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Abstract. The purpose of this paper is to construct a set of Riemannian métiison a
manifold X with the property thagg € C(X) will develop apinching singularityin finite
time when evolved by Ricci flow. More specifically, I& = R x N, whereN" is an
arbitrary closed manifold of dimension> 2 which admits an Einstein metric of positive
curvature. We construct a (non-empty) set of warped product meiti€$ on the non-
compact manifoldl such thatifgg € C(X), then a smooth solutiog(z) € C(X),t € [0, T)

to the Ricci flow equation exists for some maximal cons@®n® < T < oo, with initial
valueg(0) = go, and

sup | Riem(g(t))| = oo,
xeK,te[0,T)

sup | Riem(g(t))| < oo,
xeX—K,t€[0,T)

whereK is some compact sé&f C X.

1. Introduction

Let X be a manifold with fixed differential structure. We will use the notati¥ng)
to denote the manifol& equipped with the Riemannian metgcGivengg on X
we wish to find a smooth solutiofX, g(¢)) to the equation

%g(z‘)(vl,, wy) = -2 R(vp, w,),¥p € X, vy, w, € T, X, t € [0, T), }

2(0) = go,
1.1)

Whereg(’)R(vp, w,) is the Ricci curvature ok with respect to the metrig(z) in
direction (v,, wp) at p, andT > 0 is some constant (possibly = co0). We say
that (X, g(¢)) evolves byRicci flowwith starting or initial metricgg if it satisfies
(1.1). Ricci flow is a tool that helps us to examine the geometry of manifolds, and
was introduced by Hamilton in [Ha 1].

In this paper we are interested in solutiad§ g(z)), ¢t € [0, T) to (1.1) that
exist for some finite constafit, 0 < T < oo, and for whichg (¢) pinchesast — T'.
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The purpose of this paper is to show that pinching singularities can form under Ricci

flow, and to obtain a better understanding of the properties of such singularities.

That pinching can occur under Ricci flow was conjectured by Hamilton in [Ha 2].

If we understood pinching singularities then we could possibly extend Ricci flow

in a weak sense past such singularities. (see [Ha 2] sec. 3, “Intuitive solutions”).
For our purposes, the following simple definition of pinching will suffice.

Pinching definition 1.1. Let X be a manifold with fixed differentiable structure,
and letg(r), t € [0, T) be a continuous 1-parameter family of Riemannian metrics
on X, where0 < T < oo is some constant. We say that, g(¢)) pinches on a set

K C Xast — T (oratT) if

8() g(1)

sup” |" Riem(p)|? < oo forall r € [0, T)
peX

sup g(r)|g<t)RierT(p)|2 — 00
(p,H)eK x[0,T)

8(1) g(1)

sup I““Riem(p|? < oo forall open Q, satisfyingk < €,
(p.1)e(X—Q)x[0,T)

Whereg(')|g(”Riem| is the norm of the full Riemannian curvature tensor at time

Here, the norrﬁ(’)| - | is the standard norm induced fron@r) for tensors onX
(see the definitions in chapter two for more detailsjXf g(¢)), ¢ € [0, T) pinches
on K attimeT, then we calll’ > 0 the blow up time (since curvatutdows up
somewhere at time=T).

Hamilton showed in [Ha 1], that ik ® is a three dimensional compact, closed
manifold with metricgo, and(X, go) has positive Ricci curvature everywhere, then
there exists some maximal constdht0 < T < oo such that (1.1) has a smooth
solution(X3, g(r)), 7 € [0, T) and

8() g(1)

sup )" Riem(p)|? > 0 ast — T, forall p e X°.
te[0,T)

Hence pinching will never occur when we do not have negative curvature some-
where (in the compact case). For this reason we expect negative curvature to play
an important role in pinching, as it does in this paper.

We shall illustrate pinching with an intuitive solution. L& = Fo(R x §2) C
R* be the rotationally symmetric three dimensional hyper surface obtained from
the imbeddingfp : R x $2 — R?, given by

Fo(x,a) = (x, ro(x)i(a)), for (x,a) € R x Sz,
ro(x) = va2x2 + b2,

wherei : $2 — R3 is the standard embedding 6% into R3, anda?, b2 are
constants satisfying & a® << b®> << 1. We callrp : R — R the generating
function of X. We note thatX is asymptotic to a cone ds| — oo, and is close
to a (3-dim) cylinder of radiug| > 0 forx € [—N, N] for some constan¥V =
N(a,b) > 0. Since we are only interested in the intrinsic properties{pfve
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consider the equivalent Riemannian manifoRl x S2, go), wheregg is the pull
back of the metrigzo under the mappindp, and g is the metric onX induced
from R, Let (R x $2, g(1)), t € [0, T) be the solution to (1.1) witly(0) = go,
where[0, T) is the maximal time interval for which the solution exists (theorem
3.4 guarantees that such a solution exists when the initial hyper surface is smooth
enough). We will cal([—N, N1 x $2, g(¢)) theneckof the Riemannian manifold
(R x §2, g(1)) attimet. Since the neck at time zero is close to a long thin cylinder
of radius|b|, we expect that the high positive intrinsic curvature there should force
the radius of the neck to shrink quickly towards zero under (1.1). Far away from
the neck, the manifold is more like a cone with each slice of this cone beif§ an
with very large radius. Hence the intrinsic curvature there is relatively small, and
so the radius of each slice of the cone should shrink very slowly under (1.1). We
expect at some finite time= T > 0O that the middle of the neck wilinchleaving
(topologically speaking) cone like manifolds either side. As time approathes
the radius of thes? slice in the middle of the neck will approach zero, and so the
curvature there will approach infinity.

This picture is the basis for the following definition. Lat* be any given
closed manifold (dinV" = n > 2) that admits an Einstein metric(for example
N = §" with the standard metric). The manifolds we shall be concerning ourselves
with areX = R x N". We shall principally be interested in warped product metrics.
Let M(X) = {C*° Riemannian metrics oX}.

Definition 1.2. Let N"(n > 2) be a closed manifold that admits a smooth Einstein
metricy . We define the set of smooth warped product memwics/, y) € M(R x
N™) to be the set 0§ € M(R x N™) which can be written

g(x,q) = h(x) ® r2(x)y(q),

for some arbitraryC* metrich onR , and some arbitrarg" > functionr : R — R.
Here, y is a fixed Einstein metric oV. We defin€ (N, y) € W(N, y) to be the
set of

g(x,q) = h(x) ® r2(x)y(q) € W(N, y),

that satisfy
d 0 a
‘R(—,—) <0, — e TyR, forall x eR (1)
dx 0dx ax
‘R(V,,V,) =0 forall V, e T,N, forall ge N @)
inf r(x) > 0. (3)
xeR

The following derivative and lower order bounds will often be assumed for warped
product metricg € W(N, y). We sayg(x, ¢) = h(x) ® r?(x)y (q) satisfies (4) if

SUpPhyy < 00, inf hy, > 0, inf r(x) > 0,
xeR xeR xeR
3 d J 4
sup(|[(=—) h|+ (=) logr|) < oo, forall j e{l,2..},

reR 0x ax
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where herg - | is the standard dot product f&, and(%)’ is the operato% to

the powerj. We shall often talk of a smooth solutig®, g(¢)), ¢ € [0, T]to (1.1).

This will mean thag € C*°(X x [0, T]). Condition (1) is somewhat non-standard,

as most of the work on Ricci flow has been done for manifolds that satisfy some
positive curvature conditions. There are a plethora of such conditions, and we refer
the reader to [Ha 2], section 5, for a thorough survey of the sorts of conditions
one initially assumes, and then shows are preserved by Ricci flow. Note that on
the 2-sphere ([Ch]) curvature becomes positive after a short time, and so negative
curvature will not be preserved by Ricci flow there.

1.1. Main results

The main results are presented in the following two theorems.

Conservation theorem (thm. 5.1). Assume thago(x, ¢) = ho(x)@rg(x)y(q) €
C(N, y), andgo satisfies (4). Then there exists a maximal consfast O such that
(1.1) has a unique smooth solution

gx,q, 1) =h(x,1) & r’(x,0y(q),1 € [0, T)
satisfying (4). This solution satisfigér) € C(N, y) forall ¢ € [0, T).
As a corollary to this theorem we see that

3 3
E(r (.X, t)V(‘])(V’ V)) - Eg(-xa q, t)(vs V)
=-2R(V,V) <0 forall V e TN",

and hence for fixed, r(x, t) is non-increasing as a function of time.

In order to force the manifold to pinch, we need to assume certain things about
the growth ofrg as|x| — oo. More specifically, we need the quadratic growth
condition

rg(x) < az,ooz(x) + b?
k
0<a?< ,
(n—1
b > 0,
where herepg(x) is the distance function with respect to the mekigdfrom some
fixedxg € R:

)

po(x) = "tHist(xo, x),
anda?, b? are constants satisfying the stated conditions, /arsithe constant of
the Einstein metrig,

"R(V,, W,) = ky(V,, W,) forallgeN,V,, W, e T,N.

It is worth while noting that wheV, y) = (8", d2?) is the n dimensional sphere
with the standard metric, thef 4 T = 'sec= 1, wherédsecis the sectional curvature
of (8", y) (of any plane). Clearly from (5) we must hake- 0. We will also need
that

ro(x) — oo as|x| — oo. (6)
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Pinching theorem (thm 7.2). Assume thalgo(x,q) = ho(x) & rg(x)y(q) €
C(N, y) satisfies (4), (5), and (6). Then there exists a constant, A < oo,
such that the maximal warped product solution

g(x.q, 1) =hix,1) & r’(x,1)y(g) € W(N, y),1 € [0, T)
to (1.1) of the conservation theorem 5.1, satisfies

inf r?(x,1) =0
xe[—A,AL1€[0,T)

rz(x, t) > 0.
xe(—00,—AJU[A,+00),1€[0,T)

This implies that the manifold pinches on the compactset [—A, A] x N C
R x N" attimeT.

The study of singularities that can form under various different geometric flows
has been extensively examined. Huisken studied the types of singularities that oc-
cur under mean curvature flow, and in particular their asymptotic behaviour [Hu
1]. In the last section of [Hu 1] he examines periodic rotationally symmetric sur-
faces with positive mean curvature (which always develop a singularity). He shows
that the singularities satisfy a certain blow up estimate, and behave asymptotically
like cylinders. The main tool of [Hu 1] is the parabolic maximum principle for
tensors. See [Ha 1] or [Ha 3] for a reference. The author [Si] generalised some of
the results of [Hu 1] to higher dimensions. Smoczyk [Sm] showed that certain pe-
riodic rotationally symmetric surfaces embedded in Euclidean space (Hyperbolic
space) pinch when the mean curvature is positive (bigger than two). Grayson [Gr]
has created a class of rotationally symmetric barrier surfaces, each of which is
asymptotic to a cylinder in its middle region and grows exponentially outside this
region. When we evolve one of these barriers by mean curvature flow, the resulting
evolving surface will pinch at a finite time= 7 > 0 in its middle region, where
T depends on the length and radius of the initial cylindrical middle region. Ecker
[Ec] showed the existence of a class of evolving symmetric barrier hyper-surfaces
each of which is asymptotic to a cone at plus and minus infinity and pinches at a
finite timer = T > 0 at its middle point. In this cas&, depends on the diameter
of the middle region of the barrier at time zero, and the angle of the cone to which
the barrier is asymptotic. The barriers of [Gr] and [Ec] may be used to find a large
class of manifolds that pinch under mean curvature flow. Dziuk and Kawohl [DK]
showed that periodic rotationally symmetric surfaces of positive curvature, which
have one minimum on each period and satisfy a certain monotonicity condition on
the derivative of the curvature, pinch at exactly one point. Altschuler, Angenent and
Giga [AAG], showed that any compact connected rotationally symmetric hyper-
surface that pinches under mean curvature flow does so at finitely many discrete
points. For a discussion on manifolds that should “intuitively” pinch under Ricci
flow, we refer the reader to [Ha 3], Sect. 3: “Intuitive solutions”.

The similarities between hyper-surfaces that flow by mean curvature flow, and
manifolds whose metric is evolving by Ricci flow are numerous. For example: an
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n dimensional sphere sitting R+ evolving by mean curvature flow will shrink

at the rate
radiusR(t) = / R3 — 2nt, where R(0) = Ro.
An n dimensional sphere whose metric evolves by Ricci flow satisfies

e(1) = (RS — 20— 1):)d92, where g(0) = go = R2dQ2,

andd2? is the standard metric ast'. There are other self-similar hyper surfaces in
mean curvature flow that have analogies in Ricci flow. This led the author to look
for manifolds, similar to those described in [Ec], that will pinch when evolved by
Ricci flow.

2. Definitions and curvature formulae

We state here the main relations for the Riemannian curvature tensor of a general
warped product. We refer to the book by O’Neill [ON], for a reference. That is, we
will express the curvatures of

(M x N,g(x,q) =h(x)® VZ(X)J/(Q)>

in terms of curvatures afM, i), curvatures of N, y) and derivatives of. As was
mentioned in the introduction, we will be interesteddh = R, however in this
chapter we make no such restriction.

As will be standard in this paper, lower-case Roman letiers &, [} refer to co-
ordinates inM, lower-case Greek letters refer to co-ordinate¥ jrand lower-case
Roman letterga, b, ¢, d, p, q} refer to general co-ordinates M x N:

9 m 9 n ) n+m
{—,} eTM,{—} eTN,{—} e T(N x M).
i )i=1 do ) g da ) 4=1

For M = R, the letterx refers to the standard co-ordinate

0
— e TR.
0x

“V refers to the gradient with respect to the megricHence, for a functiory :
M x N —- R,
0 d
8 b
Vf=g"|— —.
f=s <8a ! ) ab

The Hessian of a functiori : M x N — R with respect to the metrig is defined
using co-ordinates by

s 8 g a 0 d 0 ¢c O
Vi Vyf = Hessl —, — =——f—-T_, ,—f
a Vof (8a 8b)f saap’ ~ Targe)
where
g._.C

.dg
Loy =8“Tapa
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and

N YA i)
ab,d = 2 aagdb abgda 8dgba

are the Christoffel symbols with respect to the megrithe Laplacian of a function
f: M x N — R with respect to the metrig is defined using the Hessian:

9 9

g b8

Af =g*Hess| —, — ) f.
f=¢ <3a 8b>f

As is standard, the Riemannian curvature tensonbix N with respect to the
metric g is defined by

‘R(u, v, w) = ="V, Vyw + °V,'Vw + Vi, w.

We use the convention

N NS B I AN
abed =& 9a’ 9b ac)’ ad

for the Riemannian curvature tensor with respect to the mgtoic M x N. With
this convention, the sectional curvature of the plane spanned by the veetnds
w is then given by

‘Rapeav®wbvcw?  g(“R(v, w, v), w)

0(v, w) ‘O(v, w)
0w, w) = g(v, v)gw, w) — g(v, w)?,

gsec(v, w) =

s

which is the opposite from the classical indexing convention, but is the convention
used by Hamilton in his Ricci flow papers. The Ricci curvature tensor is then

denoted

g g d
Rap = Racbdgc .

*| refers to the norm of a tensor with respect to the metrio for example, if we
take atensol’ = {7}, a, b € 1tom + n, then

IT1? = g% g™ Tup Ty

Notice in these definitions that we have used a supersctgghow the dependence
on the metrigz. This notation shall be standard throughout this paper. For example

Hess( 2. L) (1) ="V,'V, £
9’ 9j IR

refers to the Hessian of a functigh: M — R with respect to the metrie on M.
The end of a proof will be denoted bya
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Proposition 2.1.Let M™ x N" be a manifold with smooth metric

g(p,q) = h(p) ® r’(p)y(q).

Then
h
“Rijri = Rijul (2.1)
h h,

Vi Vir

gRiajﬁ = P;jgap Where P;; = — lr iy (2.2)
h h

gRozﬂrd = rz(yRotﬂ'm) + r? | V"|2(Vaaytﬁ — YBo Vra) (2.3)
gR,‘j = hR,‘j + nP;; (2.4)
‘Ria =0 (2.5)

1 h h h
‘Rup = Rap + Qa5 (=1 AT + 1L—n)|VrP
1
which implies'Ryp = Rup + gaﬂﬁ(—hArz +@—20)"1vr%. (28)
s

Hence ify is an Einstein metric WitﬁRaﬂ = kyyp (k is a constant), then the last
equation becomes

8

Raﬂ = fgolﬂv (27)
wheref = Lk —r'Ar + (1= n)|Vr?) = 5L (~'Ar2 + @ — 20)|Vr 2 + 20).
Proof. The above formulae (2.1)—(2.6) can be found in a co-ordinate free form in
the chapter on warped product metrics (204—211) in the book by O’Neill [OM].

Lemma 2.2.Let
g(x,q) = h(x) ®r2(x)y(q) e W(N, y)

be a smooth warped product metric on the manild N, wherey is an Einstein
metric with Einstein constarit, that satisfies (1) and (2). Then

h h 2
Vr|¢ < 2.9
(Vrt = o5 (2.9)
"Ar >0 (2.10)
‘Ar < X (2.11)
r
Proof. Using condition (1), equation (2.4), and = R we derive
l/
v.v l
0> ngx =nPy, = —}’ZX—X(V) = _nhxxlAra
r
which implies (2.10).
In view of (2.7) and condition (2) we see that
FAF A+ —1)"Vr)2 < k. (2.12)

Both of the terms on the left-hand side of the above equation are positive (see 2.10),
and so we obtain (2.9) and (2.11)1
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Lemma 2.3.Let
g(x,q) = h(x) ® r’(x)y(q) € W(N, y)

be a warped product metric satisfying the same conditions as in Lemma 2.2. Then

1
r4(x)

‘I"Riem(x, ¢)|? < c(n, y), (2.13

wherec(n, y) is a constant depending enandy .

Proof. Choose geodesic co-ordinates foat a point (x,q) inR x N. SOh,, =
gxx = 1 andr?y,s = gup = 84p- Then by (2.2), and (2.10) we have

I*Ryaxpl = | Prx&apl = nlPex| = — < (2.14)

Using the formula 2.3 fo‘f’Ra,gt,, we see that

h
g|gRot,3'm |2 = r4g|(VRaﬂta)|2 + 2r |vr|2g(VRaﬂraa Yao Vg — YBo Vtot)

1nn
+ 3 IV 1% (8ao 8ep — 8po&ra)?

1 2hh (2.15
= ﬁyl(yRaﬂra”z + r_4 |Vr|2V(yRotﬂrc» Yoo Vip — Vﬂayrot)

c(n)n

—V4,
+r4|"|

where we have used,
8V / 4 4 1y 12
| Raﬂra|2 = g‘w gﬁﬁ g” g” Raﬂta Ra’ﬂ’r’a/

1
= r_8y|yRaf3rd|2~

Sincey is a fixed, smooth metric on the compact maniféld substituting (2.9)
into (2.15), we get

. 1
1*Raprol? < 0. y). (2.26)

The curvaturér; i, is trivially bounded a8R; = Rijx = 0onaone dimensional
manifold. Writing

I"Riem? = “I"Rugro |2 + | 'Riajpl® + “I'Rijur1? = | Rapro > + | Riajp|%,

and substituting (2.16) and (2.15) into the above, the result then follaws.
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3. Existence, uniqueness and a priori estimates in the warped product case

This chapter is concerned with showing thagdfis an arbitrary warped product
metricgo € W(N, y) which satisfies (4), then there exists a unique warped product
solutiong(r) € W(N,y), t € [0, T] to (1.1), for some constarft > 0, which
satisfies (4) ang(0) = go. We will also prove uniqueness and certain a priori
bounds for derivatives of such a solution. To accomplish both of these tasks, we
will need the following theorem of Shi [Sh].

Theorem [Shi (1.1)]. Let (X, go) be a non-compact, complete manifold without
boundary, with

‘1“Riem? < v,
where v is some constant, angp is smooth. Then there exists some constant
T(dim(X),v) > 0such that (1.1) has a smooth solutigcy) for all ¢+ € [0, T,
and for all non-negative integerswe have

g(zi c(dim(X), Jjsv)

n_J .
Y’ Riem? < y

forall r € (0, T],

where*’V’ Riemis the tensor obtained by takingco-variant derivatives of the
Riemannian curvature tensdrRiem

Theorem 3.1.Let go(x, ) = ho(x) ® r3(x)y(q) € W(N, y) satisfy (4). Then
there exists a constafit > 0, and a smooth solution

g, g, ) =h(x,0) ®ri(x,0)y(q) e WN, y),1 €[0,T]

to (1.1) , withg(0) = go, andg(¢) satisfies (4) for alt € [0, T'].

Proof of Theorem 3.1ITo show that there is a short time solution of (1.1), we may
use theorem (1.1) of Shi, since (4) with (2.14) and (2.15) implies that
‘I*Riem?? < v

for somev depending on the bounds of (4).

To show that there is warped product solutiog(r) € W(N, y).t € [0, T]
of (1.1) (for someT > 0) requires a closer examination of the paper by Shi [Sh].
Shi mostly examines modifiedRicci flow. This modified flow was first employed
by DeTurck [De] to give a short proof of short time existence to the Ricci flow on
compact manifolds without boundary, and is often referred to as Ricci DeTurck
flow. (The first proof of short time existence was proved by Hamilton and can
be found in [Hal]). For the rest of this proof (and only for this proof) we shall
denote a solution to thmodifiedflow asg(z) and the corresponding solution to the
unmodifiedflow asg(z). In the first part of this proof we show that tineodified
flow has a maximal solution that is a warped produdtiGn, y). In the next part
of the proof we show that the correspondimgmodifiedsolution is also a warped
product.
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Lemma 2.1 in [Sh] gives us the evolution equation for the met(i¢ in terms
of the initial metricgg as follows.

58@ = ngvcvdgab - nggapgqubch - nggbpgpq Rach

+ %gc‘igpq(%gpc - Vpggd + 2Ve8ap - Vg bd @D
— 2Vegap - Vagbg — WVa&pe - Vaghg)s
i=g0 V="V, Riem="Riem
Now if we assume that our solutig(r) € W(N, y) is a warped product with
g(x,q. 1) =h(x,1) ®r’(x, )y (q),

andg(x, ¢, 0) = go(x, ¢) = dx?(x) ® rg(x)y(q), then this equation breaks into a
coupled system of two evolution equations,

9 3 9 s 3 9 2
Ehxx zhxxaahxx - 2r_2hxxhxxRxx - Ehxxhxx(a(hxx))
n 8 2.2
* 2r4(8xr )

Vaﬁrz
}"2

3y 3,
2 R — 2%
a1 (r Vaﬂ) 9x 9x (r Vaﬂ)

2vapr? 5 (o B (L (r2))?
+ = yaﬁz Rxx (ngxx _ gxer) _ (rz)/otﬁ) dx4
n r r
h(-) = ho("), ’72() :rg(')a Ry = gORxx~
3.2
In particular notice that as long as

A—-0)8ij <hij <(A+¢)s; forallre[0,T], forsomeO0<¢ <1

this system is parabolic. We note also that a soluggn, g,7) = h(x,7) ®

r2(x, )y (¢q) to (3.2) also solves (3.1), and hence we may use the same techniques
that Shi uses to obtain a priori estimates. Bgtx1, g1) € R x N be a ball of radius

8 > 0.We may use Theorem 2.5 and Lemma 4.1 of [Sh] to obtain the a priori

estimates
1-%9)go<gC, 1) =1+)go,
Vg, )| <¢j() forall je{1,23,..)
etc. forsomd” = T'(n, v) > 0 and some& (n, v, T, go) > 0, and for allr € [0, T'],
(x, q) € Bs(x1, q1), where the dependence ofis

(3.3)

cj=cj (n v, T, sup vk Riem|),
x€B2s(x1.q1).ke{l..... j}

where Riem = “Riem. Note that Shi does not include the dependenag oh
V¥ Riem| , he simply writes:; (n, v, T, g, §) (as thisis all that he needs). For later
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use, we have written the explicit dependence here, and we refer the reader to the
proof of lemma 4.1 of [Sh], particularly estimate (7), from which this dependence
can be seen.

As we are in the special warped product setup, this implies that

A —20)8ij < hij(-, 1) < A+ )i,
A-ro=r, 1) <A+ )ro,
9 J 9 J (3.4
|(8—) h(- el < c;OI(5=) logr2(, ] < G()
X ax
forall j €{1,2,3,...}

etc. forallr € [0, T'], whereT = T (n, v) > 0 is some constant (as above), and the
dependence af; is

. gk
cj=cj (n, v, T, inf ro(x), sup |[(—) log rO|),

xeR x€Bos(x1,q1).ke(l, ... j+2} 0%

andc¢ is as above. Here we have used lgﬁﬁfkﬁiga may be bounded from above

by

20, e P
V¥ Rieml < ¢ sup |(-) logroGl, inf ro(x)).
ie(l,2,...k+2) 0X xeR

when(hg)xx = 8xx. This follows from the formulae for the curvature tensor (see
Proposition 2.1). Then following Shi, we use the same argument as in the proof of
Theorem 8.1 [L® 4, Sect. 7, Ch. VII], forl € 0, 1, .. ., to construct solutions to

the Dirichlet problem

(lh(x, 1), r2(x, t)y(q)) solves (3.2) foraltx, ¢) € [=,1] x N,
(lh(l,t),lrz(l, t)y(q)) = (ho(l),rg(l)y(q)), forallg € N, forallt € [0, T],

(hx, 0,72t 07 (@) = (o), 7B 0)y @), Tor all (x, ) € [=1,1] x N,
forallr € [0, T],

whereT > 0 is some constarf = T(n, v). The estimates (3.4) hold for each
solution ﬁz(x, t),’rz(x, 1)y (q) ), and the constants in (3.4) are clearly independent

of I. Hence we may let — oo, taking subsequences if necessary, to obtain a
smooth solution to (3.2)

(Ih(x, 1), r2(x, t)y(q)) « (h(x,t), r2(x, t)y(q)) —¢(x,q,1) asl — oo

that satisfies (4).

So we have shown that there are solutions tantlegifiedflow that are warped
product metrics iNV(N, y). Actually we explicitly used thathg),x = 8.x, but
the argument still works for any smootl that satisfies (4).

To show that a corresponding solution to timenodifiedlow is a warped product
metric iNW(N, y), we must examine the relationship between it anchtioelified
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flow. If g(x,7) is a modified solution then there is a corresponding unmodified
solution given byg (x, t) where

gt = ¢ g(1),

and
¢ : RxN—->RxN

is a diffeomorphism that satisfies
0 . -, 0
50 = 8Tl = Tl (35)

where herd™¢, are the Christoffel symbols with respect to the megiio, andf“g’d
are the Christoffel symbols with respect to the meggc Since we already know
that the modified solutiog(s) € W(N, y) is a warped product metric we may
calculate the Christoffel symboﬁEZd using the formulae in the chapter on warped
product metrics (204—211) in the book by O’Neill [ON].

Substituting the Christoffel symbol formulae into (3.5) we obtain

8 _xx h X hoe X 3 n xx 3 2 XX 8 2 3
g =h (T "F”)a + r—z(h —(?) ~ho a(ro))a. 3.6)
That is,¢, is only a diffeomorphism i, which we express by

¢1(x, q) = (Y1 (x), q),

wherey, (x) = ¢;(x, q) satisfies the evolution equation (3.6).
Theng(t) = (V_,)*g(¢) implies

2
gxx(x,q,1) = (aix(lﬁ—z(X))) 8xx(Y—1(x), g, 1) 37
Zap(x, q, 1) = r?(Y—(x), DYap(q),
which is clearly a warped product metric of the form
2(x,q,0) = hx,1) & F*(x, 1)y (9) € W(N, ).
We note for later use that (3.6) with (3.7) implies that the estimates (3.4) also hold
forg(t),t €[0,T). O

Lemma 3.2.Let
g(x,q,1) = h(x,0) ®r’(x,0)y(q) € C(N, y),1 €[0,T]
be a smooth warped product metric @R x N") evolving according (1.1). If
rg < ang + b2
for some constants?, b° > 0 then

2 <a?p? + 1'% forall 1 € [0, T) (3.8)

(1), 8+
for some constants’> = a'?(a, b, SUR gyeRrxnscio.r] | Riem) > 0 and

b'? > 0, (' having the same dependencessfy.



102 M. Simon

Proof. By Lemma 2.3 and (3) we havehat

g(0) g(1)

i cln,
v= sup " Riem < sup i v)
(x,q)eRx N ,1€[0,T] (x.q)eRx N, te[0,T] T (x, 1)

and hence we may use the estimate (139) of [Sh], Theorem 7.7 to obtain
1
80 = g(t) < Ci1go forall r € [0, T]
1

where O< C1 < oo is a constant depending @g,n,v. Applying these estimates
to our warped product metric, we obtain

1
—r§() <r%C.1) < Curg ()
C1

1

C_l(hO)xx =< hxx < Cl(hO)xx

for some constant; > 0. Combining this with the hypothesis of the theorem, we
obtain
r? < C1a%p3 + C1b2. (3.9)

Writing p in its integral form, and using the estimate (139) again, we see that

X1 X1
po(x1) = /\/(hO)xxdx < /\/Clh(t)xxdx =/C1p().
X0 X0

Substituting this inequality into (3.9) we obtain the resuitt.

As our manifoldX is non-compact, we mayot use the standard uniqueness
argument for Ricci flow which is obtained by examining the corresponding Ricci—
DeTurck flow (see for example [De]). However...

Theorem 3.3.Letgo(x, g) = ho(x)earg(x)y(q) € W(N, y) be awarped product
metric on the manifol®R x N, satisfying (4). Then any smooth solutig(r) €
W(N, y),t € [0, T]to (1.1) that satisfies (4) for eache [0, T] and g(0) = go,
is unique.

Proof. Let i(x, 1) @ r2(x, 1)y (g) andk(x, t) & s%(x, 1)y (¢) be two smooth so-
lutions to (3.2) both satisfying (4) on some short time interval [0, T] , whose
initial values are the same

ko(x) @ s2(x)y (q) = ho(x) ® r3(x)y(¢q) forall x e R,q € N".
Using the estimates (4), and equation (3.2), we see in [Si 2] that the function
2 2
1P(x. D2 = (log hex (X, ) — l0g K (X, t)) n (log r2(x, 1) — log (X, t))
satisfies the evolution equation

d
PP < AP+ kv, VIPP) + 2P (3.10)
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wherec? is some constant? = ¢2(n, T), and V is the vector field given by
V(x, 1) = kT2, L. The estimates

k k k
sup  |VIP|?|<oo, sup V] < oo, (311
xeR,t€[0,T] xeR,t€[0,T]

follow immediately from (4). Also

k) 0 d .
sup (t1—k| = sup gm|—g| < sup g(t>|ng|em| < 00, (312
xeR,rel0,7] Ot xeRefo,r]  Of xeR,1€[0,T]

due to Proposition (2.2) and (4). Since (3.10), (3.11) and (3.12) hold, we may apply
the non-compact maximum principle of [EH] to the functidgh(x, ¢)|?, to obtain

|P(x,0)|?> =0,

where here we have also used thatx, 0)|2 = 0 . This show us that given any
initial warped product metrigo € W(N, y) that satisfies (4), then the modified
Ricci—-DeTurck flow has a uniqgue smooth warped product solgtipne W(N, y)
satisfyingg(0) = go and (4) for each € [0, T). Now we show that the previous
statement is also true for Ricci flow.

Let ¢(r) andA(r) be two warped product solutions to the Ricci flow equation
(1.1) which satisfy (4) and have the same initial values. Then= ¢;*(g(¢)) is a
solution to (3.2) which satisfies (4), whepgis the solution to (3.5) coming from
g(®). Similarly 2(t) = v*(h(1)) is a solution to (3.2) which satisfies (4), whefre
is the solution to (3.5) coming froma(z). Hence bunigueness of solutions to (3.2)
satisfying (4) (proved above), we obtain that

g(t) = Y * (h(1)) = ¢ * (8 (1)). (3.13

We also know thatl;, = ¢, since a solution to the ODE (3.5) coming frqyty)is
unique (see Shi, Sect. (7), p. 288). The result then follows.

Remark. This argument can be used to prove uniqueness of the Ricci flow in a more
general set up for non-compact manifolds, whgges not necessarily a warped
product, but satisfies similar estimates to (4). Note that any solution will continue
to satisfy (4) for a short time by the estimates (3.4).

Theorem 3.4.For any metricgo(x, g) = ho(x) @ rg(x)y(q) € W(N, y) that
satisfies (4), there exists a maximal const@nt- 0 (possiblyT = o0) and a
unique smooth solution

g(x.q.1) =h(x.t) ®r’(x.0)y(g) € W(N,y).t €[0,T)
to (1.1) satisfying (4) for alt € [0, T'), andg(0) = go. If T < oo, then

080
v = sup ¢ |g Riem(x, g)| = oo.
xeR,qeN,t€[0,T)

We shall call such a solution a maximal warped product solution.
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Proof. By Theorem 3.1, there is& > 0, such that (1.1) (and (3.2)) has a warped
product solutiong(x, 1) = h(x,t) @ r2(x,1)y(q) for t € [0, S]. By Theorem

3.3, any two smooth solutions to (3.2) satisfying (4) must agree. Hence there is a
unigue smooth solutiog(#) on a maximal time intervalO, 7') that satisfies (4).

Let T < oo and assume to the contrary that co. ChooseS > 0 very close to

T, and construct a new soluti5g1(t),t €[S, S+T1,T' =T (v) > 0,to(3.2) for
whichS + T’ > T, +g(S) = g(8), and (4) holds. We define a new one parameter
family of metrics' g(¢), t € [0, S + T'] by

Tet) = g(t) forall ¢ € [0, 51,
++g(t) = +g(t) forall t e [S, S+ T'].

By uniqueness (theorem 3.3) the solutions agregSoff’) , since they both solve
(3.2) and satisfy (4) on this interval. We know thag(r) € C®(R x [0, S])
sinceg(r) € C®(R x [0, S]). Also "g(r) € C®(R x [S, S + T']) since'g(t) e
C*®(R x [S, S+ T']). Hence we have constructed a smooth solution

Te(t) e CP(R x [0, S+ T']),t €[0,S+T']

that satisfies (4) and + T’ > T. This contradictsg(s),t € [0, T) being the
maximal smooth solution that satisfies (3.2), (4) a@) = go, and so the re-
sult follows. Note that as a consequence of (4), Lemma 2.2 and Lemma 2.3,

1),8(1)
SURerrer0.s) || Riemx)| < oo forall S < 7. O

4. Metric and curvature evolution equations

In this section we present evolution equations for an arbitrary family of warped
product metricg(t) € W(N, y),t € [0, T] thatis evolving by Ricci flow. We also
present evolution equations for the Ricci curvatures of such an evolving metric.
We then apply a maximum principle to the curvature evolution equations to show
that anygo € W(N, y) that satisfies (1) and (2) at time zero, will continue to do
so for every later time when it is evolved by Ricci flow. In deriving the evolution
equations for the Ricci curvature, we will use some formulae that are specific to
warped product metrics of the form (0). We stress here that the high degree of
symmetry of this warped product metric allows us to greatly simplify the general
curvature evolution equations derived by Hamilton [Ha 1]. In particular the fact
that y is an Einstein metric and henéﬁaﬁ = fgqp (See 2.7) is perhaps most
significant. That this symmetry is maintained under Ricci flow is perhaps the key
to seeinghow the curvature is evolving and behaving.

Proposition 4.1.Let
g(x,q, 1) =h(x,1) ®r(x,n)y(q) € W(N, y)

be a smooth warped product metric @& x N™) evolving according to (1.1), where
y is an Einstein metric (with constaky}, ¢ € [0, T], whereT > 0is some constant.
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Then we have that
0 2nn_n

9 2 2_".2 hig 12
o= —2fr2 ="Ar’+ (2n — 4| Vr|? — 2k, (4.2)
ad 2
Engx = gAngx + ;gﬂngﬁangx - 2gxx(ngx)2 (43)
0 ¢ EA8 2 XX XX 8 2 2 xx8
E Rop = A'Ryp + ;g 8 gaﬁ( Ryx)® — ; Roup8™" Rxx. (4.4)
0 2 2
o f = A+~ g (Ru)? = ~ fg™ R + 21f2, where (4.5)
1
f= _ga'BRaB
n

= %(—hArz +@=20)Vr2+2k) = (k — r'Ar + A —n)|VrD).
To prove Proposition (4.1) we will need the following technical lemma.
Lemma 4.2.Let
glx,q) = h(x) ® r’(x)y () € WN, y).

Then

1
ngotxﬂ = ;ngx 8ap (4.6)

1
gthRrouS/S - gRoz/S = _;gxngxxgolﬁ- 4.7)

Proof of Lemma 4.2Equation (4.6) follows immediately from (2.2) and (2.4). By
definition of ‘R,z and the fact thags, = ‘R,s = 0, we obtain

gRaﬂ = gabgRaotbﬂ = gxngaxﬂx + gragRIOtSﬂ-
Substituting (4.6) into the above gives us (4.71).
Proof of Proposition 4.1Remembering the equation for Ricci flow (1.1) and using
the formula forgRij (2.4) we derive the evolution equation
2n

r

s, 0
ar T B
which is (4.1). Substituting the formula (2.7) into (1.1) we obtain

£ h h_ h
8ij = —2gR,'j =—-2R;; + ViVir,

d 0
E(”z)/aﬂ) = E(gozﬁ) = _ZgRaﬂ = _ngotﬂ = —2fr2ya/3.

Since by assumption is independent of (4.2) follows. In [Hal] the equation for
the evolution of the Ricci-curvature is derived to be
0 ¢

E Rap = gAgRab + ngcqungaqbchd - ngqupugqu,
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wherep, g,c,d € {1,...,n+ 1}. Hence

0
EgRXX = gAngx + zgpcqungquchd - 2gpqupngqx' (4.8)
By the curvature formulae of chapter (2), we see that the only non“fzgggx are
of the form*R 5. Combining this withg*® = ‘R, = 0, we get

¢
at
Substituting identity (4.6) into the above equation we see that
d g, 8 2 Bo8 8 xx 8 2
ERXXZ ARxx'i_;g Rﬂa Rxx—2g (Rx.x)
which proves (4.3).
Now we calculate the evolution of the Ricci curvature in Nedirection. From
the general equation for the evolution of the Ricci curvature we get
d ¢

N g g g g
g Raﬁ ="A Raﬁ + 2gprgqs Rpotqﬂ R,y — ngq Rpa Rqﬁ,

Ryx = gAngx + ZgaﬁgyUgRaxngRﬂd - 2gxngxngxx-

wherep, g, r, s € {1,...,n + 1}. Once again using that® = 0, and’R,, = 0
we see that

d
EgRotﬂ = gAgRaﬂ + ngxgxngxaxﬂngx
+ 2g(ragnpgRaanﬁgRSp - ngngoagRBﬁ'
Using identity (4.6) and (2.7) in the above we see that

d 2
EgRaﬂ nggRaﬂ + ;g”g”ngxgaﬂngx

+ ngasgnpgRoanﬁgép - ZgasfgaagR(Sﬁ

2
=‘A"Ryp + ;g“g”ngxgaﬁgR” +2f <gn<ngwm3 - gRaﬁ).
(4.9
Substituting (4.7) into (4.9) we obtain

d 2 1
EgRaﬁ _ gAgRaﬁ + ;gxxgxngxxgaﬁngx 4 2f< _ ;gxngxxgaﬁ)’

in view of (4.6). Finally, we wish to turn oufg.s back into a curvature term, and
SO we use (2.7) again to obtain

d 2 2
ggRaﬂ = gAgRozﬂ + ;gxxgxngxngxxgaﬂ - ;gxngxngaﬂ

which is (4.4).

001 10 oo L 0
—f=—(- R = = (—g?)°R Zg®P(—*Ryp). 4.1
Btf 8t(ng aﬂ) n(atg ) aﬁ+ng (81‘ otﬂ) (4.10
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Using (1.1), and the fact that cross termsgadind the Ricci curvature tensor are
zero, we obtain

0
Egaﬁ = ZgQJgﬂrgRar-

Substituting this equation and (4.3) into (4.10) we get
0 1 2 2
gf = ;gaﬁ (gAgRozﬁ + ;gxxgxxgaﬂ(ngx)Z - ;gRaﬁgxngxx)
2
+ ;gRaﬂggagrﬁgRar
Since‘Agqy = ‘Ag®® = 0 andg® gos = n, this implies
ad 2 y 2 2,
5 f = A + g (Ru)? = ~ & R + = Rupg™ g™ Ror.

Equation (4.5) then follows from

2

;gRO(,f;gV"‘g"ﬂgR),,7 =2nf%. O

5. Conservation of curvature sign

We now show that any warped product megice W(N, y) that satisfies (1) and
(2) at time zero, will continue to do so for every later time when it is evolved by
Ricci flow. We do this by combining the evolution equations of chapter five with a
maximum principle.

Theorem 5.1.Letgo(x, ¢) = ho(x) ® r3(x)y (q) € C(N, y) satisfy (4), and let
g(x.q.1) =h(x,1) ®r’(x,.0)y(g) € W(N, ).t €[0,T)

be the maximal warped product solution to (1.1) satisfying (4) for eaclO, T),
with initial valuesg (0) = go (see Theorem 3.4). Theiw) € C(N, y), forall ¢
[0, T).

Proof. From the definition of a maximal solution, we have

v=sup ““IRiemx)? <o forall §<T. (5.1)
xeR,t€[0,S]
Hence (4.3) d (4.5) imply
3
5”'1@” =°*ACRyy) + A°Ry, forall 1 €0, §] (5.2)

%f >‘Af+ Bf forall t €0, 5], (5.3)
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whereA, B : R x [0, §] — R are functions bounded in terms of By (4), we
see that any gradient of the Riemannian curvature tensor is bounded for S7.
Hence,

sup’|’VR|? < oo forall ¢ € [0, S] (5.4)
xeR

and
sup’|'V f1? < oo forall 1 € [0, S]. (5.5)
xeR

We also have

g 0 () o). .
sup l—gx,q)(®)| = sup | — 2" Ricci(x, q)| < oo (5.6)
(x.q)eRxN,te[0,5] Of xeR,7€[0,S]

in view of (5.1). In view of (5.2), (5.4), (5.6) andR,, < 0 (sincegy € C(N, y))
we may apply the non-compact maximum principle of [EH] to the functiop,
on the time interval0, S] to obtain

8()

R.x <0 forall r €0, S].

Letting S — T gives us (1). In view of (5.3), (5.5), (5.6) anfy > O ( since
go € C(N, y)), we may apply the non-compact maximum principle of [EH] to the
function f to infer

1
;gaﬂRaﬂ = f(,1)>0 forallr €[0, 5], forall S <T.

Letting S — T gives us (2). O

6. The formation of singularities

In this chapter we show that any maximal warped product solution
g(x,q. 1) =h(x,1) ®r?(x,1)y(q) € C(N,y), 1 € [0,T)
to (1.1) that satisfies (4) and (5) for each [0, T), will also satisfyT < oo, and

inf  r%(x,1) =0.
x€R,r€[0,T)
We say such a solution has collapsed in finite time. We shall see later (Theorem
7.2) that this implies that
8(1) g(1)

sup I“"Riem(x, ¢)|? = o0
(x,q)eRxN,t€[0,T)

and so(X, g(¢)) has formed a singularity in finite time.
Notice that (so far) we have not shown that, ¢) will actually approach zero
in finite time. In order to force this to happen, we need to assume (5).
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Theorem 6.1.Let go(x, g) = ho(x) @ rg(x)y(q) € C(N, y) satisfy (5). Assume
g(t) is a smooth solution to (1.1) defined @y T), and that

g(x,q,0) = h(x,1) ®r(x,1)y(q) € C(N, y),

for eachr € [0, T). Then we also have

12 < a?p? 4+ b2 — X,

as long ash? — ¢+ > 0, wherec is the constant? = Z(k —a?(n — 1)), and

plx,t) = h(’)dist(xo, x) (xo is fixed and comes from (5)). Naté > 0 by (5).

Corollary 6.2. Let go(x, ) = ho(x) ® ra(x)y(q) € C(N, y) satisfy (4) and (5).
Then the maximal warped product solution

g(x,q. 1) =h(x,0) ®r(x,1)y(q) € C(N,y),t €[0,T)

satisfying (4) for each € [0, T) and g(0) = go (see Theorem 5.1) must have
T < oo, and

inf r?(x, 1) = 0.
xeR,t€[0,T)

Proof of Corollary 6.2 Assume thaf” = oo and assume to the contrary that

inf  r2(x,r) >0, forall S < oo.
xeR,1€[0,S]

Then by Theorem 6.1 we have

r2 < a?p? +b? — %t

forallz € [0, S]. In particularifxg € R is the fixed point from which is measured,

then I
p(xo. 1) = "dist(xo, x0) = O,

and hence, letting — oo,
r?(xo, 1) < b%> —c?t forall 1 € [0, 00).

Hencer?(xo, 1) must reach zero in finite time, which contradicts the assumption
made at the beginning of the proof. So we may assime oco. Assume to the
contrary that
inf rz(x, 1) > 0.
x€R,1€[0,T)
Then by Lemma 2.2, and Lemma 2.3, we obtain

8(1) g(r)

sup I” Riem(x, ¢)| < oo,
(x,q)eRxN,t€[0,T)

which contradictg(¢), ¢ € [0, T) being maximal. O
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Proof of Theorem 6.MVe recall that is defined for a fixedg to be

pmn=%uﬁ=”%mmw=fwmm
X0

Then (1.1) with (2) tells us

8

X
0 Rix
— = | — dx > 0. 6.1
5P / e (6.1)

XX

X0

Using the fact tha’t’Ap = 0 for a 1-dimensional manifold anhqum = 1 (see
[SY]), we obtain

a
(5. = Mo n) = =2, (6.2)
The evolution equation for? (4.2) implies

9
(5~ "Myir2 = @2n — 8" Vr? — 2%

(6.3)
(n 2) h h 2,2
= Vre|© -2k
572 I |
Let F be defined by
F(x,t) = r2(x, t) — az,oz(x, t) — b% + .
Combining (6.2) and (6.3) we obtain
-2
(— NP < -2k 222+ 24 52 )h|hv 212, (6.4)
r
We wish to write the term ( 2
n — h 2.2
2r2 |;'Vr |
as a term involvingv F. To do this we use the algebraic identity,
"r22 = n (Vo2 = 0), V2 + o)) + Ve 2, (6.5)
wheree : R — R is an arbitrary function. Let = r? — F. Then
"r22 = h(VF, V22 = F)) +a*Vp?)2 66
WER+20(VF, 92 + a¥V 0?2 '
Upon substituting this into (6.4), we obtain
(——A)F<—2k+2a +c +( )h(VFV )
-2
n (n 2)a h|hv |
2r . 2) (6.7)
—=(—2k +2a% + ¢ + h(VF, V12

72
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sinceh|”Vp| = 1. We may calculate, using the definition Bf that
=2 5, 20—-2) 5 2(n — 2)

2a > p° = > a“F — .
- 2(n —2)

= }"2

a’b? — %) + 2(n — 2)a®

a®F + 2a2(n - 2),
as long a$? — ¢?r > 0. Substituting this inequality into (6.7) we get

(% _"AVF < (— 2% + ¢ + 24%(n — 1)) +h(VF,w) + GF,where

2(n — 2)4

w(x, 1) = Vr(x,t) (6.8)
r(x,r)

G(x,t) = —rz(x, 0 ac.

By the definition ofc, we have( — 2k + ¢? + 24%(n — 1)) = 0, and hence we
obtain 5
(5~ '\ F < h(VF, w) + GF, (6.9)

as long a$? — ¢?r > 0.
Fix S < T. We know, by the hypothesis of the theorem, thab € C(N, y),
and hence(x, ¢, 1) = h(x, 1) ® r?(x, 1)y (q) satisfies (3) and (2.9). This implies

2(n — 2)a?
sup G(x,H)= SUup ——— <00,
xeR,1€[0,S] xeRurefo,r] To(x, 1)
(6.10)
n2(n—2)
sup  w(x,t) = sup | Vr(x,t)| < oo.
xeR.1€[0,5] xeRreor]  r(x, 1)
By construction
Fo=F(,0 <0 (6.11)
One readily checks that
"F®, 012 = 42V + 4a%p?. (6.12)
Substituting (2.9), and then (3.8), into (6.12), we obtain
VR < @) + (0)?
for some constantg, »’. In particular this implies
S hh 2 2
/ / IVF|%e™" duppdt < oo, (6.13)
o JR

since the exponential function dominates any polynomial.
Conditions (5.6), (6.9), (6.10) and (6.13) are the conditions needed to apply
the non-compact maximum principle of [EH] to the functiBnHenceF (-, t) <
0 forall t € [0, S] as long a$? — c?t > 0. LettingS — T we obtain the result.
]
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7. Neck pinching

In this chapter we combine the results of the previous chapters to show that if
go € W(N, y) satisfies (1)—(6), then the maximal warped product solujioh €
W(N, y),t € [0, T) to (1.1) (see Theorem 5.1) will pinch at tirde The pinching
will occur on a compact sgt-A, A] x N € R x N, whereA > 0 is some finite
constant.

An important part of the pinching argument is to show that the maniRoidN
with a warped product metric(x, 1) ® r2(x, 1)y (q) € C(N, y),t € [0, T], evolv-
ing by Ricci flow does not completely collapse away at the first time a singularity
occurs. In our warped product set-up this means that if

inf rz(x, 1) =0,
x€R,t€[0,T)

then we also have

in rz(x, t)>0
x€(—00,—AJU[A,400),1€[0,T)

for some constanti, 0 < A < oo. We essentially attain this result for free from
Theorem 7.1.

Theorem 7.1.Letgo(x, ¢) = ho(x) ® ré(x)y(q) € C(N, y) satisfy (4) and let

g(x,q,1) =h(x,1) ®r?(x,0)y(q) € C(N,y),1 € [0, T)

be the maximal warped product solution to (1.1) satisfying (4) for eaeh0, T')
andg(0) = go (see Theorem 5.1). Then

r2(x, 1) > rg(x,1) — 2kt forall x e R,t €[0,T). (7.2
Proof. Equation (6.3) implies

8 n n
= 'AG2) + (20— 8|2 - 2
= 2"'Ar + (21— 2)'|Vr |2 — 2
> 2rhAr — 2k,
and hence, in view of condition (1), we obtain
d
—r2 > k.
at
a

Theorem 7.2.Letgo(x, ¢) = ho(x) ® ré(x)y € C(N, y) satisfy (4) and let

g, g, 1) =h(x,1) ®r(x,1)y(q) € C(N,y),t €[0,T)

be the maximal warped product solution to (1.1) satisfying (4) for eachO, T),
andg(0) = go (see Theorem 5.1). Th@h< oo and there exists some > 0 such
that

inf r2(x,t) =0 (7.2)
xe[—A,A],t€[0,T)
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and

inf r2(x, 1) > 0, (7.3)
xe(—o00,—AJU[A,+00),t€[0,T)

which implies tha(R x N, g(t)) pinches on the s¢t-A, A] x N attimeT.

Proof. We haveT < oo and (7.2) from corollary 6.2. We now show that the
manifold does not completely collapse away, that is that (7.3) is true. Theorem 7.1
implies that

rz(x, t) > rg(x) — 2kt.

By (6), there exists al > 0 such that
ré(x) > 2kT +1 forall x € (—oo, —AJU[A, +00).
Hence,
r2(x,t) > 2kT +1—2kt > 1 forall x € (—oo, —AJU[A, +00), 1 € [0, T),

and hence (7.3) is also true. We must also show that (7.2) and (7.3) imply that the
manifold has pinched. We know from theorem 5.1, that (1) and (2) remain true
for the evolving metrigg(r) under Ricci-flow. From Lemma 2.2, and inequalities
(2.15), (2.16) and (7.3) we see that

sup O ORiem(x, )2 < v, (7.4)
xe(—o00,—AJU[A,+00),t€[0,T)

for some constant < oco. By (7.2) and (7.3), for close toT, there exists; €
[—A, A] such that the infimum of is attained:

r(x;, t) = )Ereler(x, 1).

Then sincthr(x,, t) = 0, we may substitute this into (2.3) to obtain
gRocﬁro (X, 1) = rz(xt’ t)VRa/SaU-

Then v

ot Bo VR — n

e’ U T 20y

where here we have used thais an Einstein metric with Einstein constatit- 0).
Hence

at  Po8

8" 8" Rapro(xs, 1) =

HON

| Riem(x,, 1)] > g*7 " "Rapro (x:, 1) = — oo ast > T,

rz(va t)
in view of (7.2), which together with (7.4) implies thafs) pinches attimg’. O
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