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We prove uniform curvature estimates for homogeneous Ricci flows: For a solution

defined on [0, t] the norm of the curvature tensor at time t is bounded by the maxi-

mum of C(n)/t and C(n)(scal(g(t))−scal(g(0))). This is used to show that solutions with

finite extinction time are Type I, immortal solutions are Type III and ancient solutions

are Type I, with constants depending only on the dimension n. A further consequence is

that a non-collapsed homogeneous ancient solution on a compact homogeneous space

emerges from a unique Einstein metric on that space. The above curvature estimates

follow from a gap theorem for Ricci-flatness on homogeneous spaces. This theorem is

proved by contradiction, using a local W2,p convergence result which holds without

symmetry assumptions.

1 Introduction

The proof of Thurston’s geometrization conjecture by Perelman [57–59] using Hamil-

ton’s Ricci flow [34] can certainly be considered a major break through. There are

however interesting related problems which remain open. For instance, Lott asked in

[50], whether the three-dimensional Ricci flow detects the homogeneous pieces in the

geometric decomposition proposed by Thurston. In the same article this was proved to

be true for immortal solutions, assuming a Type III behavior of the curvature tensor
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4432 C. Böhm et al.

and a natural bound on the diameter of the underlying closed oriented manifold. More

recently, Bamler showed in a series of articles that for the Ricci flow with surgery there

exist only finitely many surgery times, and that the Type III behavior holds after the last

surgery time. In many cases, convergence to a geometric piece could be established. We

refer to [9] and the articles quoted therein.

Recall that a Ricci flow solution is called homogeneous, if it is homogeneous at

every time. In dimension 3 homogeneous Ricci flows are well understood: see [20, 31,

36, 39, 49]. For results in higher dimensions we refer to [1, 2, 6, 17, 19, 37, 46, 47, 56],

among others. Notice that except for [47], assumptions on the algebraic structure or on

the dimension were made.

Our first main result is

Theorem 1. Let (Mn,g(t))t∈[a,b] be a homogeneous Ricci flow solution. Then the norm of

the Riemannian curvature tensor at the final time b can be estimated by

‖Rm(g(b))‖g(b) ≤ C(n) · max
{

1
b−a , scal(g(b))− scal(g(a))

}
. �

Symbols like c(n),C(n), etc. refer to positive constants which depend only on the

dimension. A first immediate consequence of the above estimate is that for homogeneous

Einstein spaces of a fixed dimension, the Einstein constant controls the norm of the

curvature tensor. Notice that this is not true already in the case of cohomogeneity one

Einstein spaces with positive Einstein constant [12].

Corollary 2. Let (Mn,g(t))t∈I be a homogeneous Ricci flow solution. Then the following

holds: If the solution has finite extinction time T , i.e. I = [0,T), and scal(g(0)) = 1, then

there exists δ(n) ∈ (0, 1) such that for all t ∈ [δ(n) · T ,T)

‖Rm(g(t))‖g(t) · (T − t) ∈ [ 1
8 ,C(n)].

If the solution is immortal, i.e. I = [0, ∞), and scal(g(0)) = −1, then for all t ∈ I

‖Rm(g(t))‖g(t) · t ∈ [0,C(n)].

If the solution is ancient, i.e. I = (−∞, −1], and scal(g(−1)) = 1, then for all t ∈ I

‖Rm(g(t))‖g(t) · |t| ∈ [c(n),C(n)]. �

The above assumptions on the scalar curvature can always be achieved: see

Remark 4.2. Note also, that in [14] the first two upper curvature bounds were shown,

however with constants depending on the initial metric.
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Regarding homogeneous solutions with finite extinction time, recall that by [10]

a homogeneous space always admits such solutions, if its universal cover is not diffeo-

morphic to Euclidean space, and that starting from dimension 7 there exists infinitely

many homotopy types of simply-connected homogeneous spaces [7]. Notice also, that

the homogeneity assumption cannot be dropped in the above corollary, see [26, 33, 38].

Moreover, we show in Lemma 4.3 that there cannot exist a uniform upper bound for

‖ Rm(g(t))‖g( )t · (T − t) for small times: On S3 there exists a sequence of homogeneous

Ricci flows, such that at the initial time the norm of the curvature tensor is one, the

scalar curvature is positive, but the extinction times are unbounded.

Using the above corollary, it then follows from [52] and [28] that a homogeneous

Ricci flow solution with finite extinction time subconverges, after appropriate scaling,

to a non flat homogeneous gradient shrinking soliton. By [61], such a forward limit

soliton is a finite quotient of a product of a compact homogeneous Einstein space and a

non-compact flat factor, where the latter might be absent.

Next, recall that by [10] and [45] any homogeneous Ricci flow on a homogeneous

space whose universal cover is diffeomorphic to Euclidean space is immortal and that

starting in dimension 3 there are uncountably many homogeneous spaces whose under-

lying manifold is Euclidean space [11]. For immortal solutions the lower bound 0 in the

above estimate is again optimal: already in dimension three, there are examples where

the curvature tensor converges exponentially fast to zero [36]. Concerning forward limit

non-gradient solitons of immortal homogeneous solutions we refer to [15].

We turn to homogeneous ancient solutions. Notice first, that the homogeneity

assumption cannot be dropped in the above corollary in view of [8, 58]. Recall also that

homogeneous ancient solutions are called non-collapsed, if the corresponding curvature

normalized metrics have a uniform lower injectivity radius bound. In this case, by the

above corollary and by [21, 52] these solutions admit a non-flat homogeneous asymptotic

soliton as one goes backwards in time.

All known non-compact ancient homogeneous Ricci flow solutions are the Rie-

mannian product of a compact ancient solution and a flat factor. In the compact case

our estimates yield the following

Theorem 3. The asymptotic soliton of a non-collapsed, homogeneous ancient solution

on a compact homogeneous space is compact and unique. �

In fact, we show that non-collapsed ancient solutions on a compact homogeneous

space must emanate from a homogeneous Einstein metric on the same space. Examples

of such solutions have been described in [8, 19], both with compact and non-compact
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4434 C. Böhm et al.

Fig. 1. A family of ancient solutions on M12.

forward limit soliton. Let us also mention that on a compact homogeneous space which

is not a homogeneous torus bundle, ancient homogeneous solutions are non-collapsed:

see Remark 5.3.

Since along the volume-normalized Ricci flow the scalar curvature is non-decrea-

sing, the Einstein metric from which an ancient solution emanates cannot be a local

maximum of the total scalar curvature functional restricted to the space of homogeneous

metrics. Conversely, if an Einstein metric is not a local maximum in this sense, there

exists an ancient solution emanating from it: see Lemma 5.4.

Next, we turn now to collapsed homogeneous ancient solutions on compact

homogeneous spaces. Since they are collapsed, the asymptotic soliton can only exist

in the sense of Riemannian groupoids, as introduced by Lott [49]: see Section 6. A nice

example is given by the Berger metrics on S2n+1. They have the non-compact asymptotic

soliton CP
n × R, and the round sphere as a compact forward limit soliton.

The following compact homogeneous space is the first example admitting a col-

lapsed ancient solution with non-compact forward limit soliton. Moreover, this example

also shows that the geometry of the asymptotic soliton does not depend continuously

on ancient solutions.

Example. There exists a compact homogeneous space M12 which admits a one-

parameter family of homogeneous ancient solutions with the same asymptotic soliton

(E11,gE1) × R and the same forward limit soliton S3 × R
9. Moreover, in the closure of

these solutions there is a single ancient solution emanating from (E11,gE2)× R. �

Here, gE1 , gE2 are non-isometric Einstein metrics on the compact homogeneous

spaceE11. In appropriate coordinates these solutions are depicted in Figure 1. For further

details and higher dimensional examples see Section 6.
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Our second main result, which is crucial for the proof of Theorem 1, is

Theorem 4 (Gap Theorem). There exists ε(n) ∈ (0, 1) such that for any homogeneous

space (Mn,g) the Weyl curvature can be estimated by

‖W(g)‖g ≤ (
1 − ε(n)

) · ‖Rm(g)‖g. �

It follows that a homogeneous Ricci flat space is flat, a result which was proved

by Alekseevski and Kimel’fel’d [3] in 1975. But it also shows that a non-flat homogeneous

space cannot be “too” Ricci flat. The optimal gap size ε(n) is unknown, but converges to 0

as n → ∞: see Section 7. It is worthwhile mentioning that the Gap Theorem is equivalent

to the statement

‖ Rm(g)‖g ≤ C(n) · ‖ Ric(g)‖g.

The Gap Theorem is proved by contradiction. We show that a contradiction

sequence subconverges locally in C1,α-topology to a smooth local limit space, when

assuming norm-normalized curvature tensors. Such a local limit is a smooth Ricci flat

metric. Since it is also locally homogeneous, it must be flat [65]. On the other hand,

as already remarked by Anderson [4], subconvergence can even be assumed in W2,p-

topology for some p > n/2, which yields a positive lower bound for the norm of the

curvature tensor.

Since the corresponding curvature estimates might be of independent interest

we state them here. We would like to mention, that in the following theorem there are

no symmetry or completeness assumptions.

Theorem5. Given 0 < v ≤ V andp ∈ (n/2, ∞) , there exists a constant ε = ε(v,V ,n,p) >

0 such that the following holds. Let (Dn
i ,gi,xi)i∈N be a sequence of smooth manifolds, such

that B
gi
1 (xi) is compactly contained inDn

i for all i ∈ N. Assume that vrn ≤ vol(B
gi
r (x)) ≤ Vrn

for all r ≤ 1, for all B
gi
r (x) ⊆ B

gi
1 (xi), and

lim
i→∞

∫
B
gi
1 (xi)

‖ Ric(gi)‖pdμgi = 0 and
∫
B
gi
1 (xi)

‖ Rm(gi)‖n/2dμgi ≤ ε.

Then, for all s ∈ (0, 1), (B
gi
s (xi),gi,xi)i∈N subconverges in the pointed W2,p-topology to a

C∞-smooth limit manifold (Bg∞
s (x),g∞,x), and we have

lim
i→∞

∫
B
gi
s (xi)

‖ Rm(gi)‖pdμgi =
∫
B
g∞
s (x)

‖ Rm(g∞)‖pdμg∞ . �
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At the moment no algebraic proof of the Gap Theorem is known, not even for the

fact that Ricci flat homogeneous spaces are flat. Hence we propose the following

Problem. Provide an algebraic proof for the Gap Theorem. �

The article is organized as follows: In Section 2 we prove the Gap Theorem using

Theorem 5, whose proof is provided in Section 3. In Section 4 we show how Theorem 1

can be deduced from Theorem 4 and we give the proof of Corollary 2. In Section 5 we

prove Theorem 3, and in Section 6 and we will provide examples of homogeneous ancient

solutions. Finally, in Section 7 examples of left-invariant metrics on solvable Lie groups

are given, which show that the constant ε(n) in the Gap Theorem must converge to zero

for n → ∞.

The first author would like to thank Claude Le’Brun and Lei Ni for helpful com-

ments. The authors would like to thank Norman Zergänge for pointing out that the weak

convergence theorem (see Section 2) was not correctly stated in the first version of this

article.

2 Locally and Globally Homogeneous Spaces

In this section, we define locally homogeneous spaces and show that they are real ana-

lytic Riemannian manifolds. Moreover, we provide injectivity radius estimates and a

result which shows how to extend local isometries on simply connected domains. All of

this is used to prove Theorem 2.6: there, we show that a contradiction sequence to Theo-

rem 4, lifted to the tangent spaces, has to subconverge in the C1,α-topology to a Ricci-flat

space which is locally homogeneous and thus flat. Then at the end of the section we

prove Theorem 4.

A Riemannian manifold (Mn,g) is called globally homogeneous if for all points

p,q ∈ Mn there exists an isometry fp,q of (Mn,g)mapping p to q. In other words, the isom-

etry group acts transitively on Mn. It is a classic result that any globally homogeneous

Riemannian manifold is complete.

A Riemannian manifold (Mn,g) is called locally homogeneous if for all p,q ∈ Mn

there exists ε = εp,q > 0, depending possibly on p and q, such that Bε(p) and Bε(q)

are isometric with the induced metric. Here, Bε(p) denotes the open ε-ball around p in

(Mn,g). Notice that a locally homogeneous manifold is not necessarily complete. More-

over, recall that there exists (incomplete) locally homogeneous manifolds which are not

locally isometric to any globally homogeneous manifold, see [43].
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Lemma 2.1. A locally homogeneous space (Mn,g) is a real analytic Riemannian

manifold. �

Proof. By [67] local homogeneity of (Mn,g) is equivalent to the existence of an Ambrose-

Singer-connection ∇∗, in short AS-connection. An AS-connection is a metric connection,

which has parallel torsion and parallel curvature. Now by Theorem 7.7 from Chapter VI

in [40] it follows that both Mn and the AS-connection ∇∗ are real analytic. It remains to

show that the Riemannian metric g is real analytic as well.

Let x : U → R
n be a chart from the analytic atlas of Mn, let V := x(U) and let

(e1, ..., en) denote the standard basis on R
n. Pulling back the metric g|U by x−1 to V we

obtain an metric ĝ = (ĝjk)1≤j,k≤n on V with ĝ(ej, ek) = ĝjk. Pulling back the connection ∇∗

to V we get an analytic connection ∇̂∗ on V . Hence the Christoffel symbols �̂∗
ij,k : V → R

of ∇̂∗ are real analytic, 1 ≤ i, j,k ≤ n.

Recall that ∇̂∗ is a metric connection, that is for 1 ≤ i, j,k ≤ n we have

eiĝ(ej, ek) = ĝ(∇̂∗
ei
ej, ek)+ ĝ(ej, ∇̂∗

ei
ek).

Let v0 ∈ V , v ∈ R
n with ‖v‖std = 1 and cv : (−ε, ε) → V ; t 
→ v0 + t · v. We set ĝjk(t) :=

ĝjk(cv(t)) for 1 ≤ j,k ≤ n. Then the vector Ĝ(t) = (ĝ11(t), ..., ĝnn(t)) satisfies a linear

ordinary differential equation Ĝ′(t) = Â(t) · Ĝ(t), where Â(t) is real analytic. Now by

Theorem 10.1 in [66] the solution Ĝ(t) is real analytic and defined on the entire interval

(−ε, ε), that is

ĝjk(t) =
∞∑
l=0

ĝ(l)jk (0)

l! · tl,

for all 1 ≤ j,k ≤ n and all t ∈ (−ε, ε). A computation shows that ĝjk(0) = ĝjk(v0), ĝ
(1)
jk (0) =

〈(∇ĝjk)v0 ,v〉 and

ĝ(2)jk (0) = d
dt |t=0

〈
(∇ĝjk(cv(t))),v

〉 = (
Hess(ĝjk)

)
v0
(v,v).

Inductively we get corresponding formulae for the higher derivatives. This shows that

at the points cv(t) the functions ĝjk can be written as a power series. Since this works for

any v with ‖v‖std = 1 we deduce that the metric coefficients ĝjk are real analytic. This

shows the claim. �

Next, we consider globally homogeneous spaces (Mn,g)with sectional curvature

bound |Kg| ≤ 1 at one and hence any point of Mn. We consider also for a point p ∈ Mn
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the Riemannian exponential map expp : TpMn → Mn. Since |Kg| ≤ 1, by the Rauch

comparison theorems

expp |B̂π (0p) : B̂π (0p) → Bπ (p)

is an immersion. Hence we can pull back the metric g|Bπ (p) to a metric ĝ on B̂π (0p) ⊂
TpMn. The metric ĝ is locally homogeneous, clearly incomplete, but still real analytic

by Lemma 2.1. Here, we used that the exponential map is analytic: see Proposition 10.5

in [35].

Definition 2.2. We call (B̂π (0p), ĝ) a geometric model for the globally homogeneous

space (Mn,g). �

We mention here that any homogeneous space has an associated infinitesimal

model which encodes the algebraic data of the space: see [67].

Using once again that |Kĝ| ≤ 1, we see that injĝ(x) ≥ i(r) > 0 for any x ∈ B̂π (0p) in

view of [23] or [22]. Here r = dĝ(0p,x) = ‖x‖ and i : [0,π) → R+ is an explicit continuous

function with i(r) ≤ π − r. Notice that i does not depend on the particular choice of the

local model (B̂π (0p), ĝ).

For the convenience of the reader we will provide a proof of a much stronger

estimate.

Lemma 2.3. If (B̂π (0p), ĝ) is a geometric model and x ∈ B̂π (0p) with r = dĝ(0p,x), then

i(r) = π − r. �

Proof. Let x ∈ B̂π (0p) be given and suppose that ε := injĝ(x) < π − r. Using the triangle

inequality we see that the closure of Bĝε (x) is a subset of B̂π (0p). Since |Kĝ| ≤ 1, by

Klingenberg’s Lemma (cf. [60], p. 182) there exists a geodesic loop c centered at x of

length 2ε possibly not closing up smoothly. Since the angle between a Killing field and

a geodesic does not change, the loop must close up smoothly. Here we have used that

on a simply connected, locally homogeneous space (Mn,g) for each point p there exist

Killing vector fields on Mn spanning TpMn (see Theorem 1 in [53]).

Now the injectivity radius is a continuous function at x (see Chapter VIII, The-

orem 7.3 in [41]). As a consequence, for small positive t there exist closed geodesics ct

centered at (1 − t) · x of length 2ε + δ(t), with limt→0 δ(t) = 0. We claim that in fact

δ ≡ 0. To this end, we pick a sequence (ti)i∈N converging to zero, such that the closed
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geodesics cti converge to a limit geodesic c̃ of length 2ε. Since the metric ĝ is real ana-

lytic, on compact sets the length functional has only finitely many critical values by

[63]. Consequently for large i the length of cti must be 2ε. We can now conclude that

also at the center point 0p the injectivity radius is less than or equal to ε < π . This is a

contradiction. �

In the next lemma, we show that local isometries can be extended to balls of

uniform size.

Lemma 2.4. Let (B̂π (0p), ĝ) be a geometric model, x,y ∈ B̂π (0p), and let

δ := δ(x,y) := min{i(‖x‖), i(‖y‖)}.

Then the open distance balls Bĝδ (x) and Bĝδ (y) are isometric. �

Proof. Since (B̂π (0p), ĝ) is locally homogeneous, there exists ε > 0 and an isometry

h : Bĝε (x) → Bĝε (y). We need to show that we can extend this isometry to an isometry

H : Bĝδ (x) → Bĝδ (y).

Since by Lemma 2.1 the locally homogeneous space (B̂π (0p), ĝ) is real analytic,

it follows as in the proof of Proposition 10.5 in [35] that both the exponential maps

expx : B̂δ(0x) → Bĝδ (x) and expy : B̂δ(0y) → Bĝδ (y) are real analytic diffeomorphisms by

Lemma 2.3. We set

H : Bĝδ (x) → Bĝδ (y) ; z 
→ (
expy ◦ (Dh)x ◦ (expx

)−1 )
(z).

The map H coincides with h on Bĝε (x). Moreover H is analytic. As a consequence, the

analytic tensors ĝ|
B
ĝ
δ
(x)

and H ∗(ĝ|
B
ĝ
δ
(y)
) are equal on Bĝε (x). By analyticity they coincide on

all of Bĝδ (x), hence H is the desired extension. Clearly, H is a diffeomorphism. �

Remark 2.5. The previous two lemmata imply that there exist positive constants vn ≤
Vn such that

vnr
n ≤ vol(Bĝr (x)) ≤ Vnr

n (1)

for all x ∈ B̂π (0p) and all 0 < r < π − |x|. �

For a Riemannian metric g we denote by Ric(g) its Ricci tensor.
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Theorem 2.6. Let (B̂π (0pi), ĝi)i∈N be a sequence of locally homogeneous geometric mod-

els. Suppose that Ric(ĝi) → 0 for i → ∞. Then, there exists a subsequence converging

in C1,α-topology to a smooth flat limit space (X , ĝ). �

Proof. Since for geometric models we have injĝi(0pi) = π and |Kĝi | ≤ 1, by the Cheeger-

Gromov-compactness theorem we may assume that (B̂π (0), ĝi, 0)i∈N converges to a C1,α-

smooth manifold (X , ĝ,x0) in the pointed C1,α topology. Using Ric(ĝi) → 0 as i → ∞ this

can be improved: (X , ĝ) is smooth and satisfies Ric(ĝ) = 0 (see [4] and [60], Theorem 5.5).

The type of convergence is described for example in Theorem 3.3.

We claim now that this limit space (X , ĝ) is locally homogeneous. To this end,

let y �= x0 be a point in Bĝπ−3δ(x0), and assume after pulling-back by the corresponding

diffeomorphisms that convergence takes place in Bĝπ−δ(x0). Then by Lemma 2.4, for all i ∈
N there exists a ĝi-isometry fi betweenB

ĝi
δ (x0) andB

ĝi
δ (y). Choose a countable dense subset

S = {sk}k∈N ofBĝδ (x0) ⊆ X . The sequence
(
fi(sk)

)
i∈N

has a convergent subsequence with limit

f∞(sk) ∈ Bĝδ (y). Using a Cantor diagonal procedure, one can choose a subsequence (fil )l∈N

of (fi)i∈N, such that for any k ∈ N the sequence (fil (s
k))l∈N converges as l goes to infinity.

This defines a one-Lipschitz map f∞ : S → X , that is, dĝ(f∞(sj), f∞(sk)) = dĝ(sj, sk). Such

a map can be extended to a distance preserving map from Bĝδ (x0) to Bĝδ (y). Clearly, this

map is injective. Now, since (X , ĝ) is smooth, distance preserving maps are smooth as

well (see for instance [35, Theorem 11.1]). Hence f∞ : Bĝδ (x0) → Bĝδ (y) is also surjective,

and this shows that these two balls are isometric. Consequently, the limit space (X , ĝ)

is locally homogeneous.

Finally, by [65] locally homogeneous Ricci flat Riemannian manifolds are flat. �

Proof of the Gap Theorem. As noticed in the introduction, it is sufficient to prove the

equivalent estimate ‖ Rm(g)‖g ≤ C(n) · ‖ Ric(g)‖g. Let Vn,vn be the volume bounds men-

tioned in Remark 2.5, ε(n) = ε(n,vn,Vn) > 0 and L(n) = L(n,vn,Vn) be as in Theorem 3.3.

W.l.o.g. ε̃(n) := ε(n)
Vn3n ≤ 1.

The proof goes by contradiction. Suppose that there exists a sequence (Mn
i ,gi) of

n-dimensional homogeneous spaces with ‖ Rm(gi)‖ = ε̃(n)2/n ≤ 1 and ‖ Ric(gi)‖ → 0 for

i → ∞. Notice that ‖ Rm(gi)‖ ≤ 1 implies |Kgi | ≤ 1. Hence, by the above discussion every

such space has a geometric model (B̂π (0pi), ĝi). By Theorem 2.6 we may assume that the

sequence (B̂π (0pi), ĝi, 0pi)i∈N converges to a flat limit space (X , ĝ,x0).

On the other hand, this contradicts the estimates in Theorem 3.3 as we will show

now. The balls B
ĝi
3 (0) are compactly contained in B̂π (0pi) and satisfy the volume estimates

of Remark 2.5. Clearly, ‖ Ric(ĝi)‖ → 0 for i → ∞. Moreover, by our normalization we
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have that

∫
B
ĝi
3 (0)

‖ Rm(ĝi)‖n/2dμĝi = ε̃(n) · vol(B
ĝi
3 (0)) ∈ [ε(n) vnVn , ε(n)

]
(2)

in view of the volume estimates. Thus, we can apply Theorem 3.3 and conclude that

the convergence to (X , ĝ,x0) is in fact in the W2,p-topology, for any p > n/2. Using this,

together with the volume estimates (1) and the fact that the limit is flat we obtain

v1/p
n · ε̃(n)n/2 = v1/p

n · ‖ Rm(ĝi)‖
≤ vol(B

ĝi
1 (0))

1/p · ‖ Rm(ĝi)‖

=
(∫

B
ĝi
1 (0)

‖ Rm(ĝi)‖p
)1/p

−→
i→∞

0,

a contradiction. �

3 A Weak Convergence Result

In this section, we will state a convergence result and curvature estimates for Riemann-

ian manifolds (Dn,g)without boundary (possibly incomplete) satisfying certain integral

curvature and volume bounds. These results were applied to geometric models of homo-

geneous spaces in the proof of the Gap Theorem. Notice though that in this section no

symmetry assumptions are made on (Dn,g) whatsoever.

We start by defining the W1,p harmonic radius of (Dn,g). Given a chart

ψ : V → ψ(V) = Y ⊂ R
n ,

V ⊂ Dn, we denote by

(gψjk)1≤j,k≤n : Y → R

the coordinate functions of g in the chart ψ . Then we set

‖Dg‖Lp(ψ) :=
⎛
⎝∫

ψ(V)

n∑
j,k,l=1

|∂lgψjk|pdy
⎞
⎠

1
p

, (3)

where dy refers to Lebesgue measure on R
n and ∂lg

ψ

jk refers to the standard Euclidean

partial derivative in the l-th direction of the function gψjk.
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4442 C. Böhm et al.

Clearly the above norm depends on the choice of the chart. For instance if ψ(V)

is the Euclidean standard ball Bstd
1 (0) of radius one and if ψr := dr ◦ ψ , dr(y) = r · y is

the dilation by factor r > 0, then

‖Dg‖Lp(ψr) = r
n
p−3 · ‖Dg‖Lp(ψ).

We assume now that distance ball Bg1(y) is compactly embedded in Dn. Furthermore, we

assume that there exists constants 0 < v < V such that for all Bgr (x) ⊆ Bg1(y) and all

0 ≤ r ≤ 1 we have

vrn ≤ vol(Bgr (x)) ≤ Vrn. (4)

Definition 3.1 (Harmonic radius). Let (Dn,g) be as above and let 0 < p < ∞. Then the

p-harmonic radius rghar,p(x) at a point x ∈ Bg1(y) is the supremum of all r > 0 with the

following property: There exists a C∞-smooth chart

ψr = (ψ1
r , ...,ψn

r ) : V → Bstd
r (0)

around x with ψr(x) = 0, V ⊆ Bg1(y) with the following properties:

(i) 1
2δjk < gψrjk < 2δjk, and gij(0) = δij.

(ii) r1−n
p · ‖Dg‖Lp(ψr) < 2.

(iii) The map ψr is harmonic, that is 
gψ
m
r = 0 for all m ∈ {1, . . . ,n}. �

Nowhere in the definition do we require that V = ψ−1
r (Br(0)) be a geodesic ball. All three

conditions are invariant under the simultaneous scaling (g, r) 
→ (λ2 · g, λ · r) for some

λ > 0, where then the ball Bg1(y) has to be replaced by Bλ
2·g

1λ (y) in the above definition. As

a consequence, the harmonic radius scales as a radius.

The proof given here follows essentially the proof given in Appendix B of [64],

which, as explained there, essentially follows the proof of Main Lemma 2.2 of [4] (see

Remark 2.1 there), using some notions coming from [5].

Theorem 3.2. Let 0 < v ≤ V and p ∈ (n/2, ∞) be fixed constants. Then there exist

ε = ε(v,V ,n,p) > 0 and L = L(v,V ,n,p) > 0 such that the following holds. Let (Dn,g) be

a smooth Riemannian manifold without boundary, y ∈ Dn, such that Bg1(y) is compactly

contained in Dn. Assume that the volume estimates of (4) are satisfied, and∫
B
g
1(y)

‖ Ric(g)‖pdμg ≤ 1, (5)
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and ∫
B
g
1(y)

‖ Rm(g)‖n/2dμg ≤ ε. (6)

Then for all x ∈ Bgs (y), s < 1 we have

rghar,2p(x) ≥ L(1 − s). (7)

�

Proof. We are going to prove that rghar,2p(x) ≥ Ldistg(x, ∂Bg1(y)) for all x ∈ Bgs (y). Assume

that the result is false. We start with the more difficult casep ∈ (n/2,n). Then there exists

a sequence (Dn
i ,gi,yi)i∈N of pointed Riemannian manifolds without boundary, such that

B
gi
1 (yi) is compactly contained in (Dn

i ,gi) with the following properties: We have

∫
B
gi
1 (yi)

‖ Rm(gi)‖n/2dμgi ≤ 1
i (8)

and there exist x̃i ∈ B
gi
1 (yi) such that

hi(x̃i) = r
gi
har,2p(x̃i)

distgi (x̃i,∂(B
gi
1 (yi)))

→ 0 as i → ∞.

Since r
gi
har,2p is lower semi-continuous on B

gi
1 (yi) (2p > n), there exist points xi ∈ B

gi
1 (yi)

with hi(xi) ≤ hi(x) for all x ∈ B
gi
1 (yi). Clearly limi→∞ hi(xi) = 0. This in turn implies

limi→∞ r
gi
har,2p(xi) → 0. We deduce that

μi := 1

r
gi
har,2p(xi)

→ ∞ as i → ∞.

Next, we consider the rescaled metrics g̃i := μ2
i · gi. Notice that the functions hi, defined

above, are invariant under such a scaling, if we replace the ball of radius one by the

balls B
g̃i
μi(yi) in the definition of harmonic radius.

We also have r
g̃i
har,2p(xi) = 1,

∫
B
g̃i
μi
(yi)

‖ Ric(g̃i)‖pdμg̃i → 0 as i → ∞ , (9)

and ∫
B
g̃i
μi
(yi)

‖ Rm(g̃i)‖n/2dμg̃i → 0 as i → ∞ , (10)
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4444 C. Böhm et al.

since p > n
2 and the inequality (8) holds; notice that the integral in (10) is invariant under

scaling of the metric. Hence by the above mentioned scale invariance of the functions

hi and the choice of points xi we have for all x ∈ B
g̃i
μi(yi)

r
g̃i
har,2p(x)

distg̃i
(x,∂(B

g̃i
μi
(yi)))

≥ r
g̃i
har,2p(xi)

distg̃i
(xi,∂(B

g̃i
μi
(yi))

= 1

distg̃i
(xi,∂(B

g̃i
μi
(yi))

→ 0 as i → ∞.

Next, as in [64] a simple triangle inequality estimate shows that for any ρ > 0 and any

x ∈ B
g̃i
ρ (xi) for i ≥ N(ρ) large enough we have

r
g̃i
har,2p(x) ≥ 1

2 .

For ease of reading, we remove the tildes from g̃i and write again gi.

We set r0 := 1
100 . Using the volume estimates and (i) we find harmonic coordinate

charts ψ s
i : Us

i → Bstd
r0
(0) with ψ s

i (x
s
i ) = 0, s = 1, ...,N = N(v,V , ρ,n), such that the sets

(Us
i )

N
s=1 cover B

gi
ρ (xi), and their intersection number is bounded from above by Z(v,V ,n).

We write

ϕsi : Bstd
r0
(0) → Us

i ; y 
→ (ψ s
i )

−1(y)

and call these maps charts also. We proceed as in [64] (cf. [60]): There exists a limit

space (X ,dX ,x∞) of the sequence (Dn
i ,d(gi),xi) in pointed Gromov-Hausdorff-topology

by Theorem 7.4.15 in [18] in view of the volume estimates. Arguing exactly as in [60] after

the proof of Fact 4 and at the beginning of Fact 5, we see first that X is a C0 manifold,

with coordinate charts ϕr : Bstd
r0
(0) → Vr , and their construction implies the following: if

ϕt(Bstd
2ε (v)) ⊆ Vr ∩ Vt, then the maps (αi)tr := (ϕri )

−1 ◦ ϕti : Bstd
ε (v) → R

n subconverge with

respect to the C0 norm to the maps αtr := (ϕr)−1 ◦ ϕt : Bstd
ε (v) → R

n as i → ∞.

Next, we show that the limit space X is a C2,β-manifold. We have to prove that

the transition functions

(αi)
s
s̃ := (ϕ s̃i )

−1 ◦ ϕsi

have a convergent subsequence in C2,β . We sketch the argument.

We can assume, choosing i large enough, that (αi)ss̃ is defined on a small ball

Bstd
2δ (z) ⊆ Bstd

r0
(0), independent of i. The indices s and s̃ are fixed for the moment. By

assumption (i) and (ii) we have W1,2p(Bstd
r0
(0))-bounds for g

ψsi
jk , with 2p > n. By Morrey’s

Embedding theorem (see Theorem 7.17 in [30]) we obtain Cα(Bstd
r0
(0))-bounds for g

ψsi
jk for

some 0 < α < 1 and by the Arzela-Ascoli-Theorem we obtain, after taking a subsequence,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/14/4431/4599185 by U
B M

agdeburg user on 08 August 2024



Optimal Curvature Estimates for Homogeneous Ricci Flows 4445

gψ
s
i → hs in Cα(Bstd

r0
(0)) as i → ∞ for some Riemannian metric hs ∈ Cα(Bstd

r0
(0)): we use

the fact that 1
2δ ≤ gψ

s
i ≤ 2δ freely, sometimes without explicit mention, where δ denotes

the standard metric on R
n. It is well known, see remark B.2 in [64], that the transition

functions for harmonic coordinates satisfy

n∑
j,k=1

gjk
ψsi

· ∂j∂k((αi)ss̃)m = 0

for all m = 1, ...,n on Bstd
2δ (z).

Now by Schauder theory for the above elliptic differential equation one obtains

bounds for ((αi)ss̃)
m in C2,α(Bstd

δ (z)). By the Arzela-Ascoli-Theorem we obtain a subse-

quence, which converges to the limit transition function (α)ss̃ = (ϕ s̃)−1 ◦ϕs in C2,β(Bstd
δ (z))-

topology for β < α. Hence X is a C2,β smooth manifold. Also, pushing the metric hs back

to X using ϕs , we obtain a well defined Cα metric h on X .

The bulk of the rest of the argument is devoted to showing that the limit manifold

is a smooth flat Riemannian manifold (X ,h) having Euclidean volume growth and hence

is isometric to standard Euclidean space. This is used to obtain a contradiction to the

fact that the harmonic radii of the approximating sequence is bounded from above.

We sketch the proof given in [64]. We fix an s and the maps ϕs : Bstd
r0
(0) → Vs,

ϕsi : Bstd
r0
(0) → Vs associated to this s. By (i) and (ii) in the definition of harmonic radius

we have W1,2p(Bstd
r0
(0))-bounds for the metric coefficients gsi = gψ

s
i where 2p ∈ (n, 2n). Of

course this gives bounds inW1,q(Bstd
r0
(0)) for all q < n, since 2p > n. Also, gsi subconverges

to hs in Lq(Bstd
r0
(0)) for all q ∈ (0, ∞) as i → ∞, since gsi subconverges to hs in Cα(Bstd

r0
(0)).

It is well known, that in harmonic coordinates one has

gab∂a∂bgjk = (g−1 ∗ g−1 ∗ Dg ∗ Dg)jk − 2 Ric(g)jk , (11)

see the reference in [64]. Remembering that s is fixed, we now use the notation gi = gsi .

We know by (9) that Ric(gi) converges to zero in Lp(Bstd
r0
(0)) as i → ∞, and by Hölder’s

inequality the other terms are bounded in Lp(Bstd
r0
(0)) in view of the fact that ∂g is bounded

in L2p, and g,g−1 are bounded by 2δ. Now by the Lp-theory we obtain bounds for gi in

W2,p(K) ([30], Theorem 9.11) for any compact K ⊆ Bstd
r0
(0), and hence by the Rellich–

Kondrachov-Embedding theorem, gi converges to h strongly in W1,q(K), for any q < p∗

where p∗ = np
n−p > 2p. Note that q = 2p is a valid choice here.

Next we are going to show that (gi)i∈N is a Cauchy-sequence in W2,p(K), which

gives us gi → hs in W2,p(K). For simplicity we write g = gi and g̃ = gĩ, h = hs in the next
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paragraph: s is still fixed. We set

Ljk := (hab − gab)∂a∂bgjk − (hab − g̃ab)∂a∂bg̃jk − 2 Ric(g)jk + 2 Ric(g̃)jk

+ (g−1 ∗ g−1 ∗ Dg ∗ Dg)jk − (g̃−1 ∗ g̃−1 ∗ Dg̃ ∗ Dg̃)jk. (12)

Then we have

Ljk = hab∂a∂b(g− g̃)jk. (13)

We are going to show that Ljk becomes as small in Lp(K) as we like for i, ĩ large enough.

The first term on the right of (12) may be estimated as follows∫
K

|(hab − gab)∂a∂bgjk|p ≤ C(n) · sup
K

|h− g|
∫
K

|∂2g|p.

The integrals are taken with respect to the standard Lebesgue measure. Since gi con-

verges to h in Cα(K) and g = gi is bounded in W2,p(K), as we showed above, we see that

this term is as small as we like in Lp(K), as long as i is large enough. The second term can

be estimated in a similar fashion. The third and the fourth term converge by (9) in Lp(K)

to zero. The last two terms are dealt with as follows:Dgi → Dh andDgĩ → Dh as i, ĩ → ∞,

in L2p, as we explained above, and hence (g−1 ∗ g−1 ∗Dg ∗Dg)jk and (g̃−1 ∗ g̃−1 ∗Dg̃ ∗Dg̃)jk
converge to (h−1 ∗ h−1 ∗ Dh ∗ Dh)jk in Lp(K), which implies that the sum of the last two

terms of (12) converges to zero in Lp(K).

We deduce from (13) and (12) that

hab∂a∂b(gi − gĩ)jk = f (i, ĩ)jk

with ∫
K

|f (i, ĩ)|pdy ≤ ε(i, ĩ)

and ε(i, ĩ) ≤ ε for any ε > 0, if i, ĩ ≥ N(ε) are large enough. Using again Lp-theory for

elliptic operators we deduce by Theorem 9.11 in [30] that

‖gi − gĩ‖W2,p(K̃) ≤ CK · (‖f (i, ĩ)‖Lp(K) + ‖gi − gĩ‖Lp(K)
)
.

on any smooth compact subset K̃⊂⊂K ⊆ Bstd
r0
(0).

This clearly implies that (gi)i∈N is a Cauchy sequence in W2,p(K) for compact

subsets K ⊆ Bstd
r0
(0) , and consequently gi → h for i → ∞ in W2,p(K) ∩ W1,q(K), for any

q ∈ [2p,p∗), in particular we can choose q = 2p here.
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We come now back to the identity (11): we can take the limit in Lp(K) and deduce

hab∂a∂b(h)jk = −(h−1 ∗ h−1 ∗ Dh ∗ Dh)jk,

where the right hand of this equation is in Lr(K) with r = n
2 + σ for some n

2 > σ > 0,

and hence h ∈ W2,r(K) by the Lr theory. The Sobolev Embedding Theorem tells us that

h ∈ W1, rn
n−r (K), and we note that rn

n−r = (n/2+σ)n
(n/2−σ) = n+ 2σ · ( n

n/2−σ ) ≥ n+ 4σ , and hence the

right hand side of the above equation is bounded in L
n
2 +2σ .

Iterating this argument, we get h ∈ W2,r for all r ∈ [1, ∞): we first choose σ > 0

very small, and N ∈ N large so that n
2 + (N − 1)σ is as close as we like, but less than n.

Then the Sobolev Embedding Theorem in the N ’th iteration gives us that the right hand

side is in Lr(K). Now using the L2 and the Lr theory, we conclude, as in [64], that h is

C∞(K).

At this stage we know that the limit manifold X is a C2,β-manifold, but that the

metric h is C∞-smooth in our constructed harmonic coordinates. Using a similar but

simpler argument to the one used above to show that h is C∞, we see that the transition

functions on X , and hence X , is C∞: see the argument given in [64] for example.

Next, we show that the limit space (X ,h) is flat. Let s be fixed and the map

ϕsi : Bstd
r0
(0) → Us

i ⊆ Xi and ϕs : Bstd
r0
(0) → Us in X be as above. Since the metrics gi = gsi

converge to hs in W2,p(K) ∩W1,2p(K) ∩ C0,α(K) in these coordinates, for fixed s ∈ {1, ...,N}
we have writing h = hs, abusing notation slightly,

∫
K

‖ Rm(h)‖p dμh =

=
∫
K

‖h−1 ∗ h−1 ∗ D2h+ h−1 ∗ h−1 ∗ Dh ∗ Dh‖p dμh

= lim
i→∞

∫
K

‖(gsi )−1 ∗ (gsi )−1 ∗ D2gsi + (gsi )
−1 ∗ (gsi )−1 ∗ Dgsi ∗ Dgsi‖p dμgsi

≤ lim
i→∞

∫
Bstd
r0

(0)
‖ Rm(gi)‖p dμgi

(10)= 0.

This shows that the limit space (X ,h) is flat. (X ,h) has Euclidean volume growth since

the (B
gi
ρ (xi),gi)’s also do. This implies that (X ,h) is isometric to (Rn, δ).

As in the proof of the Main Lemma 2.2 in [4] one obtains now a contradiction:

see [64] for more details.

The case p ≥ n is similar but easier. Arguing as above, we get (locally) gi ∈
W2,p(K) and hence ∂g → ∂h in Ls(K) for all s ∈ [1, ∞), in view of the Rellich-Kondrachov
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embedding Theorem, and hence, arguing as above, gi → h in W2,p(K) ∩ W1,p(K) for all

smooth compact sets K ⊆ Bstd
r0
(0). The rest of the argument is the same. �

Theorem 3.3. Let 0 < v ≤ V and p ∈ (n2 , ∞) be fixed and ε = ε(v,V ,n,p) > 0 and L =
L(v,V ,n,p) be the constants from Theorem 3.2 above. Let (Dn

i ,gi,yi)i∈N be a sequence of

pointed smooth Riemannian manifolds without boundary such that B
gi
1 (yi) is compactly

contained in Dn
i for all i ∈ N, yi ∈ Dn

i . Assume that

vrn ≤ vol(B
gi
r (x)) ≤ Vrn.

for all r ≤ 1, for all B
gi
r (x) ⊆ B

gi
1 (yi), and

∫
B
gi
1 (yi)

‖ Rm(gi)‖n/2dμgi ≤ ε,

and ∫
B
gi
1 (yi)

‖ Ric(gi)‖pdμgi → 0 as i → ∞

for some p ∈ (n2 , ∞). Then for all z ∈ B
gi
s (yi), s < 1, the 2p-harmonic radius is big-

ger than L(1 − s). Furthermore, we find a smooth Ricci flat limit space (X ,g,x0) in

the following sense. For all s < 1 Bgs (x0) is compactly contained in X and there exist

smooth diffeomorphisms Fi : Bgs (x0) → (Fi(B
gi
s (yi)) ⊆ B

gi
1 (yi) with Fi(x0) = yi, such that

(Fi)∗(gi) → g in W2,p(Bgs (x0)) ∩ W1,2p(Bgs (x0)), after taking a subsequence. Also the map

(Fi)−1 : (B
gi
σ (mi),dgi) → (Bg2σ (m),dg), for any mi with F−1

i (mi) = m is an ε(i) Gromov–

Hausdorff approximation, ε(i) → 0 as i → ∞, if Bg8σ (m) ⊆ Bg1(s)(x0): distance converges

with respect to this map and its inverse, as i → ∞. In particular, we have

lim
i→∞

∫
B
gi
s (x)

‖ Rm(gi)‖pdμgi =
∫
B
g
s (x)

‖ Rm(g)‖pdμg ,

for all s < 1. �

Proof. By assumption we may apply Theorem 3.2 to all the metrics gi, showing that

the 2p-harmonic radius on B1(yi) is bounded uniformly from below by L(1 − s), where L

is without loss of generality less than 1/100. In these coordinates we have to establish

the above claimed subconvergence.

Now after finding the contradiction subsequence gi in the proof of Theorem 3.2

we only used the estimate (9) to construct the limit metric, which is then smooth. The
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estimate (6) was only used to prove the flatness of the limit metric. Hence we may pro-

ceed precisely as above, replacing the gi’s of the proof of Theorem 3.2 by the gi’s given

in the statement of the Theorem here, and we deduce convergence of the sequence (gi)i∈N

locally (in the harmonic coordinates from above) in theW2,p∩W1,2p-topology. The diffeo-

morphisms Fi are constructed using the transition functions, which we know converge

locally in C2,α, as explained in the proof of Theorem 3.2 above. This, combined with the

fact that (gi)i∈N converges to h in W2,p ∩ W1,2p in the harmonic coordinates from above,

implies that (Fi)∗(gi) → g in W2,p(Bg1−2δ(x0)) ∩ W1,2p(Bg1−2δ(x0)) as i → ∞: see for example

Appendix B in [64] for details on the construction of the diffeomorphisms Fi appearing

in the statement of this Theorem, and why the previous statement is true. �

4 Curvature Estimates

In this section, we discuss the applications of the Gap Theorem to the study of homo-

geneous Ricci flows. The proofs of Theorem 1 and Corollary 2 are presented. Moreover,

we show that for homogeneous Ricci flows the Ricci curvature satisfies a time doubling

property, similar to that of the full curvature tensor.

A Ricci flow solution is called homogeneous, if it is homogeneous at any time.

Notice, that it is sufficient to assume homogeneity at the initial time: Homogeneity

implies bounded curvature, hence for such initial metrics there exists a unique solution

with bounded curvature. As is well-known it then follows that isometries of the initial

metrics will also be isometries for all evolved metrics. Moreover, by [42] the isometry

group does not change over time.

By the Gap Theorem there exists C(n) > 0, such that every n-dimensional

homogeneous manifold (Mn,g) satisfies

‖ Rm(g)‖ ≤ C(n) · ‖ Ric(g)‖.

Theorem 1 follows now directly from

Theorem 4.1. If (Mn,g(t))t∈[a,b] is a homogeneous Ricci flow solution then

‖ Rm(g(b))‖ ≤ max
{

1
8(b−a) , 16 · C(n)2 · ( scal(g(b))− scal(g(a))

)}
. (14)

�
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Proof. Let K := ‖ Rm(g(b))‖. If 1
8K ≥ b− a then K ≤ (8(b− a))−1 and the claim follows.

We are left with the case 1
8K ≤ b− a. The above bound implies that

∫ b

a
‖ Rm(g(t))‖2dt ≤ C(n)2

2

∫ b

a
2 ‖ Ric(g(t))‖2dt

= C(n)2

2

∫ b

a
scal(g(t))′dt

= C(n)2

2

(
scal(g(b))− scal(g(a))

)
.

Now if t ∈ [b − 1
8K ,b], then by the doubling time estimate we have ‖ Rm(g(t))‖ ≥ 1

2 ·
‖ Rm(g(b))‖. Using that a ≤ b− 1

8K , we deduce that

∫ b

a
‖ Rm(g(t))‖2dt ≥

∫ b

b− 1
8K

‖ Rm(g(t))‖2dt ≥ K2

4 · 1
8K = K

32 ,

and the theorem follows. �

Recall that along a homogeneous Ricci flow (Mn,g(t))t∈[a,b] the scalar curvature

s(t) := scal(g(t)) is a constant function on the manifold, hence

s(t)′ = 2 · ‖Ric(g(t))‖2 ≥ 2
n · s(t)2.

If s(t) does not vanish for t ∈ [a,b] then by integrating we get

− 1
s(b) + 1

s(a) ≥ 2
n · (b− a),

Assuming that s(a) > 0, which implies s(b) > 0, one gets that

s(a) ≤ n
2 · (b− a)−1, (15)

and on the other hand if s(b) < 0 then also s(a) < 0 and one obtains

|s(b)| ≤ n
2 · (b− a)−1. (16)

If in addition there exists a constant C1(n) > 0 such that

s(t)′ ≤ C1(n) · s(t)2 (17)

then one also gets the reversed inequality

− 1
s(b) + 1

s(a) ≤ C1(n) · (b− a). (18)
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Proof of Corollary 2. Let (Mn,g(t)t∈[0,T)) be a homogeneous Ricci flow solution with

finite extinction time T < ∞ and scal(g(0)) = 1. Taking a = 0,b = t in (14) yields

‖ Rm(g(t))‖ ≤ max
{

1
8t , 16 · C(n)2 · ( scal(g(t))− 1

)}
.

Observe that the first expression on the right hand side is decreasing, whereas the second

is increasing and diverges to +∞ as t → T since the curvature blows up at T . Therefore

there exists a unique t0 ∈ (0,T) such that

1
8 t ≤ 16 · C(n)2 · (scal(g(t))− 1)

for all t ∈ [t0,T) with equality at t0. Hence, on [t0,T) we have the estimate

‖ Rm(g(t))‖ ≤ C2(n) · scal(g(t)), (19)

The upper bound stated in the first statement of Corollary 2 now follows by taking

a = t > t0,b → T in (15). The lower bound is well-known and follows immediately from

the doubling time estimate: see Lemma 6.1 in [25].

It remains to prove an upper bound for t0 in terms of T . First notice that since

scal(g(0)) = 1, from (15) for a = 0, b → T we have that t0 < T ≤ n/2, which in turn gives

a uniform upper bound

scal(g(t0)) · t0 ≤ C3(n)

by the very definition of t0. On the other hand, the estimate (19) gives an upper bound

for scal ′ as in (17). Thus from (18) for a = t0, b → T we get

t0
C3(n)

≤ 1
scal(g(t0))

≤ C1(n) · (T − t0) ,

and this implies that t0 ≤ δ(n) · T for some uniform δ(n) ∈ (0, 1).

If the solution is immortal, i.e. defined for all t ∈ [0, ∞), we take a = t,b = 2t in

(14) and obtain

‖ Rm(g(t))‖ ≤ max
{

1
8t , −16 · C(n)2 · scal(g(t))

}
.

Taking a = 0,b = t in (16) yields the desired estimate.

If the solution is ancient, i.e. defined for t ∈ (−∞, −1], we take a → −∞, b = t <

−1 in (14). This gives us

‖ Rm(g(t))‖ ≤ C2(n) · scal(g(t)) , (20)
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4452 C. Böhm et al.

since scal(g(a)) → 0 as a → −∞ by (15). The upper bound now follows by taking

b = −1,a = t ≤ −1 in (15). To prove the lower bound, notice that from (20) we immedi-

ately get an upper bound for the evolution of scalar curvature as in (17). Thus we can

apply (18) for b = −1, a = t < −1, and this finishes the proof. �

Remark 4.2. The assumptions on the scalar curvature in Corollary 2 are not restrictive

for non-flat solutions. Indeed, for the finite extinction time case, it follows from [45],

and also from Theorem 4.1, that the scalar curvature blows up at the extinction time.

Regarding immortal solutions, it is well-known that the scalar curvature cannot be

positive, since this would imply finite extinction time. And if it vanishes, the solution is

Ricci flat and hence flat. One can argue analogously for ancient solutions. In each case

one can then scale the initial metric so that the assumptions are satisfied. �

The following example shows, that even along homogeneous Ricci flow solu-

tions with positive scalar curvature the norm of the curvature tensor can decrease

tremendously.

Lemma 4.3. On S3 there exist a sequence ((gl(t))t∈[0,T(l)))l∈N of homogeneous Ricci flow

solutions with ‖ Rm(gl(0))‖ = 1, scal(gl(0)) > 0 and T(l) → ∞ for l → ∞. �

Proof. On S3 = SU(2) left-invariant metrics are in one-to-one correspondence with

scalar product on the Lie algebra su(2) = TeSU(2). Let Q(X ,Y) = 1
2 tr(X ·Y ∗) and consider

for x1,x2,x3 > 0 the left invariant metrics g = g(x1,x2,x3), given by

g = x1 ·Q|m1 ⊥ x2 ·Q|m2 ⊥ x3 ·Q|m3 .

Here m1 is spanned by the diagonal matrix with entries ±i, m2 is spanned by the real

skew-symmetric matrices and m3 is spanned by the symmetric matrix having i at the

off-diagonal entries. To compute the diagonal entries r1, r2, r3 of the Ricci endomorphism

Ric(g), see (21), of the metrics g with respect to the decomposition su(2) = m1 ⊕ m2 ⊕ m3

we use the formula (22). This yields

r1 = 2
x1x2x3

· (x2
1 − (x2 − x3)

2)

r2 = 2
x1x2x3

· (x2
2 − (x1 − x3)

2)

r3 = 2
x1x2x3

· (x2
3 − (x1 − x2)

2).
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Here we have used that b1 = b2 = b3 = 8 (see [68], p. 583), that [123] = 4 and that of course

d1 = d2 = d3 = 1. As is well-known the off-diagonal entries of the Ricci endomorphism

vanish: see Chapter 1, Section 5 in [24].

The Ricci flow equation for these metrics is given by x ′
i = −2xi · ri, i = 1, 2, 3 and

the volume normalized Ricci flow by x ′
i = −2xi ·r0

i , r0
i = ri− 1

3 (r1 +r2 +r3). Recall that after

a reparametrization in space and time the Ricci flow and the volume normalized Ricci

flow are equivalent. Solutions to the normalized Ricci flow will be denoted by (ḡ(t̄))t̄∈[0,T̄).

It is now convenient to introduce new coordinates α = x2
x1

and β = x3
x1

. Notice

that α′
α

= x′
2
x2

− x′
1
x1

= 2(r1 − r2) and β′
β

= 2(r1 − r3). The volume constraint x1x2x3 = 1

reads now (αβ)
1
3 = 1

x1
. Therefore, the volume normalized Ricci flow, fixing volume one,

is equivalent to

α′ = 8

(αβ)
2
3

· α · (1 − α) · (1 + α − β)

β ′ = 8

(αβ)
2
3

· β · (1 − β) · (1 + β − α).

The sets {α ≡ 1}, {β ≡ 1} and {α ≡ β} are invariant under this ordinary differential

equation and (1, 1) is the unique zero in the domain {α,β > 0}.
For l ∈ N, l ≥ 100, we choose initial values αl0 := l

4 +
√
l−1
2 and β l0 := l

4 −
√
l−1
2 .

Clearly αl0,β l0 > 1 and 1 + αl0 − β l0 > 0, whereas 1 + β l0 − αl0 < 0. That is, for the solution

(α(t),β(t)) with initial values (αl0,β l0) at time t̄ = 0 we have α′ < 0 and β ′ > 0 until this

solution reaches the line {1 + β − α ≡ 0} at a time t̄l0 > 0. Notice that β(t̄l0) > β l0 of course

and that the time t̄l0 is unique.

The initial values or chosen such that scal(ḡl(0)) = 0 and ‖ Ric(ḡl(0))‖2 ≥ c1 ·
l

1
3 for c1 > 0 independent of l. Another computation shows that at time t̄l0 we have

scal((ḡl(t̄l0))
2 = ‖ Ric(ḡl(t̄l0))‖2 ≤ c2 · l− 2

3 for a constant c2, independent of l.

Next, let (g(t))t∈[0,T) denote a solution to the unnormalized Ricci flow and set

V(t) := √
x1(t)x2(t)x3(t). Notice that up to a constant this equals to the volume of (S3,g(t)).

As is well-known, but also follows from the above equations, we have V ′(t) = −V(t) ·s(t),
where s(t) := scal(g(t)) and consequently V ′(t) = −V 1

3 (t) · s̄(t), with s̄(t) = −V 2
3 (t) · s(t).

The function (x1x2x3)
1
3 · scal(g(x1,x2,x3)) is scale invariant.

Let (gl(t))t∈[0,T(l)) denote the solution to the unnormalized Ricci flow with initial

value gl(0) satisfying V(0) = 1, α(0) = αl0 and β(0) = β l0. By the above we know that

‖ Ric(gl(0))‖ ≥ √
c1 · l 1

6 . Next, let us denote by tl0 ∈ (0,T(l)) the unique time with 1 +
β(tl0) − α(tl0) = 0. By the above we have s̄(t) ≤ s̄(tl0) ≤ ε(l) := √

c2 · l− 1
3 for all t ∈ [0, tl0],

since the scalar curvature is still increasing along the volume normalized Ricci flow.

Using V ′(t) = −V 1
3 (t) · s̄(t) and V(0) = 1 we deduce V(t) ≥ (1−ε(l) ·t) 3

2 for t ≤ max{tl0, 1
ε(l) }.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/14/4431/4599185 by U
B M

agdeburg user on 08 August 2024



4454 C. Böhm et al.

Suppose now T(l) ≤ C, for all l ≥ 100 and a constant C > 0. Clearly this implies tl0 < C

and hence there exists l0 > 0 such that V(tl0) ≥ 0.5 for all l ≥ l0. Since ‖ Ric(ḡl(t̄l0))‖ =
V

1
3 (tl0) · ‖ Ric(g(tl0))‖ ≤ ε(l), we conclude on the other hand side by the doubling time

property of the Ricci flow that the extinction time of these solutions cannot be uniformly

bounded. Contradiction.

Finally notice that if (g(t))t∈[0,T) is a Ricci flow solution then for any λ > 0 also

(λ · g( t
λ
))t∈[0,λ·T) is a solution. As a consequence the term ‖ Rm(g(0))‖g(0) · T is invariant

under parabolic rescaling. Then choosing tl > 0 as close to zero as we like as our new

initial time and performing the parabolic rescaling just described shows the claim. �

The next application is a doubling time estimate for the Ricci curvature along

homogeneous Ricci flows. It shows that the Ricci curvature cannot grow too quickly.

Proposition 4.4. Let (Mn,g(t))t∈[0,b] be a homogeneous Ricci flow solution. If

‖ Ric(g(0))‖ = 1, then

‖ Ric(g(t))‖ ≤ 2,

for all 0 ≤ t ≤ 1/C(n). �

Proof. According to the evolution equation for ‖ Ric ‖2 along Ricci flow [25], Lemma

2.40, together with the Gap Theorem, one has that

d

dt
‖ Ric ‖2 ≤ C1(n) · ‖ Rm ‖ · ‖ Ric ‖2 ≤ C(n) · ‖ Ric ‖3.

Recall that in the homogeneous case ‖ Ric ‖2 is a constant function. By a standard com-

parison argument, one obtains ‖ Ric(g(t))‖ ≤ 2
2−C(n)·t since ρ(t) = 2

2−C(n)·t is the solution

to d
dtρ

2 = C(n) · ρ3, ρ(0) = 1. The proposition now follows. �

5 Non-Collapsed Homogeneous Ancient Solutions

In this section, we prove Theorem 5.2 which is essentially Theorem 3, and we show

in Lemma 5.4 that for any unstable homogeneous Einstein metric there exists a non-

collapsed homogeneous ancient solution emanating from it.

Since non-trivial ancient solutions (g(t))t∈(−∞,0] to the Ricci flow have positive

scalar curvature, non-trivial ancient homogeneous solutions must develop a Type I sin-

gularity close to their extinction time by Corollary 2. By [52] and [28] the blow-up of such

a solution will subconverge to a non-flat homogeneous gradient shrinking soliton. These
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homogeneous limit solitons were classified in [61]. Up to finite coverings they are the

Riemannian product of a compact homogeneous Einstein space and a flat factor. Notice

that the flat factor might be absent.

Also by Corollary 2, ancient homogeneous solutions develop a Type I behavior

in the past. It is then natural to consider the corresponding blow-downs

gi(t) := 1
si

· g(si · t)

for a sequence {si}i∈N with si → ∞ and all t ∈ (−∞, 0]. In the non-collapsed situation, it

follows by [52] and [21] that the sequence (gi(t))i∈N subconverges to a non-flat asymptotic

soliton.

A compact homogeneous space has a presentation Mn = G/H , where G is a

compact Lie group acting transitively on Mn with compact isotropy group H . Notice

that G and H are not necessarily connected. Since G is compact, there exists an Ad(G)-

invariant scalar product Q on the Lie algebra g of G. Let m denote the Q-orthogonal

complement of h in g. Then the set MG of G-homogeneous metrics on G/H can be viewed

as the set of Ad(H)-invariant scalar products on m. This set in turn can be viewed as

the Euclidean space S2(m)Ad(H) of symmetric, positive-definite, Ad(H)-equivariant linear

endomorphisms of m as follows g(x,y) = Q|m(g · x,y), where x,y ∈ m. Recall, that a

G-homogeneous Einstein metric on G/H is a critical point of the total scalar curvature

functional

S : MG
1 → R ; g 
→ scal(g)

restricted to the space MG
1 of G-homogeneous metrics of volume one, and that the

gradient flow

g′(t) = −2 · g(t) · Ric0(g(t))

of S is nothing but the volume-normalized Ricci flow for G-homogeneous metrics. Here

we consider the Ricci-endomorphism Ric(g(t)), defined by

Ric(g(t))(x,y) = g(t)(Ric(g(t)) · x,y) (21)

and then also g(t) as an endomorphism as above. Since the space of G-homogeneous

metrics is finite-dimensional, we have existence and uniqueness of homogeneous Ricci

flow solutions also backwards in time.
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Lemma 5.1. The gradient flow of S on MG
1 is analytic. �

Proof. The set MG
1 is an algebraic subvariety of the Euclidean space MG, and at the

same time a smooth submanifold. Moreover, when fixing a Q-orthonormal basis of m

any G-homogeneous metric can be considered an Ad(H)-equivariant matrix. Now the

Ricci endomorphism Ric(g) of g ∈ MG can be written down explicitly as in Proposition

1.5 in [16]. It is a rational map and consequently the same is true for its traceless part

Ric0(g). This shows the claim. �

Theorem 5.2. Let G/H be a compact homogeneous space. Then any non-collapsed

homogeneous ancient solution has a unique compact asymptotic soliton, which is a

homogeneous Einstein metric on G/H . �

Proof. As mentioned above, by [52] and [33] for any sequence of blow-downs

(gi(t))t∈(−∞,0] of a non-collapsed ancient solution (g(t))t∈(−∞,0] there exists a non-flat

asymptotic soliton to which they subconverge. Now by [61] we know, that up to a finite

covering this asymptotic soliton is a product of a compact homogeneous Einstein space

and a flat factor. We have to exclude the flat factor.

If there were a flat factor R
k, then for large i the volume of the metrics gi(−1)

would be unbounded, whereas scal(gi(−1)) → c∞ > 0 for i → ∞. As a consequence,

for the unit volume normalization ḡ(t) of g(t) the scalar curvature would be unbounded

as t → −∞. This is a contradiction, since the scalar curvature is increasing along the

volume-normalized Ricci flow on a compact homogeneous space.

Thus, the asymptotic soliton is compact. Next, we claim, that along the backward

volume normalized homogeneous Ricci flow the scalar curvature of the solution ḡ(τ ),

τ = −t, cannot converge to zero. This is clear, since otherwise the asymptotic limit

soliton would be flat.

It follows, that for any sequence (τi)i∈N converging to +∞, we will find a subse-

quence, such that ḡ(τij ) is a Palais–Smale-sequence C for S in {S ≥ ε} for some ε > 0. Then

by Theorem A in [16] there exists a subsequence, which converges to a homogeneous limit

metric g∞ on G/H .

Uniqueness of the limit follows from Lemma 2.1, since it is well-known that if

the ω-limit set of an analytic gradient flow solution is non-empty, then it consists of a

single point, see for instance [48]. �

Remark 5.3. If a compact homogeneous space G/H , with G,H connected, is not a

homogeneous torus bundle, that is if there exists no compact intermediate subgroup
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H < K < G such that K/H is a torus, then any ancient solution on G/H is non-collapsed.

This is seen as follows. For a collapsed solution to the backward volume-normalized

Ricci flow the scalar curvature must tend to zero. That means that on that space there

exists a zero-Palais–Smale-sequence. Now by Theorem 2.1 in [16] the claim follows. �

Next, we show that for any unstable homogeneous Einstein metric there are

always ancient solutions emanating from it. Recall that a homogeneous Einstein metric

is called unstable, if it is not a local maximum of S.

Recall that the Milnor fibre of a critical point gE is defined as follows

F+(gE) := {g ∈ MG
1 : S(g) = S(gE)+ rN} ∩ Br(gE)

where Br(gE) is a ball in MG
1 of a very small radius r > 0 and N is large. Clearly, it is

empty if and only if gE is a local maximum of S.

If an Einstein metric gE is non-degenerate and unstable, then by the unstable

manifold theorem there exists solutions to the gradient flow of S emanating from it.

Since the scalar curvature is still increasing along such flow lines, it follows that these

solutions have positive scalar curvature. Hence, by [45] they are ancient. By standard

Morse theory the Milnor fibre is homotopy equivalent to Sk−1, k being the dimension of

the positive eigenspace of the Hessian of S at the critical point gE . In general however,

the unstable Einstein metric gE might be degenerate and even not isolated.

Lemma 5.4. Let gE be a G-homogeneous unstable Einstein metric on a compact homo-

geneous space G/H . Then there exists a G-homogeneous ancient solution emanating

from gE . Moreover, the dimension of such solutions can be estimated from the below by

the cohomological dimension of the Milnor fibre of S at gE . �

Proof. This follows from [54]. It is shown there, that if the Milnor fibre is not empty,

then there exists a solution to the negative gradient flow of S with omega limit set gE .

Moreover, the authors show that the Cech–Alexander cohomology groups of the set of

such solutions and the Milnor fibre agree. �

We should point out that in the above lemma we do not claim that all these

ancient solutions are pairwise non-isometric.

Remark 5.5. An Einstein metric gE on a compact manifold is the Yamabe metric in its

conformal class. Moreover, by Theorem C in [16] any nearby metric with constant scalar
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curvature is a Yamabe metric as well, provided gE is not in the conformal class of the

round metric. It follows, that if a homogeneous Einstein metric is unstable, then it is not

a local maximum of the Yamabe functional. Hence, by Theorem 1.6 in [44] there exists

an ancient solution emanating from it. It may be possible to adjust the proof in [44] to

show that this ancient solution can also be chosen to be homogeneous.

Let us also mention that there are general existence results for unstable homoge-

neous Einstein metrics on compact homogeneous spaces relying on min-max principles

[13, 16, 32], to which Lemma 5.4 can be applied. For instance, if a compact homogeneous

space G/H satisfies a certain algebraic property (its graph having two non-toral compo-

nents, see [16] for details), then there exists C > 0 such that S−1([C, ∞)) is disconnected.

Moreover, there is also a smooth path of metrics in {0 < S ≤ C} joining two connected

components of S−1([C, ∞)). By a standard mountain pass lemma the existence of a crit-

ical point of S follows: see Proposition 3.7 in [16]. It also follows that there must exist

a critical point which is not a local maximum of S, since by Proposition 1.5 in [16] the

set of all critical points of S is a disjoint union of finitely many compact, connected,

semialgebraic sets on each one of which S is constant. �

6 Examples of Collapsed Ancient Solutions

For collapsed homogeneous ancient solitons there will of course be no asymptotic gra-

dient shrinking soliton in the category of smooth manifolds. However, when working

with Riemannian groupoids, as introduced by Lott in [50], one might hope to prove the

existence of a locally homogeneous asymptotic gradient shrinking soliton. That means

that after considering the blow-downs of a collapsed ancient solution, we pull back

these metrics to a ball in the tangent space. Due to the curvature estimates provided

by Theorem 1 these balls can be chosen to have a uniform radius. The convergence in

the category of Riemannian groupoids then only means that these locally homogeneous

metrics converge in C∞-topology to a locally homogeneous limit metric on this fixed

ball (cf. Section 2). In other words, one considers the convergence of the corresponding

geometric models, defined in Section 2. Now an asymptotic soliton, would be a locally

homogeneous product metric of an Einstein metric with positive Ricci curvature and

a flat factor. In the collapsed case the flat factor cannot be absent. Notice, that if a

collapsed ancient homogeneous solution does admit a locally homogeneous asymptotic

soliton, it must be non-flat by the curvature estimates provided in Corollary 2.

We would like to mention that by [62] there exist locally homogeneous Einstein

metrics on (S3 ×S3)/S1
r of positive scalar curvature, which by [43] cannot be extended to
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globally homogeneous compact Einstein spaces (cf. [16], p. 725). Here S1
r is embedded into

the maximal torus of S3 × S3 with irrational slope r. Whether such locally homogeneous

spaces occur as compact factors in asymptotic solitons is unknown.

In order to provide an example of a collapsed ancient solution with non-compact

singularity model, we cannot work with homogeneous spaces whose isotropy represen-

tation admits only two summands: see [27] for a classification. Instead, we are looking

for homogeneous spaces G/H not admitting any G-invariant Einstein metric, to prevent

a compact singularity model, but which in addition are homogeneous S1-bundles.

We recall, how to compute the Ricci curvature of a compact homogeneous space

G/H . As mentioned above, everyG-invariant metric onG/H is uniquely determined by an

Ad(H)-invariant scalar product on m. It follows that for anyG-invariant metric g onG/H

there exists a decomposition m = m1 ⊕ · · · ⊕ m� of m into Ad(H)-irreducible summands,

such that g is diagonal with respect to Q, that is

g = x1 ·Q|m1 ⊥ · · · ⊥ x� ·Q|m�

with x1, ...,x� > 0. By [55, 69], the diagonal entries rm of the Ricci endomorphism Ric(g)

of g are given by

rm = bm
2xm

− 1

2dm

�∑
j,k=1

[jkm] xk
xmxj

+ 1

4dm

�∑
j,k=1

[jkm] xm
xjxk

. (22)

Here, −B|mm = bm · Q|mm and dm = dim mm, where B denotes the Killing form of g. The

structure constants [ijk] with respect to the above decomposition of m are defined as

follows:

[ijk] =
∑

Q([eα, eβ], eγ )2

where the sum is taken over {eα}, {eβ}, and {eγ }, Q-orthonormal bases for mi, mj and mk,

respectively. Notice that [ijk] is invariant under permutation of i, j,k.

Example 6.1. On G/H = (SU(n)SU(n))/(
SU(n − 1)
U(1)) there exist for n ≥ 3 a

one-parameter family of homogeneous ancient solutions with the same non-compact

asymptotic soliton (E−,g1
−)× R, where

E− = (SU(n)SU(n))/(
(SU(n− 1))U(1)U(1)),
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and the same non-compact singularity model (E+,g+)× R
4(n−1)+1, where

E+ = (SU(n− 1)SU(n− 1))/
SU(n− 1).

The Einstein metric g1
− on E− is the unstable homogeneous Einstein metric on E− and

(E+,g+) is a compact symmetric space. Furthermore, there exists one further homoge-

neous ancient solution in the closure of the above family with the asymptotic soliton

(E−,g2
−) and the same singularity model. Here g2

− is now the stable homogeneous Einstein

metric on E−. Finally, all the above ancient solutions have positive Ricci curvature. �

Proof. We setG = G1G2, withG1 = G2 = SU(n) andH = 
SU(n−1)
U(1) forn ≥ 3. Here

H is embedded intoG as follows: Consider the subgroup SU(n−1) of SU(n), embedded as

an upper (n− 1)× (n− 1)-block. Then the semisimple part of H is embedded diagonally

in SU(n− 1)SU(n− 1) ⊂ G. The subgroup SU(n− 1) commutes with its centralizer U(1)

in SU(n). This U(1) is embedded diagonally into SU(n), the first (n− 1) diagonal entries

being equal. Now 
U(1) is embedded diagonally into the product U(1)U(1).

We choose the Ad(G)-invariant scalar product Q(X ,Y) = 1
2 tr(X · Y ∗) on g. Then

bm = 4n for all m (see [68], p. 583). Next, let m′ denote the orthogonal complement of

u(n − 1) ⊕ u(1) in u(n), considered as a subspace in the first factor su1(n) and let m′′ be

defined accordingly. We set m1 = m′ ⊕m′′ and conclude d1 = dim m1 = 4(n−1). The space

m2 is the orthogonal complement of
su(n−1) in su1(n−1)⊕su2(n−1), thus d2 = n(n−2).

Finally, m3 is the orthogonal complement of 
u(1) in u1(1)× u1(1), hence d3 = 1.

The group G = G1G2 admit the involution f (g1,g2) = (g2,g1). Clearly, we have

f (H) = H . We set now Ĝ = Z2 �G and Ĥ = Z2 �H . Then G/H = Ĝ/Ĥ as manifolds. More-

over, the modules m1, m2 and m3 are now Ad(Ĥ)-irreducible and of course inequivalent,

since there dimensions are different.

We will consider the three-parameter family of homogeneous metrics

g = x1 ·Q|m1 ⊥ x2 ·Q|m2 ⊥ x3 ·Q|m3

and compute their Ricci curvatures for x1,x2,x3 > 0.

The only non vanishing structure constants are [112] and [113]. To this end notice

that U(n)/(U(n − 1)U(1)) is a symmetric space, hence [111] = 0. Next, m2 ⊕ m3 ⊕ h is a

subalgebra, and therefore [122] = [123] = [133] = 0. Since (SU(n−1)SU(n−1))/
(SU(n−
1) is also a symmetric pair, we have [222] = 0. Moreover, [333] = 0, since m3 is an abelian

subalgebra. Finally [m2, m3] = 0.
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We have that 4n = [311] by the identity d3b3 = ∑3
i,j=1[3ij] from Lemma 1.5 in

[69], since d3 = 1. Next, we claim that [211] = 4d2. To this end we choose a standard

orthonormal basis of m1 consisting of 2(n− 1) skew-symmetric elements with only two

non-vanishing entries ±1 and 2(n − 1) symmetric elements with two non-vanishing

entries i. For each of these basis vectors e there exist precisely 1 + 2(n− 2) other basis

elements not commuting with e. The first special basis element e∗ has its non-vanishing

entries at the same spot as e does. The Lie-bracket [e, e∗] is diagonal and has two non-

vanishing entries ±2i. When computing the projection of [e, e∗] onto su(n−1) one deduces

that ‖[e, e∗]su(n−1)‖2 = 2n−2
n−1 . The computation of the other 2(n−2) non-vanishing brackets

is standard and we obtain

[211] = 4(n− 1) · (2n−2
n−1 + 2(n− 2)

) · 1
2 = 4(n− 2)n = 4d2,

noticing that all the brackets in question had to be projected to the diagonally embedded


su(n− 1) in su(n− 1)⊕ su(n− 1).

Since the three modules m1, m2 and m3 are inequivalent, it follows from Schur’s

Lemma that the Ricci tensor of the metric g = g(x1,x2,x3) is diagonal as well and by (22)

we deduce

r1 = 2n
x1

− n(n−2)
2(n−1) · x2

x2
1

− n
2(n−1) · x3

x2
1

(23)

r2 = 2(n−1)
x2

+ x2
x2

1
(24)

r3 = n · x3
x2

1
(25)

Recall that the Ricci flow on the homogeneous space Ĝ/Ĥ is given by x ′
i = −2xi · ri, i =

1, 2, 3. Furthermore, we can reduce dimension by one considering the volume normalized

Ricci flow x ′
i = −2xi · r0

i , where r0
i = ri − 1

N · scal denotes the entries of the traceless

part of the Ricci endomorphism, N = dim Ĝ/Ĥ . To understand this normalized Ricci

flow it is convenient to introduce new coordinates α = x2
x1

and β = x3
x1

. We have that
α′
α

= x′
2
x2

− x′
1
x1

= 2(r1 − r2) and similarly β′
β

= 2(r1 − r3). The volume constraint xd1
1 xd2

2 x3 = 1

reads in these new coordinates (αd2 · β) 1
N = 1

x1
. We deduce that the volume normalized

Ricci flow is equivalent to

α′ = p(α,β) ·
(
4(n− 1)− n2−2

n · α − 4(n−1)2

n · 1
α

− β
)

(26)

β ′ = q(α,β) · (4(n− 1)− (n− 2) · α − (2n− 1) · β), (27)
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1 2

Fig. 2. Volume normalized Ricci flow on Ĝ/Ĥ for n = 4.

where p(α,β) = α · n
n−1 · α

d2
N · β 1

N and q(α,β) = β · n
n−1 · α

d2
N · β 1

N . Now, notice that if we

divide the right hand side of the system (26) and (27) by the positive function n
n−1 ·α

d2
N ·β 1

N

only the time-parametrization of solutions does change, but the integral curves do not.

Consequently, the volume normalized Ricci flow of Ĝ/Ĥ is a up to time reparametrization

equivalent to

α′ = −4(n− 1)2

n
+ 4(n− 1) · α − n2 − 2

n
· α2 − α · β (28)

β ′ = β · (4(n− 1)− (n− 2) · α − (2n− 1) · β) , (29)

restricted to the domain {α,β > 0}.
We turn to the qualitative behavior of this system, however on the slightly larger

domain D := {α > 0} ∪ {β ≥ 0} (cf. Figure 2). First notice, that the positive α-axis in

invariant under this system. In fact this restriction is up to reparametrization nothing

but the volume normalized Ricci flow onE−. Moreover, the above system admits precisely

two constant solutions (ᾱ1, 0) and (ᾱ2, 0) with

ᾱ1 = 2(n−1)
n+√

2
and ᾱ2 = 2(n−1)

n−√
2

.

To this end, for α > 0 the condition α′ = 0 implies

β = − 4(n−1)2

n · 1
α

+ 4(n− 1)− n2−2
n · α.

Plugging this into (29) yields a quadratic equation for α, which does not have real solu-

tions. This shows in particular that the space Ĝ/Ĥ does not admit a Ĝ-invariant Einstein

metric.
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Next, we consider the right hand side of the above system as a smooth vector

field X . Its differential (DX)(ᾱi,0), i = 1, 2, is upper triangular, with eigenvalues

λi1 = (−1)i+1 · 4(n−1)
√

2
n and λi2 = 4(n− 1)− (n− 2) · ᾱi > 0.

This shows, that (ᾱ1, 0) is a node, while (ᾱ2, 0) is a saddle point, whose unstable manifold

intersects the α-axis transversally.

The set {β ′ ≥ 0} ∪ {β > 0} is a right triangle 
, depicted in Figure 2. Actually

the hypotenuse belongs to 
, but the two other sides do not. A computation shows now,

that X intersects its hypotenuse transversally pointing into its interior. It follows that

a maximal solution in D, starting in 
, cannot leave 
. Moreover, since in 
 we have

r1 ≥ r3 and since r2, r3 > 0, we conclude that any metric in
 has positive Ricci curvature.

As we saw above, (ᾱ1, 0) is a node. Therefore, there exist a one-parameter family

of solutions in D, which emanate from it. Since these solutions cannot leave 
, they

have positive Ricci curvature, hence they are ancient by [45]. Clearly, the compact fac-

tor of the asymptotic soliton of these ancient solutions is the unstable Einstein metric

g1
− of E−.

The second ancient solution is given by the unstable manifold of the stable

Einstein metric (ᾱ2, 0) of the compact factor E−. It lies in the closure of the above

one-parameter family of solutions, but has an ancient soliton, whose compact factor

is isometric to g2
−. It is not hard to show, using the Ricci curvature formulas (23), (24)

and (25), that these solutions cannot be isometric.

For all these ancient solutions (α(t),β(t))t∈(−∞,T) ∈ D it remains to compute their

singularity model. Let us mention at this point, that they reach the β-axis. However this

point does not correspond to a Riemannian metric on Ĝ/Ĥ . It is clear that limt→T = α(t) =
ᾱ = 0, while limt→T β(t) = β̄ > 0. We rescale now these metrics such that x2(t) ≡ 1. Since

ᾱ = 0, we deduce limt→T x1(t) = ∞ and since β̄ > 0 it follows that also limt→T x3(t) = ∞.

As a consequence these metrics converge to a limit product metric on the singularity

modelE+×R
4(n−1)+1. SinceE+ is isotropy irreducible, the limit metric onE+ is Einstein. �

7 Bounds on the Gap

According to the decomposition of the space of curvature operators into irreducible

O(n)-modules in dimensions n ≥ 4, the operator Rm decomposes as

Rm = RmI + RmRic0 + W ,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/14/4431/4599185 by U
B M

agdeburg user on 08 August 2024



4464 C. Böhm et al.

where RmI = scal
n(n−1) id ∧ id, RmRic0 = 2

n−2 Ric0 ∧ id, Ric0 = Ric − scal
n id is the traceless Ricci

tensor and W is the Weyl tensor. A standard computation shows that

‖RmI‖2 = scal2

2n(n− 1)
and

∥∥RmRic0

∥∥2 = ‖ Ric0 ‖2

n− 2
. (30)

The aim of this section is to prove the following

Lemma 7.1. For n ≥ 4 there exist homogeneous spaces (Mn,g) such that

‖ W(g)‖g ≥
√

n−2
n−3 · ‖ Rm(g)‖g. �

Proof. An n-dimensional real Lie algebra g is called almost abelian if it admits a

codimension-one abelian ideal n. In other words, there exist a basis {ei}n−1
i=0 for g and

an endomorphism A ∈ gln−1(R) such that the Lie bracket is given by

[e0, ei] = −[ei, e0] = Aei, [ei, ej] = 0, i, j �= 0.

Let us consider an inner product 〈 ·, ·〉 on g that makes {ei} orthonormal, and denote by

(SA,G) the corresponding simply-connected Lie group with left-invariant Riemannian

metric. We denote by D = 1
2

(
A+ At

)
and Q = 1

2

(
A− At

)
the symmetric and skew-

symmetric parts of A, respectively. It follows from [51] that the curvature operator

Rm : �2g → �2g is given by

Rm (e0 ∧ ei) = −e0 ∧ (D2 + [D,Q]) ei, i �= 0,

Rm
(
ei ∧ ej

) = Dej ∧ Dei, i, j �= 0 ,

the Ricci endomorphism Ric : g → g by

Ric(e0) = − (trD2
)
e0, Ric(ei) = ([Q,D] − (trD)D) ei, i �= 0

and the scalar curvature by scal = − trD2 − (trD)2. If in particular one takes Q = 0 and

D such that trD = 0, then

scal2 = ‖D‖4, ‖ Ric0 ‖2 = n− 1

n
· ‖D‖4 and ‖ Rm ‖2 = 1

2

(‖D‖4 + ‖D2‖2
)

.
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For getting a concrete estimate we chooseD diagonal, with eigenvalues λ1 = n−2

and λ2 = . . . = λn−1 = −1. After using (30) and a straightforward computation we obtain

‖RmI‖2 + ∥∥RmRic0

∥∥2 = 1
2 (n− 1)(n− 2)(2n− 3)

≤ (n− 1)(n− 2)(2n2 − 8n+ 9)

2(n− 3)
= 1

n− 3
· ‖ Rm ‖2,

which shows the claim. �
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