = Bg(s)(x0, re

−αT )

⊂ Bg(s)(x0, r).
(3.11)

On the other hand, for s ∈ (t, T ], we have R0e
α(s−t) < R0e

αT < r, and so by Lemma 2.1
we have

Bg(t)(x0, R0) ⊂ Bg(s)(x0, R0e
α(s−t)) ⊂ Bg(s)(x0, r).

Combining these two cases s ∈ (0, t) and s ∈ (t, T ], we find that Bg(t)(x0, R0) ⊂ ΩT ,
thus implying the first inclusions of (3.5).

An immediate consequence of this inclusion is that Bg(t)(x0,
R+R0

2 ) ⊂⊂ Interior(ΩT ),

because R+R0

2 < R0. Therefore the second inclusion of (3.5) will follow immediately if

we can show that Bd0(x0, R) ⊂ Bg(t)(x0,
R+R0

2 ) for some t ∈ (0, T ]. However, this will
be true for sufficiently small t > 0 by the uniform convergence of dg(t) to d0 as t ↓ 0.

An optimised version of estimate (3.10) would tell us that we can take γ as close as we
like to 1 by taking c0 sufficiently small.

9



4 Proof of the Local Existence Theorem 1.6

We shall need the following generalisations and consequences of the Local Lemma, [25,
Lemma 2.1], the Double Bootstrap Lemma, [25, Lemma 9.1] and Hochard’s Lemma, [16,
Lemma 6.2], in order to prove Theorem 1.6. In all of the three lemmata appearing below,
the Riemannian manifolds (N, g) appearing are not necessarily complete. However, it
still makes sense to define the injectivity radius at p ∈ N as the supremum of the radii
r for which the exponential map at p is well-defined on the ball of radius r in TpN , and
is a diffeomorphism from that ball to its image.

Lemma 4.1 (cf. [25, Lemma 2.1]). Let (N3, g(t))t∈[0,T ] be a smooth Ricci flow such that
for some fixed x ∈ N we have Bg(t)(x, 1) ⊂⊂ N for all t ∈ [0, T ], and so that

(i) VolBg(0)(x, 1) ≥ v0 > 0, and
(ii) Ricg(t) ≥ −1 on Bg(t)(x, 1) for all t ∈ [0, T ].

Then there exist C0 = C0(v0) ≥ 1 and T̂ = T̂ (v0) > 0 such that |Rm|g(t)(x) ≤ C0/t, and

injg(t)(x) ≥
√
t/C0 for all 0 < t ≤ min(T̂ , T ).

Proof. Lemma 2.1 of [25] tells us that there exist C0 = C0(v0) ≥ 1, T̂ = T̂ (v0) > 0
and η0 = η0(v0) > 0 such that |Rm|g(t) ≤ C0

t on Bg(t)(x, 1/2) and VolBg(t)(x, 1/2) ≥ η0

for all t ∈ (0,min(T̂ , T )]. (The lemma there gave the volume of the unit ball, but we
are assuming a Ricci lower bound throughout the unit ball, so Bishop-Gromov applies.)
The injectivity radius estimate of Cheeger-Gromov-Taylor [9] and the Bishop-Gromov
comparison principle then tell us (after scaling g(t) to g̃ = 1

t g(t) for each t, and then
scaling back), that there exists i0 = i0(η0, C0) = i0(v0) > 0 such that injg(t)(x) ≥
i0
√
t. By increasing C0 if necessary, we may assume without loss of generality that

i0 ≥ 1√
C0

.

Lemma 4.2 (cf. Double Bootstrap Lemma [25, Lemma 9.1]). Let (N3, g(t))t∈[0,T ] be a
smooth Ricci flow, and x ∈ N , such that Bg(0)(x, 2) is compactly contained in N and so
that throughout Bg(0)(x, 2) we have

(i) |Rm|g(t) ≤ c0
t for some c0 ≥ 1 and all t ∈ (0, T ], and

(ii) Ricg(0) ≥ −δ0 for some δ0 > 0.

Then there exists Ŝ = Ŝ(c0, δ0) > 0 such that Ricg(t)(x) ≥ −100δ0c0 for all 0 ≤ t ≤
min(Ŝ, T ).

Proof. Using Lemma 2.2, we see that Bg(t)(x, 2−β
√
c0t) ⊂ Bg(0)(x, 2) for some universal

constant β ≥ 1, for all t ∈ [0, T ]. Choosing Ŝ = 1
β2c0

, we see that Bg(t)(x, 1) ⊂ Bg(0)(x, 2)

for all 0 ≤ t ≤ min(Ŝ, T ). The conclusions of the lemma now follow from direct applica-
tion of [25, Lemma 9.1], after decreasing Ŝ again if necessary.

The proof of Theorem 1.6 will involve defining a local smooth solution (Bg0(x0, r1), g(t))
for t ∈ [0, t1] for some small (uncontrolled) t1 > 0, and r1 = s0 − 1, and then inductively
defining smooth local extensions (Bg0(x0, ri), g(t)) for t ∈ [0, ti] where ti is a geometrically
increasing sequence and ri is a decreasing sequence that nevertheless enjoys a good lower
bound. The general strategy of construction of a flow on dyadic time intervals was first
used by Hochard [16]. However, in our approach the solutions will each satisfy both
|Rm|g(t) ≤ c0

t and Ricg(t) ≥ −α(v0, α0) on Bg0(x0, ri) for all t ∈ [0, ti]. The main
inductive step is achieved through the Extension Lemma 4.4 below, whose proof involves
conformally modifying the metric, as in [16, Lemma 6.2], and then using the two lemmata
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from above. We rewrite Hochard’s Lemma here in a scaled form for ease of application
in the proofs that follow.

Lemma 4.3 (Variant of Hochard, [16, Lemma 6.2]). Let (Nn, g) be a smooth (not nec-
essarily complete) Riemannian manifold and let U ⊂ N be an open set. Assume that
for some ρ ∈ (0, 1], we have supU |Rm|g ≤ ρ−2, Bg(x, ρ) ⊂⊂ N and injg(x) ≥ ρ for all

x ∈ U . Then there exist a constant γ = γ(n) ≥ 1, an open set Ũ ⊂ U and a smooth metric
g̃ defined on Ũ such that each connected component of (Ũ , g̃) is a complete Riemmanian
manifold satisfying

(1) supŨ |Rm|g̃ ≤ γρ−2
(2) Uρ ⊂ Ũ ⊂ U
(3) g̃ = g on Ũρ ⊃ U2ρ,

where Us = {x ∈ U | Bg(x, s) ⊂⊂ U}.

The strategy of Hochard to prove this lemma is to conformally blow up the metric in
a neighbourhood of the boundary of U so that it looks essentially hyperbolic. Once we
have a complete metric locally, we can run the Ricci flow with standard existence theory.
The idea of cutting off a metric locally and replacing it with a complete hyperbolic metric
in order to start the flow was introduced in [26] in a much simpler situation. A global
conformal deformation of metric that is related to Hochard’s construction was carried
out in Section 8, in particular Theorem 8.4, of [23].

Proof. Scale the metric g by h = ρ−2g. The new metric h satisfies supU |Rm|h ≤ 1,
Bh(x, 1) ⊂⊂ N and injh(x) ≥ 1 for all x ∈ U . Let C(n) be the constant from Hochard’s
Lemma 6.2 in [16]. Without loss of generality this constant satisfies C(n) > 1 since
otherwise we can set C(n) to be the maximum of the old C(n) and 2, and note that
the conclusions of that lemma will still be correct. We use Hochard’s Lemma 6.2 [16]
applied to the Riemannian manifold (N,h) and the set U appearing in the statement of
this lemma, with the choice of k = C2(n). We conclude that there exists an open set
Ũ ⊂ U and a metric h̃ defined on Ũ such that each connected component of (Ũ , h̃) is
smooth and complete and satisfies

(1) sup
Ũ

|Rm|h̃ ≤ γ (4.1)

(2) U1 ⊂ Ũ ⊂ U (4.2)

(3) h̃ = h on Ũ1, (4.3)

where Us = {x ∈ U | Bh(x, s) ⊂⊂ U}, and γ := C2(n). Let x be any point in U2. Then
Bh(x, 2) ⊂⊂ U by definition, and hence, by the triangle inequality, Bh(x, 1) ⊂⊂ U1 ⊂ Ũ ,
and thus x ∈ Ũ1. This shows that U2 ⊂ Ũ1, in view of the fact that x ∈ U2 was arbitrary.
Hence, the conclusion (3) above may be replaced by h̃ = h on Ũ1 ⊃ U2. Scaling back,
that is, defining g̃ = ρ2h̃, completes the proof.

The Extension Lemma 4.4 shows us how we can extend a smooth solution for a short,
but well-defined time, still maintaining bounds like |Rm|g(t) ≤ c0

t , if the initial Ricci
curvature and volume are bounded from below. The cost is that we have to decrease the
size of the region on which the smooth solution is defined. The extension will only be
possible if the size of the radius r1 of the ball (with respect to g(0)) where the solution is
defined is not too small, r1 ≥ 2 will suffice, and the time for which the solution is defined
is not too large.

In the following lemma, no metrics are assumed to be complete.
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Lemma 4.4 (Extension Lemma). For v0 > 0 given, there exist c0 ≥ 1 and τ > 0
such that the following is true. Let r1 ≥ 2, and (M, g0) be a smooth three-dimensional
Riemannian manifold such that Bg0(x0, r1) ⊂⊂M , and

(i) Ricg0 ≥ −α0 for some α0 ≥ 1 on Bg0(x0, r1), and
(ii) VolBg0(x, r) ≥ v0r3 for all r ≤ 1 and all x ∈ Bg0(x0, r1 − r).

Assume further that we are given a smooth Ricci flow (Bg0(x0, r1), g(t)), t ∈ [0, `1], where
`1 ≤ τ

200α0c0
, with g(0) equal to the restriction of g0, for which

(a) |Rm|g(t) ≤ c0
t and

(b) Ricg(t) ≥ − τ
`1

on Bg0(x0, r1) for all t ∈ (0, `1]. Then, setting `2 = `1(1 + 1
4c0

) and r2 = r1− 6
√

`2
τ ≥ 1,

the Ricci flow g(t) can be extended smoothly to a Ricci flow on the smaller ball Bg0(x0, r2),
for the longer time interval t ∈ [0, `2], with

(a′) |Rm|g(t) ≤ c0
t and

(b′) Ricg(t) ≥ − τ
`2

throughout Bg0(x0, r2) for all t ∈ (0, `2].

A version of the Extension Lemma can be given without assumption (b) since we can
always obtain a lower Ricci bound by application of the Double Bootstrap Lemma 4.2.
However, in practice we will always have this lower bound already, and its inclusion
simplifies the proof and emphasises the natural symmetry between the hypothesis and
conclusion.

Proof. For the given v0, let C0 ≥ 1 and T̂ > 0 be the constants given by Lemma 4.1.
With this choice of C0 we choose c0 = 4γC0 > C0, where γ ≥ 1 is the constant coming
from Hochard’s Lemma 4.3 above, and set δ0 = 1

100c0
, and we let Ŝ be the constant we

obtain from Lemma 4.2 for these choices. We define τ := min{T̂ , Ŝ} so that we are free
to apply Lemma 4.1 and Lemma 4.2 with T̂ , respectively Ŝ, replaced by τ . We also
reduce τ if necessary so that

β2c0τ ≤ 1, τ ≤ 1, and τ ≤ C0/4, (4.4)

where β ≥ 1 is the constant from Lemma 2.2. The constants are now fixed. Note that

`1 ≤ `2 ≤ 2`1 ≤ τ ≤ 1. (4.5)

Claim 1: For all x ∈ U := Bg0(x0, r1−2
√

`1
τ ), we have Bg(t)(x,

√
t/C0) ⊂⊂ Bg0(x0, r1),

injg(t)(x) ≥
√
t/C0 and |Rm|g(t)(x) ≤ C0/t, for all t ∈ (0, `1].

Note that by assumption, we have c0/t curvature decay; the claim improves this to C0/t
curvature decay, albeit on a smaller ball, as well as obtaining an injectivity radius bound.
The original c0/t decay will nevertheless be required to control the nesting of balls.

Proof of Claim 1: For x ∈ Bg0(x0, r1 − 2
√

`1
τ ), the triangle inequality implies that

Bg0(x, 2
√

`1
τ ) ⊂⊂ Bg0(x0, r1) and hence by hypothesis, |Rm|g(t) ≤ c0

t and Ricg(t) ≥ − τ
`1

on Bg0(x, 2
√

`1
τ ) for all t ∈ (0, `1]. Scaling the solution to ĝ(t) := τ

`1
g(t `1τ ) we see that

we have a solution ĝ(t) on Bg0(x0, r1) ⊃⊃ Bĝ(0)(x, 2), t ∈ [0, τ ] with |Rm|ĝ(t) ≤ c0
t and

Ricĝ(t) ≥ −1 on Bĝ(0)(x, 2) for all t ∈ (0, τ ].
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Applying Lemma 2.2 to ĝ(t), we find thatBĝ(t)(x, 2−β
√
c0t) ⊂ Bĝ(0)(x, 2) for all t ∈ [0, τ ],

and in particular, Bĝ(t)(x, 1) ⊂ Bĝ(0)(x, 2) because of (4.4).

This puts us in a position to apply Lemma 4.1 to ĝ(t), giving that injĝ(t)(x) ≥
√
t/C0

and |Rm|ĝ(t)(x) ≤ C0/t for all 0 < t ≤ τ . Scaling back, we see that Bg(t)(x,
√
`1/τ) ⊂⊂

Bg0(x0, r1), injg(t)(x) ≥
√
t/C0 and and |Rm|g(t)(x) ≤ C0/t for all t ∈ (0, `1], which is a

little stronger than Claim 1 because t ≤ `1 and C0 ≥ τ by (4.4), so t
C0
≤ `1

τ . //

Claim 1, specialised to t = `1, puts us in exactly the situation we require in order to apply

Lemma 4.3 with U = Bg0(x0, r1 − 2
√

`1
τ ), N = Bg0(x0, r1), g = g(`1) and ρ2 := `1

C0
≤ 1

(recall (4.5)). The output is a new, possibly disconnected, smooth manifold (Ũ , g̃), each
component of which is complete, such that

(1) |Rm|g̃ ≤
γC0

`1
=

c0
4`1

on Ũ

(2) U√
`1
C0

⊂ Ũ ⊂ U

(3) g̃ = g(`1) on Ũ√
`1
C0

⊃ U
2
√

`1
C0

, (4.6)

where Ur = {x ∈ U |Bg(`1)(x, r) ⊂⊂ U}.

Before restarting the flow with g̃ on one component of Ũ , we take a closer look at where
g(`1) equals g̃:

Claim 2: We have Bg0(x0, r1 − 4
√

`1
τ ) ⊂ U

2
√

`1
C0

, where the metrics g(`1) and g̃ agree.

Proof of Claim 2: By definition of U , for every x ∈ Bg0(x0, r1 − 4
√

`1
τ ), we have

Bg0(x, 2
√

`1
τ ) ⊂⊂ U . By assumption, we have |Rm|g(t) ≤ c0/t on Bg0(x0, r1), and

hence on U and on Bg0(x, 2
√

`1
τ ) for all t ∈ (0, `1], and so Lemma 2.2 tells us that

Bg0(x, 2
√

`1
τ ) ⊃ Bg(t)(x, 2

√
`1
τ − β

√
c0t) for all t ∈ [0, `1]. Specialising to t = `1, and

recalling that β
√
c0`1 ≤

√
`1/τ by (4.4), we see that Bg(`1)(x,

√
`1
τ ) ⊂⊂ U , and by (4.4)

this gives Bg(`1)(x, 2
√

`1
C0

) ⊂⊂ U as required to establish that x ∈ U
2
√

`1
C0

. //

We now restart the flow at time `1, using Shi’s complete bounded-curvature Ricci flow,
starting at the connected component of (Ũ , g̃) that contains x0. By Claim 2 (and the

inequality `1 < `2) the new Ricci flow will live on a superset of Bg0(x0, r1 − 4
√

`1
τ ) ⊃

Bg0(x0, r1 − 4
√

`2
τ ), and we call it still g(t) for t beyond `1. By the standard doubling

time estimate [11, Lemma 6.1], any smooth complete bounded-curvature Ricci flow h(t)
such that |Rm|h(0) ≤ K must satisfy |Rm|h(t) ≤ 2K for t ≤ 1

16K . In our situation, where

K = c0
4`1

, this tells us that g(t) will exist for t ∈ [`1, `1(1 + 1
4c0

)] = [`1, `2] and satisfy
|Rm|g(t) ≤ c0

2`1
≤ c0

`2
≤ c0

t throughout its domain of definition by (4.5). Thus, we have

constructed a smooth extension to our Ricci flow on Bg0(x0, r1 − 4
√

`2
τ ), now existing

for t ∈ [0, `2], and this satisfies |Rm|g(t) ≤ c0
t .

It remains to show that by reducing the radius of our g0 ball where the extension is

defined to r2 = r1 − 6
√

`2
τ , we can be sure of the lower Ricci bound as claimed in

the lemma. Pick an arbitrary x ∈ Bg0(x0, r2) at which we would like to establish the
lower bound Ricg(t) ≥ − τ

`2
. Observe that the extended Ricci flow is defined throughout
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Bg0(x, 2
√

`2
τ ) ⊂⊂ Bg0(x0, r1 − 4

√
`2
τ ) for all t ∈ [0, `2].

We scale up so that `2 goes to τ . That is we define ĝ(s) := τ
`2
g( s·`2τ ). Then we have, for

this scaled solution, Bĝ(0)(x, 2) compactly contained within the domain of definition of
the flow, for all t ∈ [0, τ ], and |Rm|g(t) ≤ c0

t on Bĝ(0)(x, 2) for all t ∈ (0, τ ].

Moreover, we have Ricĝ(0) ≥ −δ0 on Bĝ(0)(x, 2) for the choice of δ0 made above, because
keeping in mind that `1 ≤ τ

200α0c0
, we have

Ricĝ(0) ≥ −α0
`2
τ
≥ −2α0

`1
τ
≥ − 1

100c0
= −δ0.

Using Lemma 4.2 with the c0 and δ0 we have chosen, we see that Ricĝ(t)(x) ≥ −1 for all
t ∈ [0, τ ]. Rescaling back, we see that Ricg(t)(x) ≥ − τ

`2
for all t ∈ [0, `2] as required to

complete the proof.

Remark 4.5. With hindsight, we see that (Bg0(x0, r2), g(`2)) is the restriction to a local
region of the final time of a complete Ricci flow g(t) for t ∈ [`1, `2] with the property
that |Rm|g(t) ≤ c0/`1. Global derivative bounds for such flows, applied over the time

interval [`1, `2], give us a bound |∇kRm|g(`2) ≤ C/`
1+k/2
2 at the end time. Moreover, this

flow g(t) has initially, at t = `1, a lower injectivity radius bound, and such a bound will
remain at time `2 because of the curvature bound for the flow, giving injg(`2) ≥

√
`2/C.

Thus at the end time of the extension, the extended metric is isometrically embedded
within a complete Riemannian manifold with good bounds on its curvature and all its
derivatives, as well as its injectivity radius.

Proof of Theorem 1.6. We may assume, without loss of generality, that α0 ≥ 1: if α0 < 1
then Ricg0 ≥ −α0 implies Ricg0 ≥ −1 and so we replace α0 in this case by 1. From
the Bishop-Gromov comparison principle, by reducing v0 to a smaller positive number
depending on α0 and the original v0, we may assume without loss of generality that
VolBg0(x, r) ≥ v0r3 for all x ∈ Bg0(x0, s0 − 1) and for all r ∈ (0, 1]. Let c0 and τ be the
constants given by Lemma 4.4 for this new v0.

Since Bg0(x0, s0) is compactly contained in M , we can be sure that supBg0 (x0,s0) |Rm|g0 ≤
ρ−2 < ∞, and Bg0(x, ρ) ⊂⊂ M and injg0(x) ≥ ρ for all x ∈ Bg0(x0, s0), for some

ρ ∈ (0, 12 ] depending on (M, g0), x0 and s0. By using Hochard’s Lemma, Lemma 4.3 of

this paper, with U := Bg0(x0, s0), we can find a connected subset M̃ ⊂ U ⊂M containing

Bg0(x0, s0 − 1
2 ), and a smooth, complete metric g̃0 on M̃ with supM̃ |Rm|g̃0 < ∞ such

that on Bg0(x0, s1), where s1 := s0 − 1 ≥ 3, the metric remains unchanged, i.e. g̃0 = g0
there. By renaming (M̃, g̃0) as (M, g0) we have reduced the theorem to the following:

Claim: Suppose that (M3, g0) is a complete Riemannian manifold with bounded curva-
ture, x0 ∈M , s1 ≥ 3, and{

Ricg0 ≥ −α0 ≤ −1 on Bg0(x0, s1)

VolBg0(x, r) ≥ v0r3 > 0 for all r ∈ (0, 1] and x ∈ Bg0(x0, s1 − r).
(4.7)

Then there exist T, α, c0 > 0 depending only on α0 and v0, and a Ricci flow g(t) defined
for t ∈ [0, T ] on Bg0(x0, s1 − 1), with g(0) = g0 where defined, such that{

Ricg(t) ≥ −α on Bg0(x0, s1 − 1)

|Rm|g(t) ≤ c0/t on Bg0(x0, s1 − 1)
(4.8)

for all t ∈ (0, T ].

Now that we have reduced to the case that (M, g0) is complete, with bounded curvature,
we can take Shi’s Ricci flow: There exists a smooth, complete, bounded-curvature Ricci
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flow g(t) on M for some nontrivial time interval [0, t1] with g(0) = g0. In view of the
boundedness of the curvature, after possibly reducing t1 to a smaller positive value, we
may trivially assume that |Rm|g(t) ≤ c0

t for all t ∈ (0, t1] and Ricg(t) ≥ − τ
t1

for all
t ∈ [0, t1].

Of course, what is lacking from our flow is uniform control on its existence time. If
t1 ≥ τ

200α0c0
, then we do have such control, but otherwise we will be able to iteratively

apply the Extension Lemma 4.4 in a manner analogous to that employed by Hochard
[16], to get successive extensions until we have a flow defined for a uniform time.

Having found t1 and s1, for i ∈ N we define ti and si iteratively by setting ti+1 = ν−2ti,
where ν := (1 + 1

4c0
)−1/2 ∈ (0, 1), and si+1 = si − µ

√
ti+1, where µ := 6τ−1/2. Thus

si = si−1 − µ
√
ti

= si−2 − µ
√
ti − µ

√
ti−1

= si−2 − µ
√
ti[1 + ν]

= s1 − µ
√
ti[1 + ν + · · ·+ νi−2]

> s1 −
µ

1− ν
√
ti.

(4.9)

Our iterative assertion, that we have established above for i = 1 is:

I(i)


We have constructed a smooth Ricci flow g(t) on Bg0(x0, si) for t ∈ [0, ti],
with g(0) = g0 on this ball, such that on Bg0(x0, si), and for t ∈ (0, ti], we have
|Rm|g(t) ≤ c0

t and Ricg(t) ≥ − τ
ti
.

The Extension Lemma 4.4, applied with r1 = si and `1 = ti, tells us that I(i) implies
I(i + 1), provided that ti remains below τ

200α0c0
, and si does not get too small. More

precisely we iteratively apply that lemma until either ti >
τ

200α0c0
or ti+1 >

(1−ν)2
µ2 . The

latter requirement ensures that µ
1−ν
√
ti ≤ 1 for i ≥ 2 up to when we stop iterating, which

in turn ensures that si ≥ s1−1 ≥ 2 as required for the radius r1 in the extension lemma.
Either way, the final assertion I(i) tells us that we have constructed the desired Ricci
flow g(t) for the time interval [0, ti], which has positive length bounded below depending
only on α0 and v0, defined on the domain Bg0(x0, si) where si > s1 − µ

1−ν
√
ti ≥ s1 − 1.

This completes the proof of the claim, and hence of Theorem 1.6.

5 Proof of the Mollification theorem 1.1

The existence assertion of Theorem 1.1 will follow rapidly from the Local Existence
Theorem 1.6. Before we can apply that theorem, we must observe that a standard volume
comparison argument tells us that there exists some smaller v0 > 0 depending only on
the original v0, ε and α0, such that for all x ∈ Bg0(x0, 1− ε

4 ), we have VolBg0(x, ε4 ) ≥ v0.

We can then rescale the initial metric g0 to g̃0 := 16
ε2 g0, i.e. expand distances by a factor

of 4/ε, to put ourselves in exactly the situation of Theorem 1.6, with s0 = 4/ε ≥ 40, for
some new α0 > 0 depending only on the old α0 and ε. The output of Theorem 1.6 is a
Ricci flow on Bg̃0(x0, s0 − 2) with estimates, and after returning to the original scaling,
we have a Ricci flow g(t) on Bg0(x0, 1 − ε/2), for t ∈ [0, T ], where T > 0 depends only
on α0, v0 and ε, with g(0) = g0 where defined, and so that{

Ricg(t) ≥ −α
|Rm|g(t) ≤ c0/t

(5.1)

on Bg0(x0, 1− ε/2), for all t ∈ (0, T ], for some α, c0 > 0 depending only on α0, v0 and ε.
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It remains to establish the desired properties of g(t), and in order to do this we may have
to reduce T to a smaller positive number, with the same dependencies. Looking first
at the desired curvature control of (1.3), we observe that the first assertion was already
obtained in the second inequality of (5.1) above on an even larger domain. This larger
domain is useful, however, since it allows us to invoke Shi’s local derivative estimates to
give the bounds for the higher derivatives claimed in the second inequality of (1.3), as we
now explain. First we apply the Shrinking Balls Lemma 2.2 to deduce that after possibly
reducing T > 0 depending on c0 and ε, we have Bg(t/2)(x0, 1 − 2

3ε) ⊂ Bg0(x0, 1 − ε
2 ),

for all t ∈ [0, T ]. Then, we reduce T > 0 further if necessary, depending on α and ε, to
be sure that Bg(t/2)(x0, 1 − 5

6ε) ⊃ Bg0(x0, 1 − ε) for all t ∈ [0, T ], this time by Lemma
2.1. To obtain the required bounds for the higher derivatives at time t, we can then
apply Shi’s estimates over the time interval [t/2, t] on the ball Bg(t/2)(x0, 1 − 2

3ε). A
reference for Shi’s estimates in almost the required form is [12, Theorem 14.14], although
one needs to observe that the constant C(α,K, r,m, n) in that theorem can be given as
C(α, r,m, n)K by a simple rescaling argument, and indeed to rescale in order to obtain
the estimates on the whole of Bg(t/2)(x0, 1− 5

6ε) ⊃ Bg0(x0, 1− ε) at time t.

At this point we can restrict the Ricci flow to Bg0(x0, 1− ε).

Next, we apply the Shrinking Balls Lemma 2.2 again to deduce that after possibly re-
ducing T > 0 depending on c0 and ε, we have Bg(t)(x0, 1 − 2ε) ⊂ Bg0(x0, 1 − ε), for all
t ∈ [0, T ]. In turn, this allows us to apply our Lower Volume Control Lemma, [25, Lemma
2.3] with γ = 1−2ε. In order to do so, we first observe that by volume comparison, there
is a positive lower bound for VolBg0(x0, 1 − 2ε) depending only on v0 and α0. (There
is not even a dependence on ε because we are assuming ε ≤ 1/10.) The output of that
lemma is that after possibly reducing T > 0 a little further, without adding any depen-
dencies, there exists v > 0 as claimed so that VolBg(t)(x0, 1 − 2ε) ≥ v for all t ∈ [0, T ],
which is the remaining part of (1.2).

Prior to addressing the claims on the distance function, we must verify that for s, t ∈
[0, T ], we have Bg(s)(x0,

1
2 − 2ε) ⊂ Bg(t)(x0,

1
2 − ε), provided that we restricted T > 0

sufficiently, depending only on α0, v0 and ε. To see this, observe that either we have
s ∈ [t, T ], in which case it follows from the Shrinking Balls Lemma 2.2 (provided we
restrict T > 0 depending only on c0 and ε) or we have s ∈ (0, t), in which case it follows
from the Expanding Balls Lemma 2.1 (and T must be reduced also depending on α and
ε).

The final parts of the theorem concerning the distance function then follow immediately
from Lemma 3.1 by setting r = 1

2 − ε, cf. Remark 3.3, completing the proof of the
theorem. 2

Remark 5.1. We are not claiming that the Ricci flow (B, g(t)) we construct in this
theorem is (isometric to) a restriction to a local region of a complete Ricci flow. How-
ever, by developing a little the statement and proof of Theorem 1.6, one could add the
conclusion in Theorem 1.1 that for ν := (1 + 1

4c0
)−1/2 ∈ (0, 1) as used in the proof of

Theorem 1.6, if we define τj := ν2j ↓ 0 then for sufficiently large j, (B, g(τj)) can be
isometrically embedded within a complete Riemannian manifold (M3

j , gj) such that |Rm|gj ≤ C(α0, v0, ε)/τj∣∣∇kRm
∣∣
gj
≤ C(k, α0, v0, ε)/τ

1+ k
2

j

(5.2)

globally throughout Mj , and so that

injgj (Mj) ≥ η
√
τj

for some η = η(α0, v0, ε) > 0. See Remark 4.5, and note that in the proof of Theorem
1.6, we may as well assume that t1 = ν2m for some m ∈ N, by reducing t1 a little if
necessary, and so ti = ν2(m+1−i).
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6 Ricci limit spaces in 3D are bi-Hölder to smooth
manifolds

In this section we prove Theorem 1.4. The result considers a sequence of coarsely con-
trolled manifolds and obtains compactness; a subsequence converges to an optimally-
regular limit. In particular, the limit is much more regular than we learn from Gromov
compactness. The strategy is to regularise the coarsely controlled manifolds using Ricci
flow, and in particular using the Mollification Theorem 1.1. Once we have regularity,
then we have compactness, and a subsequence of the Ricci flows will converge essentially
to a Ricci flow whose initial data represents the desired optimally-regular limit of the
original sequence of manifolds.

A number of subtleties arise in the course of the proof, even once Theorem 1.1 has been
proved. Because we must work locally, and we only have uniform regularity for positive
times, we have to take care over which region we try to extract a limit. We have no real
choice other than to work in a time t > 0 ball, but then we have to ensure that we end
up with a limit that is defined on a time 0 ball of positive radius. For this, we need the
Ricci lower bound estimates of [25], as well as the c0/t decay of the full curvature tensor.

We also have to ensure that the limit Ricci flow has initial data (a metric space) that
agrees with the limit of the original initial metrics. For this, we need strong uniform
control on the evolution of the Riemannian distance, and again this requires our lower
Ricci bounds and upper c0/t curvature decay.

It may be helpful to record a result ensuring that appropriate smooth local convergence of
Riemannian manifolds will imply convergence of the distance functions on a sufficiently
smaller region.

Lemma 6.1 (Convergence of distance functions under local convergence). Suppose (Mi, gi)
is a sequence of smooth n-dimensional Riemannian manifolds, not necessarily complete,
and that xi ∈ Mi for each i. Suppose that there exist a smooth, possibly incomplete
n-dimensional Riemannian manifold (N , ĝ) and a point x0 ∈ N with Bĝ(x0, 2r) ⊂⊂ N
for some r > 0, and a sequence of smooth maps ϕi : N → Mi, diffeomorphic onto their
images and mapping x0 to xi, such that ϕ∗i gi → ĝ smoothly on Bĝ(x0, 2r). Then

1. If 0 < a ≤ 2r, and a < b, then ϕi(Bĝ(x0, a)) ⊂ Bgi(xi, b) for sufficiently large i.
2. If 0 < a < b ≤ 2r, then Bgi(xi, a) ⊂⊂ ϕi(Bĝ(x0, b)) for sufficiently large i.
3. For every s ∈ (0, r), we have convergence of the distance functions

dgi(ϕi(x), ϕi(y))→ dĝ(x, y)

as i→∞, uniformly as x and y vary within Bĝ(x0, s).

Proof of Lemma 6.1. For Part 1, if x ∈ Bĝ(x0, a), then we can take a minimising ĝ-
geodesic σ from x0 to x, so that ϕi ◦σ is a path of length less than b for sufficiently large
i, independent of x.

For Part 2, first note that since we are free to adjust a and b a little, it suffices to prove
an inclusion rather than a compact inclusion. If the inclusion failed for every i after
taking a subsequence, then we could take a sequence of points zi ∈ Bgi(xi, a) not in
ϕi(Bĝ(x0, b)). We could then take a smooth path σi : [0, 1] → Mi connecting xi to
zi with gi-length no more than a, and thus lying within Bgi(xi, a). (We do not know
at this stage whether σi can be taken to be a minimising geodesic.) By truncating σi,
and modifying zi accordingly, we may assume that σi([0, 1)) ⊂ ϕi(Bĝ(x0, b)). The path
ϕ−1i ◦ σi must then have ĝ-length only a little more than the gi-length of σi, and in
particular less than b, for sufficiently large i, which is a contradiction.
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For Part 3, let δ > 0 be arbitrary; we would like to show that for sufficiently large i, we
have

|dgi(ϕi(x), ϕi(y))− dĝ(x, y)| ≤ δ,

for every x, y ∈ Bĝ(x0, s). For any such x, y, let σ be a minimising geodesic with respect
to ĝ that connects these points, and note that σ must remain within Bĝ(x0, 2s) ⊂⊂
Bĝ(x0, 2r), cf. Remark 1.3. For each i we map σ forwards to ϕi ◦ σ. By the convergence
ϕ∗i gi → ĝ, for sufficiently large i (independent of the particular x and y we chose but
depending on r) the length cannot increase by more than δ, i.e.

dgi(ϕi(x), ϕi(y))− dĝ(x, y) ≤ δ.

To prove the reverse direction, set s1 = (s+ r)/2, so s < s1 < r, and throw away finitely
many terms in i so that the image under ϕi of Bĝ(x0, s) is contained in Bgi(xi, s1) (by
Part 1). Therefore, for any two points x, y ∈ Bĝ(x0, s), any minimising geodesic (with
respect to gi) connecting ϕi(x) and ϕi(y) must lie within the ball Bgi(xi, 2s1), and at
least one such geodesic must exist because Bgi(xi, 2s1) ⊂⊂ ϕi(Bĝ(x0, 2r)) by Part 2.
Thus by considering the length of preimages under ϕi of minimising geodesics between
ϕi(x) and ϕi(y), we see that

dĝ(x, y)− dgi(ϕi(x), ϕi(y)) ≤ δ,

for sufficiently large i, independent of x and y (but depending on r).

Proof of Theorem 1.4. We begin by applying the Mollification Theorem 1.1 for each i,
with ε = 1/100 fixed. The result is a collection of positive constants T, v, α, c0 as in that
theorem, and a sequence of Ricci flows gi(t), t ∈ [0, T ], defined on the balls Bgi(xi, 1−ε),
with gi(0) = gi where defined, such that for all t ∈ [0, T ] we have Bgi(t)(xi, 1 − 2ε) ⊂⊂
Bgi(xi, 1− ε) where the Ricci flows are defined, and{

Ricgi(t) ≥ −α on Bgi(xi, 1− ε)
VolBgi(t)(xi, 1− 2ε) ≥ v > 0,

(6.1)

while for all t ∈ (0, T ] we have {
|Rm|gi(t) ≤ c0/t∣∣∇kRm

∣∣
gi(t)
≤ C/t1+ k

2
(6.2)

on Bgi(xi, 1 − ε) for any k ∈ N, where C depends on k, α0 and v0 (since ε has been
fixed). Moreover, Theorem 1.1 also tells us that for each i ∈ N, s ∈ [0, T ] and X,Y ∈
Bgi(s)(xi,

1
2 −2ε), we have X,Y ∈ Bgi(t)(xi, 12 − ε) for all t ∈ [0, T ] so the infimum length

of curves within (Bgi(xi, 1−ε), gi(t)) connecting X and Y is realised by a geodesic within
Bgi(t)(xi, 1− 2ε) ⊂ Bgi(xi, 1− ε) where gi(t) is defined. Moreover, for any t ∈ [0, T ] we
have

dgi(X,Y )− β
√
c0t ≤ dgi(t)(X,Y ) ≤ eαtdgi(X,Y ). (6.3)

During the proof it will be necessary to take these flows, and other flows with the same
estimates, and argue that balls of a given radius r ∈ (0, 12 ) at a given time lie within
balls of slightly larger radius r + ε at any different time. For this to work, we will apply
Lemmata 2.1 and 2.2, which will do the job provided that T is small compared with ε
(and ε2) depending also on α and c0 (we have n = 3). We will also need to be able to
bound R0 in an application of Lemma 3.1. With hindsight, it will be enough to reduce
T > 0 if necessary so that

T ≤ ε2

100c0β2
and T ≤ ε

100α
, (6.4)

where β is from Lemma 2.2.
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The curvature bounds coming from the Mollification Theorem 1.1 allow us to obtain
compactness using the argument of Hamilton-Cheeger-Gromov. Our situation is a bit
easier than theirs in that we have already argued that all the derivatives of the curvature
are bounded, and as is standard, by differentiating the Ricci flow equation we also have
uniform control on all space-time derivatives of the curvature. However, there is an
extra subtlety arising from working only locally in that we have to carefully choose the
region on which we work in order for the standard argument to go through verbatim.
In particular, we do not work on a time t = 0 ball since its geometry with respect to
a time t > 0 metric is uncontrolled, and the standard covering arguments used in the
compactness theory would fail.

Instead we work on a time t > 0 ball, and we choose to work at the final time t =
T . We have established above that the Ricci flows gi(t) are each defined on the ball
Bgi(T )(xi, 1 − 2ε), for t ∈ [0, T ]. By Remark 1.3, if we halve the radius, and consider

the ball Bgi(T )(xi,
1
2 − ε), then the distance function is unambiguous and is realised by

a minimising geodesic lying within the region Bgi(T )(xi, 1 − 2ε) where the metric gi(T )
is defined. By our volume and curvature bounds, we can obtain compactness on, say,

Bgi(T )(xi,
1
2 − 2ε). More precisely, after passing to a subsequence there exist a (typically

incomplete) manifold (N , g∞) and a point x0 ∈ N such that Bg∞(x0,
1
2 −2ε) ⊂⊂ N , and

a sequence of smooth maps ϕi : N → Bgi(T )(xi, 1 − 2ε) ⊂ Mi, diffeomorphic onto their

image, and mapping x0 to xi, such that ϕ∗i gi(T )→ g∞ smoothly on Bg∞(x0,
1
2 − 2ε).

We observe that with our set-up, this compactness assertion follows from the usual proofs
in the smooth case. As an alternative to requiring detailed knowledge of the proofs,
we note that by Remark 5.1, after reducing T to make it an integral power of ν2 =
(1 + 1

4c0
)−1, we could extend Theorem 1.1 and obtain that in fact (Bgi(xi, 1− ε), gi(T ))

can be isometrically embedded in a complete Riemannian manifold with uniform (i-
independent) bounds on all derivatives of the curvature and a positive uniform lower
bound on the injectivity radius. Thus compactness can be obtained from the standard

theorems, after which we can restrict to Bg∞(x0,
1
2 − 2ε) in the limit.

Once we have compactness at time T , Hamilton’s original argument, using the uniform
curvature bounds for positive time, allows us to pass to a further sequence in i to obtain

a smooth Ricci flow g(t) living on Bg∞(x0,
1
2 − 2ε) for t ∈ (0, T ] such that ϕ∗i gi(t)→ g(t)

smoothly locally on Bg∞(x0,
1
2 − 2ε)× (0, T ]. (Here g(T ) = g∞ where g(T ) is defined.)

Because of the smooth convergence, the curvature estimates in (6.1) and (6.2) pass to
the limit, and we have {

Ricg(t) ≥ −α
|Rm|g(t) ≤ c0/t

(6.5)

on the whole domain Bg∞(x0,
1
2 − 2ε) for all t ∈ (0, T ].

We have constructed a Ricci flow on a reasonably-sized ball with respect to g(T ), but
we have to be concerned that this region might be much smaller with respect to earlier
metrics, and might even be contained within a g(t) ball of radius r(t) that converges to
zero as t ↓ 0. We will be rescued from this possibility by the refinement of the Expanding
Balls Lemma, given in Lemma 2.1; because we reduced T in (6.4), that lemma turns our
control on the Ricci tensor in (6.5) into the inclusion

Bg(t)(x0,
1

2
− 3ε) ⊂⊂ Bg(T )(x0,

1

2
− 2ε), (6.6)

for any t ∈ (0, T ]. This tells us, via Remark 1.3, that if x, y ∈ Bg(t)(x0,
1
4 −

3
2ε), the

corresponding ball of half the radius, then the g(t)-distance between x and y is realised
by a minimising geodesic lying within the domain of definition of the Ricci flow g(t) (see
Remark 1.3). Also, we can apply Lemma 3.1 with r = 1

4 −
3
2ε to give us an extension of
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dg(t) to a metric d0 on ΩT , as defined in that lemma, together with the distance estimates

d0(x, y)− β
√
c0t ≤ dg(t)(x, y) ≤ eαtd0(x, y), (6.7)

and
dg(t)(x, y) ≥ γ [d0(x, y)]

1+4c0 , (6.8)

for all t ∈ (0, T ], x, y ∈ ΩT , and some γ < ∞ depending only on α0 and v0. (Note that
these estimates imply that d0 generates the same topology as we have already on ΩT .)
Moreover, by our restrictions on T from (6.4), we can be sure that R0 >

1
4 − 2ε, where

R0 is defined in Lemma 3.1, and so we can set R = 1
4 − 2ε, in which case (3.5) tells us

that

Bg(t)(x0,
1

4
− 2ε) ⊂⊂M and Bd0(x0,

1

4
− 2ε) ⊂⊂M, (6.9)

for all t ∈ (0, T ], where M is the connected component of Interior(ΩT ) containing x0.

In summary, we have so far constructed a smooth limit Ricci flow g(t) for t ∈ (0, T ]

on Bg∞(xi,
1
2 − 2ε), and extended its distance function uniformly to t = 0 on an open

subdomain M that compactly contains both Bg(t)(x0,
1
4 − 2ε), for each t ∈ (0, T ], and

also Bd0(x0,
1
4 − 2ε).

In what follows, we will need to consider the distance with respect to gi(t) between
image points ϕi(x) and ϕi(y), and we pause to verify that such distances are realised by
minimising geodesics for arbitrary x, y in the domain of definition of the Ricci flow g(t).
By Part 1 of Lemma 6.1, after omitting finitely many terms in i, the image of the entire

flow domain Bg(T )(x0,
1
2 − 2ε) under ϕi must lie within Bgi(T )(x0,

1
2 −

3
2ε), say, which in

turn, by the Shrinking Balls Lemma 2.2, and (6.4), must lie within Bgi(t)(x0,
1
2−ε) for all

t ∈ [0, T ]. Since the Mollification Theorem told us that Bgi(t)(xi, 1−2ε) ⊂⊂ Bgi(xi, 1−ε)
where gi(t) is defined, we see that for all x, y ∈ Bg(T )(x0,

1
2 − 2ε), the distance between

ϕi(x) and ϕi(y) with respect to any gi(t) is realised by a minimising geodesic lying within
Bgi(t)(xi, 1− 2ε), cf. Remark 1.3.

Our essential task now is to compare distances d0(x, y) and dgi(ϕi(x), ϕi(y)) for x and
y in M. The rough strategy is as follows. First, by the distance estimates (6.7) that
came from Lemma 3.1, we know that d0(x, y) is close to dg(t)(x, y) for t ∈ (0, T ] small.
Second, by the convergence of gi(t) to g(t), we expect that dg(t)(x, y) should be close to
dgi(t)(ϕi(x), ϕi(y)). Third, by the distance estimates (6.3) coming from the Mollification
Theorem, dgi(t)(ϕi(x), ϕi(y)) should be close to dgi(ϕi(x), ϕi(y)).

Claim: As i→∞, we have convergence

dgi(ϕi(x), ϕi(y))→ d0(x, y)

uniformly as x, y vary over M.

Proof of Claim: Let δ > 0. We must make sure that for sufficiently large i, depending
on δ, we have

|dgi(ϕi(x), ϕi(y))− d0(x, y)| ≤ δ for every x, y ∈M. (6.10)

By the distance estimates (6.7) that came from our application of Lemma 3.1, there
exists t1 ∈ (0, T ] such that for all t ∈ [0, t1], we have

|d0(x, y)− dg(t)(x, y)| < δ/3 for all x, y ∈M. (6.11)

We need a similar estimate for gi(t). By the distance estimates (6.3) coming from the
Mollification Theorem, we know that there exists t2 ∈ (0, T ] such that for all t ∈ [0, t2],
we have

|dgi(X,Y )− dgi(t)(X,Y )| < δ/3, whenever ∃ s ∈ [0, T ] s.t. X,Y ∈ Bgi(s)(xi,
1

2
− 2ε).

(6.12)
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We fix t0 = min{t1, t2} so that both (6.11) and (6.12) hold for t = t0. (In fact, we could
have naturally picked t1 and t2 the same from the outset.)

By definition of ΩT , and hence M, we have

M⊂ Bg(t0)(x0, 14 −
3
2ε), (6.13)

and by (6.6) we can pick r > 1
4 −

3
2ε so that

Bg(t0)(x0, 2r) ⊂⊂ Bg(T )(x0,
1
2 − 2ε),

where g(t0) and the maps ϕi are defined and we have the convergence ϕ∗i gi(t0)→ g(t0).
Therefore we can apply Lemma 6.1, with s = 1

4 −
3
2ε and ĝ and gi there equal to g(t0)

and gi(t0) here, respectively, to conclude that

dgi(t0)(ϕi(x), ϕi(y))→ dg(t0)(x, y) (6.14)

as i→∞, uniformly in x, y ∈M.

By combining (6.11) and (6.12) for t = t0, and (6.14), we will have proved (6.10) and
hence the claim, provided that (6.12) holds for X = ϕi(x) and Y = ϕi(y). But by
(6.14) applied for first (x, y) = (x, x0) and then (x, y) = (x0, y), we see by (6.13) that
ϕi(x), ϕi(y) ∈ Bgi(t0)(xi, 12 − 2ε) for sufficiently large i as required. //

What the claim tells us is that for arbitrarily small δ > 0, the maps ϕi are δ-Gromov
Hausdorff approximations from M to ϕi(M) for sufficiently large i. Unusually for such
approximations, the maps are smooth.

Another immediate consequence of the claim is that for all η > 0, for sufficiently large
i we have ϕi(B) ⊂ Bgi(xi, 1/10 + η), where B := Bd0(x0, 1/10) ⊂ M (recall (6.9))
which is the second inclusion of (1.6). To obtain the first inclusion, we first need to
clarify how large the image ϕi(M) is. By the first part of (6.9), with t = T , we have
Bg(T )(x0,

1
4 − 2ε) ⊂⊂M. Therefore, by Part 2 of Lemma 6.1 we have

ϕi(M) ⊃ ϕi(Bg(T )(x0,
1
4 − 2ε)) ⊃ Bgi(T )(xi,

1
4 − 3ε),

after deleting finitely many terms in i. Using once more the Expanding Balls Lemma
2.1, and (6.4), we can conclude that

ϕi(M) ⊃ Bgi(T )(xi,
1
4 − 3ε) ⊃ Bgi(0)(xi, 14 − 4ε) ⊃ Bgi(xi, 1/10− η).

Now that we are sure the image of the maps ϕi is large enough, we immediately obtain
from the Claim the restricted statement

ϕi(B) ⊃ Bgi(xi, 1/10− η),

after dropping finitely many terms in i, which is the first inclusion of (1.6).

Now we have proved the existence and claimed properties of the maps ϕi, it is easy to
perturb them to Gromov-Hausdorff approximations (B, d0) → (Bgi(xi, 1/10), dgi), and

we obtain the claimed Gromov-Hausdorff convergence (Bgi(xi, 1/10), dgi)→ (B, d0).

Finally we turn to the Lipschitz and Hölder claims of the theorem. Whichever metric g
we take on M, the distance dg will be bi-Lipschitz equivalent to dg(T ) once we restrict
to B, so we need only prove the claims with g replaced by the (incomplete) metric g(T )
from the Ricci flow we have constructed. The second inequality of (6.7) tells us that
dg(T )(x, y) ≤ eαT d0(x, y), which ensures that the identity map (B, d0) → (B, dg(T )) is

Lipschitz continuous. Meanwhile, (6.8) tells us that dg(T )(x, y) ≥ γ [d0(x, y)]
1+4c0 , which

implies that the identity map (B, dg(T )) → (B, d0) is Hölder continuous with Hölder

exponent 1
1+4c0

.
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7 Proof of the Anderson, Cheeger, Colding, Tian con-
jecture

Proof of Corollary 1.5. First note that it is expected that it is impossible to flow from
(Mi, gi) since we are not assuming uniform global noncollapsing. As a result, this time it
is more convenient to start by appealing to Gromov compactness to get a complete limit
length space

(Mi, dgi , yi)→ (X, dX , y0)

in the pointed Gromov-Hausdorff sense, for some subsequence in i.

To show that the topological space M induced by (X, dX) is in fact a manifold with bi-
Hölder charts as claimed in the corollary, we must show that given an arbitrary x ∈ X,
there is a neighbourhood of x that is bi-Hölder homeomorphic to a ball in R3, or indeed
to some open subset of a complete Riemannian three-manifold.

By definition of the pointed convergence above, and the fact that the limit is a length
space, for r := dX(x, y0) there exists a sequence fi of ε(i)-Gromov-Hausdorff approxima-
tions BdX (y0, r+ 1)→ Bdgi (yi, r+ 1), where ε(i) ↓ 0 as i→∞, with fi(y0) = yi for each
i. Defining xi := fi(x), we obtain the pointed Gromov-Hausdorff convergence

(Bgi(xi, 1/10), dgi , xi)→ (BdX (x, 1/10), dX , x),

with the limit being compact.

By the hypotheses (1.7) and the fact that dgi(yi, xi) converges to dX(y0, x) = r, and so
is bounded, we must have a uniform lower bound VolBgi(xi, 1) ≥ ṽ0, for some ṽ0 > 0
independent of i, by Bishop-Gromov. Therefore we can apply Theorem 1.4 with v0 there
equal to ṽ0 here, to show that there exist a smooth three-dimensional manifold without
boundary M, containing a point x0, and a metric d0 : M×M → [0,∞) generating
the same topology as M such that Bd0(x0, 1/10) ⊂⊂ M and so that after passing to a
subsequence the compact metric spaces (Bgi(xi, 1/10), dgi) Gromov-Hausdorff converge

to (B, d0), where B = Bd0(x0, 1/10). In fact, that theorem implies the pointed Gromov-
Hausdorff convergence

(Bgi(xi, 1/10), dgi , xi)→ (B, d0, x0).

Moreover, that theorem tells us that the identity map from (B, d0) to (B, dg), for any
smooth complete metric g on M, is bi-Hölder.

By uniqueness of compact limits under pointed Gromov-Hausdorff convergence [5, The-
orem 8.1.7], (B, d0) must be isometric to the restriction of (X, dX) to the closed ball
centred at x of radius 1/10, via an isometry that identifies x0 and x.

Consequently, we find that (Bd0(x0, 1/10), d0) is isometric to (BdX (x, 1/10), dX), and we
have found a bi-Hölder homeomorphism from this neighbourhood to (Bd0(x0, 1/10), dg).

8 Proof of the Global Existence Theorem 1.7

Before beginning the proof, we recall the following special case of a result of B.L. Chen
[10, Theorem 3.1]. Similar results were independently proved by the first author [24,
Theorem 1.3].

Lemma 8.1. Suppose (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], not necessarily com-
plete, with the property that for some y0 ∈ M and r > 0, and all t ∈ [0, T ], we have

22



Bg(t)(y0, r) ⊂⊂M and

|Rm|g(t) ≤
c0
t

throughout Bg(t)(y0, r), for all t ∈ (0, T ], (8.1)

and for some c0 ≥ 1. Then if |Rm|g(0) ≤ r−2 on Bg(0)(y0, r), we must have

|Rm|g(t)(y0) ≤ eCc0r−2

where C depends only on n.

We will also need a slightly nonstandard version of Shi’s derivative estimates, as phrased
in [26, Lemma A.4]. For a slightly stronger result, and proof, see [12, Theorem 14.16].

Lemma 8.2. Suppose (Mn, g(t)) is a Ricci flow for t ∈ [0, T ], not necessarily complete,
with the property that for some y0 ∈ M and r > 0, we have Bg(0)(y0, r) ⊂⊂ M , and
|Rm|g(t) ≤ r−2 throughout Bg(0)(y0, r) for all t ∈ [0, T ], and so that for some l0 ∈ N we

initially have |∇lRm|g(0) ≤ r−2−l throughout Bg(0)(y0, r) for all l ∈ {1, . . . , l0}. Then
there exists C <∞ depending only on l0, n and an upper bound for T/r2 such that

|∇lRm|g(t)(y0) ≤ Cr−2−l

for every l ∈ {1, . . . , l0} and all t ∈ [0, T ].

Proof of Theorem 1.7. Pick any point x0 ∈ M . For each integer k ≥ 2, apply Theorem
1.6 to the manifold (M, g0), with s0 = k+2. The conclusion is that there exist T, v, α, c0 >
0, depending only on α0 and v0, so that there exists a Ricci flow gk(t) defined onBg0(x0, k)
for t ∈ [0, T ] with gk(0) = g0 on Bg0(x0, k) with the properties that{

Ricgk(t) ≥ −α
|Rm|gk(t) ≤ c0/t

(8.2)

on Bg0(x0, k) for all t ∈ (0, T ].

For r0 > 0 and k ≥ r0 + 2, Lemma 8.1 can now be applied to gk(t) centred at arbitrary
points y0 ∈ Bg0(x0, r0 + 1). Note that the curvature estimate |Rm|g(t) ≤ c0/t holds on
Bg0(y0, 1), and by the Shrinking Balls Lemma 2.2, this contains Bgk(t)(y0, 1/2) for all
t ∈ [0, T ] after possibly reducing T to a smaller positive value depending only on c0,
which in turn depends only on α0 and v0. The output of Lemma 8.1 is that there exists
K0 <∞, depending only on supBg0 (x0,r0+2) |Rm|g0 and c0 and in particular independent

of k, such that |Rm|gk(t) ≤ K0 throughout Bg0(x0, r0 + 1), for all t ∈ [0, T ].

We may then apply Lemma 8.2 to gk(t) centred at arbitrary points y0 ∈ Bg0(x0, r0).
This time we deduce that for each l ∈ N there exists K1 < ∞, depending only on l, g0
and r0, and in particular independent of k, such that

|∇lRm|g(t) ≤ K1

throughout Bg0(x0, r0), for all t ∈ [0, T ]. Working in coordinate charts, by Ascoli-Arzelà
we can pass to a subsequence in k and obtain a smooth limit Ricci flow g(t) on Bg0(x0, r0)
for t ∈ [0, T ] with g(0) = g0 (it is not necessary to take a Cheeger-Hamilton limit here
since gk(0) = g0 on Bg0(x0, r0) for sufficiently large k). Moreover, the limit will inherit
the curvature bounds {

Ricg(t) ≥ −α
|Rm|g(t) ≤ c0/t

(8.3)

on Bg0(x0, r0) for all t ∈ (0, T ].
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We can now repeat this process for larger and larger r0 → ∞, and take a diagonal
subsequence to obtain a smooth limit Ricci flow g(t) on the whole of M for t ∈ [0, T ]
with g(0) = g0. This limit flow must be complete because for arbitrary t ∈ (0, T ]
and arbitrarily large r > 0, the Shrinking Balls Lemma 2.2 tells us that Bg(t)(x0, r) ⊂
Bg0(x0, r + β

√
c0t) ⊂⊂M .

Given our curvature control (8.3) and the completeness of g(t), the distance estimates
are standard, although they also follow from our more elaborate Lemma 3.1.

9 Starting a Ricci flow with a Ricci limit space

In this section we prove Theorem 1.8.

Proof. Because we are making a stronger assumption in Theorem 1.8 than in Corollary
1.5, we can apply Theorem 1.7 to each (Mi, gi) to give a sequence of Ricci flows gi(t) on
Mi with gi(0) = gi, defined over a uniform time interval [0, T ], and enjoying the uniform
estimates 

Ricgi(t) ≥ −α
VolBgi(t)(x, 1) ≥ v > 0 for all x ∈Mi

|Rm|gi(t) ≤ c0/t throughout Mi

(9.1)

for all t ∈ (0, T ], and

dgi(t1)(x, y)− β
√
c0(
√
t2 −

√
t1) ≤ dgi(t2)(x, y) ≤ eα(t2−t1)dgi(t1)(x, y), (9.2)

for any 0 ≤ t1 ≤ t2 ≤ T , and any x, y ∈ Mi. Because of the uniform curvature bounds
for positive times, Hamilton’s compactness theorem tells us that we can pass to a subse-
quence in i so that (Mi, gi(t), xi)→ (M, g(t), x∞) in the smooth Cheeger-Gromov sense,
where M is a smooth manifold, g(t) is a complete Ricci flow on M for t ∈ (0, T ], x∞ ∈M
and we pass the estimates (9.1) and (9.2) to the limit to give

Ricg(t) ≥ −α
VolBg(t)(x, 1) ≥ v > 0 for all x ∈M
|Rm|g(t) ≤ c0/t throughout M

(9.3)

for all t ∈ (0, T ], and

dg(t1)(x, y)− β
√
c0(
√
t2 −

√
t1) ≤ dg(t2)(x, y) ≤ eα(t2−t1)dg(t1)(x, y), (9.4)

for any 0 < t1 ≤ t2 ≤ T , and any x, y ∈ M . This final estimate tells us that there
exists a metric d0 on M to which dg(t) converges locally uniformly as t ↓ 0. It also tells
us, when combined with the smooth convergence of (Mi, gi(t), xi) to (M, g(t), x∞) for
positive times and (9.2) that

(Mi, dgi , xi)→ (M,d0, x∞)

in the pointed Gromov-Hausdorff sense, which can be considered an easier version of the
argument in Section 6.
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