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Abstract. The purpose of this paper is to construct a set of Riemannian metricsC(X) on a
manifoldX with the property thatg0 ∈ C(X) will develop apinching singularityin finite
time when evolved by Ricci flow. More specifically, letX = R × Nn, whereNn is an
arbitrary closed manifold of dimensionn ≥ 2 which admits an Einstein metric of positive
curvature. We construct a (non-empty) set of warped product metricsC(X) on the non-
compact manifoldX such that ifg0 ∈ C(X), then a smooth solutiong(t) ∈ C(X), t ∈ [0, T )
to the Ricci flow equation exists for some maximal constantT , 0 < T < ∞, with initial
valueg(0) = g0, and

sup
x∈K,t∈[0,T )

| Riem(g(t))| = ∞,

sup
x∈X−K,t∈[0,T )

| Riem(g(t))| < ∞,

whereK is some compact setK ⊆ X.

1. Introduction

LetX be a manifold with fixed differential structure. We will use the notation(X, g)

to denote the manifoldX equipped with the Riemannian metricg. Giveng0 onX
we wish to find a smooth solution(X, g(t)) to the equation

∂

∂t
g(t)(vp,wp) = −2

g(t)

R(vp,wp),∀p ∈ X, vp,wp ∈ TpX, t ∈ [0, T ),
g(0) = g0,

}

(1.1)
where

g(t)
R(vp,wp) is the Ricci curvature ofX with respect to the metricg(t) in

direction(vp,wp) at p, andT > 0 is some constant (possiblyT = ∞). We say
that (X, g(t)) evolves byRicci flowwith starting or initial metricg0 if it satisfies
(1.1). Ricci flow is a tool that helps us to examine the geometry of manifolds, and
was introduced by Hamilton in [Ha 1].

In this paper we are interested in solutions(X, g(t)), t ∈ [0, T ) to (1.1) that
exist for some finite constantT , 0< T < ∞, and for whichg(t) pinchesast → T .
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The purpose of this paper is to show that pinching singularities can form under Ricci
flow, and to obtain a better understanding of the properties of such singularities.
That pinching can occur under Ricci flow was conjectured by Hamilton in [Ha 2].
If we understood pinching singularities then we could possibly extend Ricci flow
in a weak sense past such singularities. (see [Ha 2] sec. 3, “Intuitive solutions”).

For our purposes, the following simple definition of pinching will suffice.

Pinching definition 1.1. LetX be a manifold with fixed differentiable structure,
and letg(t), t ∈ [0, T ) be a continuous 1-parameter family of Riemannian metrics
onX, where0 < T < ∞ is some constant. We say that(X, g(t)) pinches on a set
K ⊆ X ast → T (or at T ) if

sup
p∈X

g(t)|g(t)Riem(p)|2 < ∞ for all t ∈ [0, T )

sup
(p,t)∈K×[0,T )

g(t)|g(t)Riem(p)|2 = ∞

sup
(p,t)∈(X−�̄)×[0,T )

g(t)|g(t)Riem(p|2 < ∞ for all open �, satisfyingK ⊆ �,

where
g(t)|g(t)Riem| is the norm of the full Riemannian curvature tensor at timet .

Here, the norm
g(t)| · | is the standard norm induced fromg(t) for tensors onX

(see the definitions in chapter two for more details). If(X, g(t)), t ∈ [0, T ) pinches
onK at timeT , then we callT > 0 the blow up time (since curvatureblows up
somewhere at timet = T ).

Hamilton showed in [Ha 1], that ifX3 is a three dimensional compact, closed
manifold with metricg0, and(X, g0) has positive Ricci curvature everywhere, then
there exists some maximal constantT , 0 < T < ∞ such that (1.1) has a smooth
solution(X3, g(t)), t ∈ [0, T ) and

sup
t∈[0,T )

g(t)|g(t)Riem(p)|2 → ∞ ast → T , for all p ∈ X3.

Hence pinching will never occur when we do not have negative curvature some-
where (in the compact case). For this reason we expect negative curvature to play
an important role in pinching, as it does in this paper.

We shall illustrate pinching with an intuitive solution. LetX̃3 = F0(R ×S2) ⊆
R4 be the rotationally symmetric three dimensional hyper surface obtained from
the imbeddingF0 : R × S2 → R4, given by

F0(x, α) = (x, r0(x)i(α)), for (x, α) ∈ R × S2,

r0(x) =
√
a2x2 + b2,

where i : S2 → R3 is the standard embedding ofS2 into R3, anda2, b2 are
constants satisfying 0< a2 << b2 << 1. We callr0 : R → R the generating
function of X̃. We note thatX̃ is asymptotic to a cone as|x| → ∞, and is close
to a (3-dim) cylinder of radius|b| > 0 for x ∈ [−N,N ] for some constantN =
N(a, b) > 0. Since we are only interested in the intrinsic properties ofX̃, we
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consider the equivalent Riemannian manifold(R × S2, g0), whereg0 is the pull
back of the metric̃g0 under the mappingF0, andg̃0 is the metric onX̃ induced
from R4. Let (R × S2, g(t)), t ∈ [0, T ) be the solution to (1.1) withg(0) = g0,
where[0, T ) is the maximal time interval for which the solution exists (theorem
3.4 guarantees that such a solution exists when the initial hyper surface is smooth
enough). We will call([−N,N ] × S2, g(t)) theneckof the Riemannian manifold
(R × S2, g(t)) at timet . Since the neck at time zero is close to a long thin cylinder
of radius|b|, we expect that the high positive intrinsic curvature there should force
the radius of the neck to shrink quickly towards zero under (1.1). Far away from
the neck, the manifold is more like a cone with each slice of this cone being anS2

with very large radius. Hence the intrinsic curvature there is relatively small, and
so the radius of each slice of the cone should shrink very slowly under (1.1). We
expect at some finite timet = T > 0 that the middle of the neck willpinchleaving
(topologically speaking) cone like manifolds either side. As time approachesT ,
the radius of theS2 slice in the middle of the neck will approach zero, and so the
curvature there will approach infinity.

This picture is the basis for the following definition. LetNn be any given
closed manifold ( dimNn = n ≥ 2) that admits an Einstein metricγ (for example
Nn = Sn with the standard metric).The manifolds we shall be concerning ourselves
with areX = R×Nn. We shall principally be interested in warped product metrics.
Let M(X) = {C∞ Riemannian metrics onX}.
Definition 1.2. LetNn(n ≥ 2) be a closed manifold that admits a smooth Einstein
metricγ . We define the set of smooth warped product metricsW(N, γ ) ⊆ M(R ×
Nn) to be the set ofg ∈ M(R ×Nn) which can be written

g(x, q) = h(x)⊕ r2(x)γ (q),

for some arbitraryC∞ metrich onR , and some arbitraryC∞ functionr : R → R.
Here,γ is a fixed Einstein metric onN . We defineC(N, γ ) ⊆ W(N, γ ) to be the
set of

g(x, q) = h(x)⊕ r2(x)γ (q) ∈ W(N, γ ),

that satisfy

g

R(
∂

∂x
,
∂

∂x
) ≤ 0,

∂

∂x
∈ TxR, for all x ∈ R (1)

g

R(Vq, Vq) ≥ 0 for all Vq ∈ TqN, for all q ∈ N (2)

inf
x∈R

r(x) > 0. (3)

The following derivative and lower order bounds will often be assumed for warped
product metricsg ∈ W(N, γ ). We sayg(x, q) = h(x)⊕ r2(x)γ (q) satisfies (4) if

sup
x∈R

hxx < ∞, inf
x∈R

hxx > 0, inf
x∈R

r(x) > 0,

sup
x∈R

(|( ∂
∂x
)
j

h| + |( ∂
∂x
)
j

logr|) < ∞, for all j ∈ {1,2, ...},
(4)
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where here| · | is the standard dot product forR, and( ∂
∂x
)
j

is the operator∂
∂x

to
the powerj . We shall often talk of a smooth solution(X, g(t)), t ∈ [0, T ] to (1.1).
This will mean thatg ∈ C∞(X×[0, T ]). Condition (1) is somewhat non-standard,
as most of the work on Ricci flow has been done for manifolds that satisfy some
positive curvature conditions. There are a plethora of such conditions, and we refer
the reader to [Ha 2], section 5, for a thorough survey of the sorts of conditions
one initially assumes, and then shows are preserved by Ricci flow. Note that on
the 2-sphere ( [Ch]) curvature becomes positive after a short time, and so negative
curvature will not be preserved by Ricci flow there.

1.1. Main results

The main results are presented in the following two theorems.

Conservation theorem (thm. 5.1).Assume thatg0(x, q) = h0(x)⊕r2
0(x)γ (q) ∈

C(N, γ ), andg0 satisfies (4). Then there exists a maximal constantT > 0 such that
(1.1) has a unique smooth solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q), t ∈ [0, T )
satisfying (4). This solution satisfiesg(t) ∈ C(N, γ ) for all t ∈ [0, T ).

As a corollary to this theorem we see that

∂

∂t
(r2(x, t)γ (q)(V , V )) = ∂

∂t
g(x, q, t)(V , V )

= −2
g

R(V, V ) ≤ 0 for all V ∈ TNn,

and hence for fixedx, r(x, t) is non-increasing as a function of time.
In order to force the manifold to pinch, we need to assume certain things about

the growth ofr0 as |x| → ∞. More specifically, we need the quadratic growth
condition

r2
0(x) ≤ a2ρ2

0(x)+ b2

0< a2 <
k

(n− 1)
,

b2 > 0,

(5)

where hereρ0(x) is the distance function with respect to the metrich0 from some
fixedx0 ∈ R:

ρ0(x) = h0dist(x0, x),

anda2, b2 are constants satisfying the stated conditions, andk is the constant of
the Einstein metricγ ,

γ

R(Vq,Wq) = kγ (Vq,Wq) for all q ∈ N,Vq,Wq ∈ TqN.
It is worth while noting that when(N, γ ) = (Sn, d�2) is the n dimensional sphere
with the standard metric, thenk

(n−1) = γ
sec= 1, where

γ
sec is the sectional curvature

of (Sn, γ ) (of any plane). Clearly from (5) we must havek > 0. We will also need
that

r0(x) → ∞ as|x| → ∞. (6)
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Pinching theorem (thm 7.2). Assume thatg0(x, q) = h0(x) ⊕ r2
0(x)γ (q) ∈

C(N, γ ) satisfies (4), (5), and (6). Then there exists a constant,0 < A < ∞,
such that the maximal warped product solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ W(N, γ ), t ∈ [0, T )

to (1.1) of the conservation theorem 5.1, satisfies

inf
x∈[−A,A],t∈[0,T )r

2(x, t) = 0

inf
x∈(−∞,−A]∪[A,+∞),t∈[0,T )r

2(x, t) > 0.

This implies that the manifold pinches on the compact setK = [−A,A] × N ⊆
R ×Nn at timeT .

The study of singularities that can form under various different geometric flows
has been extensively examined. Huisken studied the types of singularities that oc-
cur under mean curvature flow, and in particular their asymptotic behaviour [Hu
1]. In the last section of [Hu 1] he examines periodic rotationally symmetric sur-
faces with positive mean curvature (which always develop a singularity). He shows
that the singularities satisfy a certain blow up estimate, and behave asymptotically
like cylinders. The main tool of [Hu 1] is the parabolic maximum principle for
tensors. See [Ha 1] or [Ha 3] for a reference. The author [Si] generalised some of
the results of [Hu 1] to higher dimensions. Smoczyk [Sm] showed that certain pe-
riodic rotationally symmetric surfaces embedded in Euclidean space (Hyperbolic
space) pinch when the mean curvature is positive (bigger than two). Grayson [Gr]
has created a class of rotationally symmetric barrier surfaces, each of which is
asymptotic to a cylinder in its middle region and grows exponentially outside this
region. When we evolve one of these barriers by mean curvature flow, the resulting
evolving surface will pinch at a finite timet = T > 0 in its middle region, where
T depends on the length and radius of the initial cylindrical middle region. Ecker
[Ec] showed the existence of a class of evolving symmetric barrier hyper-surfaces
each of which is asymptotic to a cone at plus and minus infinity and pinches at a
finite time t = T > 0 at its middle point. In this case,T depends on the diameter
of the middle region of the barrier at time zero, and the angle of the cone to which
the barrier is asymptotic. The barriers of [Gr] and [Ec] may be used to find a large
class of manifolds that pinch under mean curvature flow. Dziuk and Kawohl [DK]
showed that periodic rotationally symmetric surfaces of positive curvature, which
have one minimum on each period and satisfy a certain monotonicity condition on
the derivative of the curvature, pinch at exactly one point. Altschuler, Angenent and
Giga [AAG], showed that any compact connected rotationally symmetric hyper-
surface that pinches under mean curvature flow does so at finitely many discrete
points. For a discussion on manifolds that should “intuitively” pinch under Ricci
flow, we refer the reader to [Ha 3], Sect. 3: “Intuitive solutions”.

The similarities between hyper-surfaces that flow by mean curvature flow, and
manifolds whose metric is evolving by Ricci flow are numerous. For example: an
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n dimensional sphere sitting inRn+1 evolving by mean curvature flow will shrink
at the rate

radiusR(t) =
√
R2

0 − 2nt, where R(0) = R0.

An n dimensional sphere whose metric evolves by Ricci flow satisfies

g(t) =
(
R2

0 − 2(n− 1)t
)
d�2, where g(0) = g0 = R2

0d�
2,

andd�2 is the standard metric onSn. There are other self-similar hyper surfaces in
mean curvature flow that have analogies in Ricci flow. This led the author to look
for manifolds, similar to those described in [Ec], that will pinch when evolved by
Ricci flow.

2. Definitions and curvature formulae

We state here the main relations for the Riemannian curvature tensor of a general
warped product. We refer to the book by O’Neill [ON], for a reference. That is, we
will express the curvatures of(

M ×N, g(x, q) = h(x)⊕ r2(x)γ (q)
)

in terms of curvatures of(M, h), curvatures of(N, γ ) and derivatives ofr. As was
mentioned in the introduction, we will be interested inM = R, however in this
chapter we make no such restriction.

As will be standard in this paper, lower-case Roman letters{i, j, k, l} refer to co-
ordinates inM, lower-case Greek letters refer to co-ordinates inN , and lower-case
Roman letters{a, b, c, d, p, q} refer to general co-ordinates inM ×N :

{
∂

∂i

}m
i=1

∈ TM,
{
∂

∂α

}n
α=1

∈ TN,
{
∂

∂a

}n+m
a=1

∈ T (N ×M).

ForM = R, the letterx refers to the standard co-ordinate

∂

∂x
∈ TR.

g∇ refers to the gradient with respect to the metricg. Hence, for a functionf :
M ×N → R,

g∇f = gab
(
∂

∂a
f

)
∂

∂b
.

The Hessian of a functionf : M ×N → R with respect to the metricg is defined
using co-ordinates by

g∇a
g∇bf = g

Hess

(
∂

∂a
,
∂

∂b

)
f = ∂

∂a

∂

∂b
f − g

0
c

ab

∂

∂c
f,

where
g

0
c

ab = gcd
g

0ab,d
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and
g

0ab,d = 1

2

(
∂

∂a
gdb + ∂

∂b
gda − ∂

∂d
gba

)

are the Christoffel symbols with respect to the metricg. The Laplacian of a function
f : M ×N → R with respect to the metricg is defined using the Hessian:

g

1f = gab
g

Hess

(
∂

∂a
,
∂

∂b

)
f.

As is standard, the Riemannian curvature tensor onM × N with respect to the
metricg is defined by

g

R(u, v,w) = −g∇u
g∇vw + g∇v

g∇uw + g∇[u,v]w.

We use the convention

g

Rabcd = g

(
g

R

(
∂

∂a
,
∂

∂b
,
∂

∂c

)
,
∂

∂d

)

for the Riemannian curvature tensor with respect to the metricg onM ×N . With
this convention, the sectional curvature of the plane spanned by the vectorsv and
w is then given by

g

sec(v,w) =
g
Rabcdv

awbvcwd

g
Q(v,w)

= g(
g
R(v,w, v), w)
g
Q(v,w)

,

g

Q(v,w) = g(v, v)g(w,w)− g(v,w)2,

which is the opposite from the classical indexing convention, but is the convention
used by Hamilton in his Ricci flow papers. The Ricci curvature tensor is then
denoted

g

Rab = g

Racbdg
cd .

g| refers to the norm of a tensor with respect to the metricg. So for example, if we
take a tensorT = {Tab}, a, b ∈ 1 tom+ n, then

g|T |2 = gacgbdTabTcd .

Notice in these definitions that we have used a superscriptg to show the dependence
on the metricg. This notation shall be standard throughout this paper. For example

h

Hess

(
∂

∂i
,
∂

∂j

)
(f ) = h∇i

h∇j f

refers to the Hessian of a functionf : M → R with respect to the metrich onM.
The end of a proof will be denoted by a♦.
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Proposition 2.1.LetMm ×Nn be a manifold with smooth metric

g(p, q) = h(p)⊕ r2(p)γ (q).

Then

g

Rijkl = h

Rijkl (2.1)

g

Riαjβ = Pijgαβ where Pij = −
h∇i

h∇j r
r

, (2.2)

g

Rαβτσ = r2(
γ

Rαβτσ )+ r2h|h∇r|2(γασ γτβ − γβσ γτα) (2.3)
g

Rij = h

Rij + nPij (2.4)
g

Riα = 0 (2.5)

g

Rαβ = γ

Rαβ + gαβ
1

r2 (−r
h

1r + (1 − n)
h|h∇r|2)

which implies
g

Rαβ = γ

Rαβ + gαβ
1

2r2 (−
h

1r2 + (4 − 2n)
h|h∇r|2). (2.6)

Hence ifγ is an Einstein metric with
γ
Rαβ = kγαβ (k is a constant), then the last

equation becomes
g

Rαβ = fgαβ, (2.7)

wheref = 1
r2 (k − r

h
1r + (1 − n)

h|h∇r|2) = 1
2r2 (−h

1r2 + (4 − 2n)
h|h∇r|2 + 2k).

Proof. The above formulae (2.1)–(2.6) can be found in a co-ordinate free form in
the chapter on warped product metrics (204–211) in the book by O’Neill [ON].ut
Lemma 2.2.Let

g(x, q) = h(x)⊕ r2(x)γ (q) ∈ W(N, γ )

be a smooth warped product metric on the manifoldR ×N , whereγ is an Einstein
metric with Einstein constantk , that satisfies (1) and (2). Then

h|h∇r|2 ≤ k

(n− 1)
(2.9)

h

1r ≥ 0 (2.10)

h

1r ≤ k

r
. (2.11)

Proof. Using condition (1), equation (2.4), andM = R we derive

0 ≥ g

Rxx = nPxx = −n
h∇x

h∇x(r)

r
= −nhxxh1r,

which implies (2.10).
In view of (2.7) and condition (2) we see that

r
h

1r + (n− 1)
h|h∇r|2 ≤ k. (2.12)

Both of the terms on the left-hand side of the above equation are positive (see 2.10),
and so we obtain (2.9) and (2.11).ut
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Lemma 2.3.Let

g(x, q) = h(x)⊕ r2(x)γ (q) ∈ W(N, γ )

be a warped product metric satisfying the same conditions as in Lemma 2.2. Then

g|gRiem(x, q)|2 ≤ 1

r4(x)
c(n, γ ), (2.13)

wherec(n, γ ) is a constant depending onn andγ .

Proof. Choose geodesic co-ordinates forg at a point (x,q) inR × N . Sohxx =
gxx = 1 andr2γαβ = gαβ = δαβ . Then by (2.2), and (2.10) we have

g|gRxαxβ | = g|Pxxgαβ | = n|Pxx | =
h
1r

r
≤ k

r2 . (2.14)

Using the formula 2.3 for
g
Rαβτσ we see that

g|gRαβτσ |2 = r4g|(γRαβτσ )|2 + 2r4h|h∇r|2g(γRαβτσ , γασ γτβ − γβσ γτα
)

+ 1

r4

h|h∇r|4g|(gασ gτβ − gβσ gτα)|2

= 1

r4

γ|(γRαβτσ )|2 + 2

r4

h|h∇r|2γ (γ
Rαβτσ , γασ γτβ − γβσ γτα

)

+ c(n)

r4

h|h∇r|4,

(2.15)

where we have used,

g|γRαβτσ |2 = gαα
′
gββ

′
gττ

′
gσσ

′ γ
Rαβτσ

γ

Rα′β ′τ ′σ ′

= 1

r8

γ|γRαβτσ |2.

Sinceγ is a fixed, smooth metric on the compact manifoldN , substituting (2.9)
into (2.15), we get

g|gRαβτσ |2 ≤ 1

r4c(n, γ ). (2.26)

The curvature
g
Rijkl is trivially bounded as

g
Rijkl =h

Rijkl ≡ 0 on a one dimensional
manifold. Writing

g|gRiem|2 = g|gRαβτσ |2 + g|gRiαjβ |2 + g|gRijkl |2 = g|gRαβτσ |2 + g|gRiαjβ |2,

and substituting (2.16) and (2.15) into the above, the result then follows.ut
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3. Existence, uniqueness and a priori estimates in the warped product case

This chapter is concerned with showing that ifg0 is an arbitrary warped product
metricg0 ∈ W(N, γ )which satisfies (4), then there exists a unique warped product
solutiong(t) ∈ W(N, γ ), t ∈ [0, T ] to (1.1), for some constantT > 0, which
satisfies (4) andg(0) = g0. We will also prove uniqueness and certain a priori
bounds for derivatives of such a solution. To accomplish both of these tasks, we
will need the following theorem of Shi [Sh].

Theorem [Shi (1.1)]. Let (X, g0) be a non-compact, complete manifold without
boundary, with

g0|g0Riem|2 ≤ v,

wherev is some constant, andg0 is smooth. Then there exists some constant
T (dim(X), v) > 0 such that (1.1) has a smooth solutiong(t) for all t ∈ [0, T ],
and for all non-negative integersj we have

g(t)|g(t)∇j
Riem|2 ≤ c(dim(X), j, v)

tj
for all t ∈ (0, T ],

where
g(t)∇j

Riem is the tensor obtained by takingj co-variant derivatives of the
Riemannian curvature tensor

g(t)
Riem.

Theorem 3.1.Let g0(x, q) = h0(x) ⊕ r2
0(x)γ (q) ∈ W(N, γ ) satisfy (4). Then

there exists a constantT > 0, and a smooth solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ W(N, γ ), t ∈ [0, T ]
to (1.1) , withg(0) = g0, andg(t) satisfies (4) for allt ∈ [0, T ].
Proof of Theorem 3.1.To show that there is a short time solution of (1.1), we may
use theorem (1.1) of Shi, since (4) with (2.14) and (2.15) implies that

g0|g0Riem|2 ≤ v

for somev depending on the bounds of (4).
To show that there is awarped product solutiong(t) ∈ W(N, γ ), t ∈ [0, T ]

of (1.1) (for someT > 0) requires a closer examination of the paper by Shi [Sh].
Shi mostly examines amodifiedRicci flow. This modified flow was first employed
by DeTurck [De] to give a short proof of short time existence to the Ricci flow on
compact manifolds without boundary, and is often referred to as Ricci DeTurck
flow. (The first proof of short time existence was proved by Hamilton and can
be found in [Ha1]). For the rest of this proof (and only for this proof) we shall
denote a solution to themodifiedflow asg(t) and the corresponding solution to the
unmodifiedflow as ĝ(t). In the first part of this proof we show that themodified
flow has a maximal solution that is a warped product inW(N, γ ). In the next part
of the proof we show that the correspondingunmodifiedsolution is also a warped
product.
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Lemma 2.1 in [Sh] gives us the evolution equation for the metricg(t) in terms
of the initial metricg0 as follows.

∂

∂t
gab = gcd ∇̃c∇̃dgab − gcdgapg̃

pqR̃bcqd − gcdgbpg̃
pqR̃acqd

+ 1

2
gcdgpq(∇̃agpc · ∇̃bgqd + 2∇̃cgap · ∇̃qgbd

− 2∇̃cgap · ∇̃dgbq − 4∇̃agpc · ∇̃dgbq),

(3.1)

g̃ = g0, ∇̃ =g0∇, R̃iem=g0Riem.

Now if we assume that our solutiong(t) ∈ W(N, γ ) is a warped product with

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q),

andg(x, q,0) = g0(x, q) = dx2(x)⊕ r2
0(x)γ (q), then this equation breaks into a

coupled system of two evolution equations,

∂

∂t
hxx =hxx ∂

∂x

∂

∂x
hxx − 2

r̃2

r2hxxh̃
xxR̃xx − 3

2
hxxhxx(

∂

∂x
(hxx))

2

+ n

2r4 (
∂

∂x
r2)2

∂

∂t
(r2γαβ) = hxx

∂

∂x

∂

∂x
(r2γαβ)− 2k

γαβr
2

r2

+ 2

n

γαβr
2

r2 R̃xx

(
r̃2g̃xx − gxxr2

)
− (r2γαβ)

hxx( ∂
∂x
(r2))2

r4

h̃(·) = h0(·), r̃2(·) =r2
0(·), R̃xx = g0

Rxx.

(3.2)
In particular notice that as long as

(1 − ζ )δij ≤ hij ≤ (1 + ζ )δij for all t ∈ [0, T ], for some 0< ζ < 1

this system is parabolic. We note also that a solutiong(x, q, t) = h(x, t) ⊕
r2(x, t)γ (q) to (3.2) also solves (3.1), and hence we may use the same techniques
that Shi uses to obtain a priori estimates. LetBδ(x1, q1) ∈ R×N be a ball of radius
δ > 0 . We may use Theorem 2.5 and Lemma 4.1 of [Sh] to obtain the a priori
estimates

(1 − ζ )g0 ≤ g(·, t) ≤ (1 + ζ )g0,
g0|∇̃j g(·, t)| ≤ cj (·) for all j ∈ {1,2,3, ...} (3.3)

etc. for someT = T (n, v) > 0 and someζ(n, v, T , g0) > 0, and for allt ∈ [0, T ],
(x, q) ∈ Bδ(x1, q1), where the dependence ofcj is

cj = cj

(
n, v, T , sup

x∈B2δ(x1,q1),k∈{1,...,j}
g0|∇̃k R̃iem|

)
,

where R̃iem = g0Riem. Note that Shi does not include the dependence ofcj on
g0|∇̃k R̃iem| , he simply writescj (n, v, T , g̃, δ) (as this is all that he needs). For later
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use, we have written the explicit dependence here, and we refer the reader to the
proof of lemma 4.1 of [Sh], particularly estimate (7), from which this dependence
can be seen.

As we are in the special warped product setup, this implies that

(1 − ζ )δij ≤ hij (·, t) ≤ (1 + ζ )δij ,

(1 − ζ )r0 ≤ r(·, t) ≤ (1 + ζ )r0,

|( ∂
∂x
)
j

h(·, t)xx | ≤ cj (·)|( ∂
∂x
)
j

log r2(·, t)| ≤ cj(·)
for all j ∈ {1,2,3, . . . }

(3.4)

etc. for allt ∈ [0, T ], whereT = T (n, v) > 0 is some constant (as above), and the
dependence ofcj is

cj = cj

(
n, v, T , inf

x∈R
r0(x), sup

x∈B2δ(x1,q1),k∈{1,...,j+2}
|( ∂
∂x
)
k

log r0|
)
,

andζ is as above. Here we have used that
g0|∇̃k R̃iem| may be bounded from above

by
g0|∇̃k R̃iem(x)| ≤ c

(
sup

i∈{1,2,...,k+2}
|( ∂
∂x
)
i

log r0(x)|, inf
x∈R

r0(x)
)
,

when(h0)xx = δxx . This follows from the formulae for the curvature tensor (see
Proposition 2.1). Then following Shi, we use the same argument as in the proof of
Theorem 8.1 [LSU 4 , Sect. 7, Ch. VII], forl ∈ 0,1, . . ., to construct solutions to
the Dirichlet problem(
l

h(x, t),
l

r2(x, t)γ (q)
)

solves (3.2) for all(x, q) ∈ [−l, l] ×N,(
l

h(l, t),
l

r2(l, t)γ (q)
)

=
(
h0(l), r

2
0(l)γ (q)

)
, for all q ∈ N, for all t ∈ [0, T ],(

l

h(x,0),
l

r2(x,0)γ (q)
)

=
(
h0(x), r

2
0(x)γ (q)

)
, for all (x, q) ∈ [−l, l] ×N,

for all t ∈ [0, T ],
whereT > 0 is some constantT = T (n, v). The estimates (3.4) hold for each

solution
(
l
h(x, t),

l
r2(x, t)γ (q)

)
, and the constants in (3.4) are clearly independent

of l. Hence we may letl → ∞, taking subsequences if necessary, to obtain a
smooth solution to (3.2)

(
l

h(x, t),
l

r2(x, t)γ (q)
)
C∞−→

(
h(x, t), r2(x, t)γ (q)

)
= g(x, q, t) asl → ∞

that satisfies (4).
So we have shown that there are solutions to themodifiedflow that are warped

product metrics inW(N, γ ). Actually we explicitly used that(h0)xx = δxx , but
the argument still works for any smoothh0 that satisfies (4).

To show that a corresponding solution to theunmodifiedflow is a warped product
metric inW(N, γ ), we must examine the relationship between it and themodified
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flow. If g(x, t) is a modified solution then there is a corresponding unmodified
solution given byĝ(x, t) where

g(t) = φt
∗ĝ(t),

and
φt : R ×N → R ×N

is a diffeomorphism that satisfies

∂

∂t
φt = gcd(0acd − 0̃acd)

∂

∂a
, (3.5)

where here0acd are the Christoffel symbols with respect to the metricg(t), and0̃acd
are the Christoffel symbols with respect to the metricg0. Since we already know
that the modified solutiong(t) ∈ W(N, γ ) is a warped product metric we may
calculate the Christoffel symbols

g
0
a

cd using the formulae in the chapter on warped
product metrics (204–211) in the book by O’Neill [ON].

Substituting the Christoffel symbol formulae into (3.5) we obtain

∂

∂t
φt = hxx

(
h

0
x

xx − h0
0̃
x

xx

) ∂
∂x

+ n

r2

(
hxx

∂

∂x
(r2)− h0

xx ∂

∂x
(r2

0)
) ∂
∂x
. (3.6)

That is,φt is only a diffeomorphism inx, which we express by

φt (x, q) = (ψt (x), q),

whereψt(x) = φt (x, q) satisfies the evolution equation (3.6).
Theng(t) = (ψ−t )∗ĝ(t) implies

ĝxx(x, q, t) =
(
∂

∂x
(ψ−t (x))

)2

gxx(ψ−t (x), q, t)

ĝαβ(x, q, t) = r2(ψ−t (x), t)γαβ(q),
(3.7)

which is clearly a warped product metric of the form

ĝ(x, q, t) = ĥ(x, t)⊕ r̂2(x, t)γ (q) ∈ W(N, γ ).

We note for later use that (3.6) with (3.7) implies that the estimates (3.4) also hold
for ĝ(t), t ∈ [0, T ). ut

Lemma 3.2.Let

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T ]
be a smooth warped product metric on(R ×Nn) evolving according (1.1). If

r2
0 ≤ a2ρ2

0 + b2

for some constantsa2, b2 > 0 then

r2 ≤ a′2ρ2 + b′2 for all t ∈ [0, T ] (3.8)

for some constantsa′2 = a′2(a, b, sup(x,q)∈R×N,t∈[0,T ]
g(t)|g(t)Riem|) > 0 and

b′2 > 0, ( b′2 having the same dependence asa′2).
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Proof. By Lemma 2.3 and (3) we havehat

v = sup
(x,q)∈R×N,t∈[0,T ]

g(t)|g(t)Riem| ≤ sup
(x,q)∈R×N,t∈[0,T ]

c(n, γ )

r4(x, t)
< ∞,

and hence we may use the estimate (139) of [Sh], Theorem 7.7 to obtain

1

C1
g0 ≤ g(t) ≤ C1g0 for all t ∈ [0, T ]

where 0< C1 < ∞ is a constant depending ong0,n,v. Applying these estimates
to our warped product metric, we obtain

1

C1
r2
0(·) ≤ r2(·, t) ≤ C1r

2
0(·)

1

C1
(h0)xx ≤ hxx ≤ C1(h0)xx

for some constantC1 > 0. Combining this with the hypothesis of the theorem, we
obtain

r2 ≤ C1a
2ρ2

0 + C1b
2. (3.9)

Writing ρ in its integral form, and using the estimate (139) again, we see that

ρ0(x1) =
x1∫
x0

√
(h0)xxdx ≤

x1∫
x0

√
C1h(t)xxdx = √

C1ρ(x).

Substituting this inequality into (3.9) we obtain the result.ut
As our manifoldX is non-compact, we maynot use the standard uniqueness

argument for Ricci flow which is obtained by examining the corresponding Ricci–
DeTurck flow (see for example [De]). However...

Theorem 3.3.Letg0(x, q) = h0(x)⊕r2
0(x)γ (q) ∈ W(N, γ ) be a warped product

metric on the manifoldR × N , satisfying (4). Then any smooth solutiong(t) ∈
W(N, γ ), t ∈ [0, T ] to (1.1) that satisfies (4) for eacht ∈ [0, T ] andg(0) = g0,
is unique.

Proof. Let h(x, t) ⊕ r2(x, t)γ (q) andk(x, t) ⊕ s2(x, t)γ (q) be two smooth so-
lutions to (3.2) both satisfying (4) on some short time intervalt ∈ [0, T ] , whose
initial values are the same

k0(x)⊕ s2
0(x)γ (q) = h0(x)⊕ r2

0(x)γ (q) for all x ∈ R, q ∈ Nn.

Using the estimates (4), and equation (3.2), we see in [Si 2] that the function

|P(x, t)|2 =
(
log hxx(x, t)− log kxx(x, t)

)2 +
(
log r2(x, t)− log s2(x, t)

)2

satisfies the evolution equation

∂

∂t
|P |2 ≤ k

1|P |2 + k(V,
k∇|P |2)+ c2|P |2, (3.10)
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wherec2 is some constant,c2 = c2(n, T ), andV is the vector field given by
V (x, t) = kxx

k
0xxx

∂
∂x

. The estimates

sup
x∈R,t∈[0,T ]

k|k∇|P |2| < ∞, sup
x∈R,t∈[0,T ]

k|V | < ∞, (3.11)

follow immediately from (4). Also ,

sup
x∈R,t∈[0,T ]

k(t)| ∂
∂t
k| = sup

x∈R,t∈[0,T ]
g(t)| ∂
∂t
g| ≤ sup

x∈R,t∈[0,T ]
g(t)|g(t)Riem| < ∞, (3.12)

due to Proposition (2.2) and (4). Since (3.10), (3.11) and (3.12) hold, we may apply
the non-compact maximum principle of [EH] to the function|P(x, t)|2, to obtain

|P(x, t)|2 ≡ 0,

where here we have also used that|P(x,0)|2 ≡ 0 . This show us that given any
initial warped product metricg0 ∈ W(N, γ ) that satisfies (4), then the modified
Ricci–DeTurck flow has a unique smooth warped product solutiong(t) ∈ W(N, γ )

satisfyingg(0) = g0 and (4) for eacht ∈ [0, T ). Now we show that the previous
statement is also true for Ricci flow.

Let ĝ(t) andĥ(t) be two warped product solutions to the Ricci flow equation
(1.1) which satisfy (4) and have the same initial values. Theng(t) = φt

∗(ĝ(t)) is a
solution to (3.2) which satisfies (4), whereφt is the solution to (3.5) coming from
g(t). Similarlyh(t) = ψt

∗(ĥ(t)) is a solution to (3.2) which satisfies (4), whereψt
is the solution to (3.5) coming fromh(t). Hence buniqueness of solutions to (3.2)
satisfying (4) (proved above), we obtain that

g(t) = ψt
∗(ĥ(t)) = φt

∗(ĝ(t)). (3.13)

We also know thatψt = φt since a solution to the ODE (3.5) coming fromg(t)is
unique (see Shi, Sect. (7), p. 288). The result then follows.ut
Remark.This argument can be used to prove uniqueness of the Ricci flow in a more
general set up for non-compact manifolds, whereg0 is not necessarily a warped
product, but satisfies similar estimates to (4). Note that any solution will continue
to satisfy (4) for a short time by the estimates (3.4).

Theorem 3.4.For any metricg0(x, q) = h0(x) ⊕ r2
0(x)γ (q) ∈ W(N, γ ) that

satisfies (4), there exists a maximal constantT > 0 (possiblyT = ∞) and a
unique smooth solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ W(N, γ ), t ∈ [0, T )
to (1.1) satisfying (4) for allt ∈ [0, T ), andg(0) = g0. If T < ∞, then

v = sup
x∈R,q∈N,t∈[0,T )

g(t)|g(t)Riem(x, q)| = ∞.

We shall call such a solution a maximal warped product solution.
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Proof. By Theorem 3.1, there is aS > 0, such that ( 1.1) ( and (3.2)) has a warped
product solutiong(x, t) = h(x, t) ⊕ r2(x, t)γ (q) for t ∈ [0, S]. By Theorem
3.3, any two smooth solutions to (3.2) satisfying (4) must agree. Hence there is a
unique smooth solutiong(t) on a maximal time interval[0, T ) that satisfies (4).
Let T < ∞ and assume to the contrary thatv < ∞. ChooseS > 0 very close to
T , and construct a new solution

+
g(t), t ∈ [S, S+T ′], T ′ = T ′(v) > 0, to (3.2) for

which S + T ′ > T ,
+
g(S) = g(S), and (4) holds. We define a new one parameter

family of metrics
++
g(t), t ∈ [0, S + T ′] by

++
g(t) = g(t) for all t ∈ [0, S],

++
g(t) = +

g(t) for all t ∈ [S, S + T ′].
By uniqueness (theorem 3.3) the solutions agree on[S, T ) , since they both solve
(3.2) and satisfy (4) on this interval. We know that

++
g(t) ∈ C∞(R × [0, S])

sinceg(t) ∈ C∞(R × [0, S]). Also
++
g(t) ∈ C∞(R × [S, S + T ′]) since

+
g(t) ∈

C∞(R × [S, S + T ′]). Hence we have constructed a smooth solution

++
g(t) ∈ C∞(R × [0, S + T ′]), t ∈ [0, S + T ′]

that satisfies (4) andS + T ′ > T . This contradictsg(t), t ∈ [0, T ) being the
maximal smooth solution that satisfies (3.2), (4) andg(0) = g0, and so the re-
sult follows. Note that as a consequence of (4), Lemma 2.2 and Lemma 2.3,
supx∈R,t∈[0,S]

g(t)|g(t)Riem(x)| < ∞ for all S < T . ut

4. Metric and curvature evolution equations

In this section we present evolution equations for an arbitrary family of warped
product metricsg(t) ∈ W(N, γ ), t ∈ [0, T ] that is evolving by Ricci flow. We also
present evolution equations for the Ricci curvatures of such an evolving metric.
We then apply a maximum principle to the curvature evolution equations to show
that anyg0 ∈ W(N, γ ) that satisfies (1) and (2) at time zero, will continue to do
so for every later time when it is evolved by Ricci flow. In deriving the evolution
equations for the Ricci curvature, we will use some formulae that are specific to
warped product metrics of the form (0). We stress here that the high degree of
symmetry of this warped product metric allows us to greatly simplify the general
curvature evolution equations derived by Hamilton [Ha 1]. In particular the fact
that γ is an Einstein metric and hence

g
Rαβ = fgαβ (see 2.7) is perhaps most

significant. That this symmetry is maintained under Ricci flow is perhaps the key
to seeinghow the curvature is evolving and behaving.

Proposition 4.1.Let

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ W(N, γ )

be a smooth warped product metric on(R×Nn) evolving according to (1.1), where
γ is an Einstein metric (with constantk), t ∈ [0, T ], whereT ≥ 0 is some constant.
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Then we have that

∂

∂t
hij = 2n

r

h∇i
h∇j (r) (4.1)

∂

∂t
r2 = −2f r2 = h

1r2 + (2n− 4)
h|h∇r|2 − 2k, (4.2)

∂

∂t

g

Rxx = g

1
g

Rxx + 2

n
gβσ

g

Rβσ
g

Rxx − 2gxx(
g

Rxx)
2 (4.3)

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2

n
gxxgxxgαβ(

g

Rxx)
2 − 2

n

g

Rαβg
xxgRxx. (4.4)

∂

∂t
f = g

1f + 2

n
gxxgxx(

g

Rxx)
2 − 2

n
fgxx

g

Rxx + 2nf 2, where (4.5)

f = 1

n
gαβRαβ

= 1

2r2 (−
h

1r2 + (4 − 2n)
h|h∇r|2 + 2k) = (k − r

h

1r + (1 − n)
h|h∇r|2).

To prove Proposition (4.1) we will need the following technical lemma.

Lemma 4.2.Let

g(x, q) = h(x)⊕ r2(x)γ (q) ∈ W(N, γ ).

Then

g

Rxαxβ = 1

n

g

Rxxgαβ (4.6)

gτδ
g

Rταδβ − g

Rαβ = −1

n
gxx

g

Rxxgαβ. (4.7)

Proof of Lemma 4.2.Equation (4.6) follows immediately from (2.2) and (2.4). By
definition of

g
Rαβ and the fact thatgδx = g

Rxδ = 0, we obtain

g

Rαβ = gab
g

Raαbβ = gxx
g

Rαxβx + gτδ
g

Rταδβ .

Substituting (4.6) into the above gives us (4.7).ut

Proof of Proposition 4.1.Remembering the equation for Ricci flow (1.1) and using
the formula for

g
Rij (2.4) we derive the evolution equation

∂

∂t
hij = ∂

∂t
gij = −2

g

Rij = −2
h

Rij + 2n

r

h∇i
h∇j r,

which is (4.1). Substituting the formula (2.7) into (1.1) we obtain

∂

∂t
(r2γαβ) = ∂

∂t
(gαβ) = −2

g

Rαβ = −2fgαβ = −2f r2γαβ.

Since by assumptionγ is independent oft (4.2) follows. In [Ha1] the equation for
the evolution of the Ricci-curvature is derived to be

∂

∂t

g

Rab = g

1
g

Rab + 2gpcgqd
g

Rpaqb
g

Rcd − 2gpq
g

Rpa
g

Rqb,
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wherep, q, c, d ∈ {1, . . . , n+ 1}. Hence

∂

∂t

g

Rxx = g

1
g

Rxx + 2gpcgqd
g

Rpxqx
g

Rcd − 2gpq
g

Rpx
g

Rqx. (4.8)

By the curvature formulae of chapter (2), we see that the only non-zero
g
Rpxqx are

of the form
g
Rαxβx . Combining this withgxα ≡ g

Rαx ≡ 0, we get

∂

∂t

g

Rxx = g

1
g

Rxx + 2gαβgγσ
g

Rαxγ x
g

Rβσ − 2gxx
g

Rxx
g

Rxx.

Substituting identity (4.6) into the above equation we see that

∂

∂t

g

Rxx = g

1
g

Rxx + 2

n
gβσ

g

Rβσ
g

Rxx − 2gxx(
g

Rxx)2

which proves (4.3).
Now we calculate the evolution of the Ricci curvature in theNn direction. From

the general equation for the evolution of the Ricci curvature we get

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2gprgqs
g

Rpαqβ
g

Rrs − 2gpq
g

Rpα
g

Rqβ,

wherep, q, r, s ∈ {1, . . . , n + 1}. Once again using thatgxα ≡ 0 , and
g
Rαx ≡ 0

we see that

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2gxxgxx
g

Rxαxβ
g

Rxx

+ 2gσδgηρ
g

Rσαηβ
g

Rδρ − 2gσδ
g

Rσα
g

Rδβ.

Using identity (4.6) and (2.7) in the above we see that

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2

n
gxxgxx

g

Rxxgαβ
g

Rxx

+ 2fgσδgηρ
g

Rσαηβgδρ − 2gσδfgσα
g

Rδβ

= g

1
g

Rαβ + 2

n
gxxgxx

g

Rxxgαβ
g

Rxx + 2f
(
gησ

g

Rσαηβ − g

Rαβ

)
.

(4.9)
Substituting (4.7) into (4.9) we obtain

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2

n
gxxgxx

g

Rxxgαβ
g

Rxx + 2f
(

− 1

n
gxx

g

Rxxgαβ

)
,

in view of (4.6). Finally, we wish to turn ourfgαβ back into a curvature term, and
so we use (2.7) again to obtain

∂

∂t

g

Rαβ = g

1
g

Rαβ + 2

n
gxxgxx

g

Rxx
g

Rxxgαβ − 2

n
gxx

g

Rxx
g

Rαβ

which is (4.4).

∂

∂t
f = ∂

∂t
(
1

n
gαβ

g

Rαβ) = 1

n
(
∂

∂t
gαβ)

g

Rαβ + 1

n
gαβ(

∂

∂t

g

Rαβ). (4.10)
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Using (1.1), and the fact that cross terms ofg and the Ricci curvature tensor are
zero, we obtain

∂

∂t
gαβ = 2gασ gβτ

g

Rστ .

Substituting this equation and (4.3) into (4.10) we get

∂

∂t
f = 1

n
gαβ

(
g

1
g

Rαβ + 2

n
gxxgxxgαβ(

g

Rxx)
2 − 2

n

g

Rαβg
xxgRxx

)

+ 2

n

g

Rαβg
σαgτβ

g

Rστ .

Since
g
1gab ≡ g

1gab ≡ 0 andgαβgαβ = n, this implies

∂

∂t
f = g

1f + 2

n
gxxgxx(

g

Rxx)
2 − 2

n
fgxx

g

Rxx + 2

n

g

Rαβg
σαgτβ

g

Rστ .

Equation (4.5) then follows from

2

n

g

Rαβg
γαgηβ

g

Rγη = 2nf 2. ut

5. Conservation of curvature sign

We now show that any warped product metricg0 ∈ W(N, γ ) that satisfies (1) and
(2) at time zero, will continue to do so for every later time when it is evolved by
Ricci flow. We do this by combining the evolution equations of chapter five with a
maximum principle.

Theorem 5.1.Letg0(x, q) = h0(x)⊕ r2
0(x)γ (q) ∈ C(N, γ ) satisfy (4), and let

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ W(N, γ ), t ∈ [0, T )
be the maximal warped product solution to (1.1) satisfying (4) for eacht ∈ [0, T ),
with initial valuesg(0) = g0 (see Theorem 3.4). Theng(t) ∈ C(N, γ ), for all t ∈
[0, T ).
Proof. From the definition of a maximal solution, we have

v = sup
x∈R,t∈[0,S]

g(t)|g(t)Riem(x)|2 < ∞ for all S < T . (5.1)

Hence (4.3) d (4.5) imply

∂

∂t

g

Rxx = g

1(
g

Rxx)+ A
g

Rxx for all t ∈ [0, S] (5.2)

∂

∂t
f ≥ g

1f + Bf for all t ∈ [0, S], (5.3)
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whereA,B : R × [0, S] → R are functions bounded in terms ofv. By (4), we
see that any gradient of the Riemannian curvature tensor is bounded fort ∈ [0, S].
Hence,

sup
x∈R

g|g∇Rxx |2 < ∞ for all t ∈ [0, S] (5.4)

and
sup
x∈R

g|g∇f |2 < ∞ for all t ∈ [0, S]. (5.5)

We also have

sup
(x,q)∈R×N,t∈[0,S]

g| ∂
∂t
g(x, q)(t)| = sup

x∈R,t∈[0,S]
g(t)| − 2

g(t)

Ricci (x, q)| < ∞ (5.6)

in view of (5.1). In view of (5.2), (5.4), (5.6) and
g0
Rxx ≤ 0 ( sinceg0 ∈ C(N, γ ))

we may apply the non-compact maximum principle of [EH] to the function
g
Rxx

on the time interval[0, S] to obtain

g(t)

Rxx ≤ 0 for all t ∈ [0, S].
Letting S → T gives us (1). In view of (5.3), (5.5), (5.6) andf0 ≥ 0 ( since
g0 ∈ C(N, γ )), we may apply the non-compact maximum principle of [EH] to the
functionf to infer

1

n
gαβRαβ = f (·, t) ≥ 0 for all t ∈ [0, S], for all S < T .

LettingS → T gives us (2). ut

6. The formation of singularities

In this chapter we show that any maximal warped product solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T )
to (1.1) that satisfies (4) and (5) for eacht ∈ [0, T ), will also satisfyT < ∞, and

inf
x∈R,t∈[0,T ) r

2(x, t) = 0.

We say such a solution has collapsed in finite time. We shall see later (Theorem
7.2) that this implies that

sup
(x,q)∈R×N,t∈[0,T )

g(t)|g(t)Riem(x, q)|2 = ∞

and so(X, g(t)) has formed a singularity in finite time.
Notice that (so far) we have not shown thatr(x, t) will actually approach zero

in finite time. In order to force this to happen, we need to assume (5).
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Theorem 6.1.Let g0(x, q) = h0(x) ⊕ r2
0(x)γ (q) ∈ C(N, γ ) satisfy (5). Assume

g(t) is a smooth solution to (1.1) defined on[0, T ), and that

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ),
for eacht ∈ [0, T ). Then we also have

r2 ≤ a2ρ2 + b2 − c2t,

as long asb2 − c2t ≥ 0, wherec is the constantc2 = 2
(
k − a2(n − 1)

)
, and

ρ(x, t) = h(t)
dist(x0, x) (x0 is fixed and comes from (5)). Notec2 > 0 by (5).

Corollary 6.2. Let g0(x, q) = h0(x) ⊕ r2
0(x)γ (q) ∈ C(N, γ ) satisfy (4) and (5).

Then the maximal warped product solution

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T )
satisfying (4) for eacht ∈ [0, T ) and g(0) = g0 (see Theorem 5.1) must have
T < ∞, and

inf
x∈R,t∈[0,T ) r

2(x, t) = 0.

Proof of Corollary 6.2.Assume thatT = ∞ and assume to the contrary that

inf
x∈R,t∈[0,S] r

2(x, t) > 0, for all S < ∞.

Then by Theorem 6.1 we have

r2 ≤ a2ρ2 + b2 − c2t

for all t ∈ [0, S]. In particular ifx0 ∈ R is the fixed point from whichρ is measured,
then

ρ(x0, t) = h(t)

dist(x0, x0) = 0,

and hence, lettingS → ∞,

r2(x0, t) ≤ b2 − c2t for all t ∈ [0,∞).

Hencer2(x0, t) must reach zero in finite time, which contradicts the assumption
made at the beginning of the proof. So we may assumeT < ∞. Assume to the
contrary that

inf
x∈R,t∈[0,T ) r

2(x, t) > 0.

Then by Lemma 2.2, and Lemma 2.3, we obtain

sup
(x,q)∈R×N,t∈[0,T )

g(t)|g(t)Riem(x, q)| < ∞,

which contradictsg(t), t ∈ [0, T ) being maximal. ut
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Proof of Theorem 6.1.We recall thatρ is defined for a fixedx0 to be

ρ(x, t) = ρx0(x, t) = h(t)

dist(x0, x) =
x∫

x0

√
h(t)xx.

Then (1.1) with (2) tells us

∂

∂t
ρ(x, t) =

x∫
x0

−
g
Rxx√
hxx

dx ≥ 0. (6.1)

Using the fact that
h
1ρ ≡ 0 for a 1-dimensional manifold and

h|h∇ρ| = 1 (see
[SY]), we obtain

(
∂

∂t
− h

1)ρ2(x, t) ≥ −2. (6.2)

The evolution equation forr2 (4.2) implies

(
∂

∂t
− h

1)r2 = (2n− 4)
h|h∇r|2 − 2k

= (n− 2)

2r2

h|h∇r2|2 − 2k.
(6.3)

Let F be defined by

F(x, t) = r2(x, t)− a2ρ2(x, t)− b2 + c2t.

Combining (6.2) and (6.3) we obtain

(
∂

∂t
− h

1)F ≤ −2k + 2a2 + c2 + (n− 2)

2r2

h|h∇r2|2. (6.4)

We wish to write the term
(n− 2)

2r2

h|h∇r2|2
as a term involving∇F . To do this we use the algebraic identity,

h|h∇r2|2 = h(
h∇(r2 − e),

h∇(r2 + e))+ h|h∇e|2, (6.5)

wheree : R → R is an arbitrary function. Lete = r2 − F . Then
h|h∇r2|2 = h(

h∇F, h∇(2r2 − F))+ a4h|h∇ρ2|2
= −h|∇F |2 + 2h(

h∇F, h∇r2)+ a4h|h∇ρ2|2.
(6.6)

Upon substituting this into (6.4), we obtain

(
∂

∂t
− h

1)F ≤ − 2k + 2a2 + c2 + (n− 2)

r2 h(
h∇F, h∇r2)

+ (n− 2)a4

2r2

h|h∇ρ2|2

= (−2k + 2a2 + c2)+ h(
h∇F, (n− 2)

r2

h∇r2)

+ 2a4 (n− 2)

r2 ρ2,

(6.7)
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since
h|h∇ρ| = 1. We may calculate, using the definition ofF , that

2a4 (n− 2)

r2 ρ2 = 2(n− 2)

r2 a2F − 2(n− 2)

r2 a2(b2 − c2t)+ 2(n− 2)a2

≤ 2(n− 2)

r2 a2F + 2a2(n− 2),

as long asb2 − c2t ≥ 0. Substituting this inequality into (6.7) we get

(
∂

∂t
− h

1)F ≤
(

− 2k + c2 + 2a2(n− 1)
)

+ h(
h∇F,w)+GF,where

w(x, t) = 2(n− 2)

r(x, t)

h∇r(x, t)

G(x, t) = 2(n− 2)

r2(x, t)
a2.

(6.8)

By the definition ofc, we have
(

− 2k + c2 + 2a2(n − 1)
)

= 0, and hence we

obtain

(
∂

∂t
− h

1)F ≤ h(
h∇F,w)+GF, (6.9)

as long asb2 − c2t ≥ 0.
Fix S < T . We know, by the hypothesis of the theorem, thatg(t) ∈ C(N, γ ),

and henceg(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) satisfies (3) and (2.9). This implies

sup
x∈R,t∈[0,S]

G(x, t) = sup
x∈R,t∈[0,T ]

2(n− 2)a2

r2(x, t)
< ∞,

sup
x∈R,t∈[0,S]

w(x, t) = sup
x∈R,t∈[0,T ]

h|2(n− 2)

r(x, t)

h∇r(x, t)| < ∞.

(6.10)

By construction
F0 = F(·,0) ≤ 0. (6.11)

One readily checks that

h|h∇F(x, t)|2 = 4r2h|h∇r|2 + 4a4ρ2. (6.12)

Substituting (2.9), and then (3.8), into (6.12), we obtain

h|h∇F |2 ≤ (a′)2ρ2 + (b′)2

for some constantsa′, b′. In particular this implies
∫ S

0

∫
R

h|h∇F |2e−ρ2
dµh(t)dt < ∞, (6.13)

since the exponential function dominates any polynomial.
Conditions (5.6), (6.9), (6.10) and (6.13) are the conditions needed to apply

the non-compact maximum principle of [EH] to the functionF . HenceF(·, t) ≤
0 for all t ∈ [0, S] as long asb2 − c2t ≥ 0. LettingS → T we obtain the result.
ut
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7. Neck pinching

In this chapter we combine the results of the previous chapters to show that if
g0 ∈ W(N, γ ) satisfies (1)–(6), then the maximal warped product solutiong(t) ∈
W(N, γ ), t ∈ [0, T ) to (1.1) (see Theorem 5.1) will pinch at timeT . The pinching
will occur on a compact set[−A,A] × N ⊆ R × N , whereA > 0 is some finite
constant.

An important part of the pinching argument is to show that the manifoldR ×N
with a warped product metrich(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T ], evolv-
ing by Ricci flow does not completely collapse away at the first time a singularity
occurs. In our warped product set-up this means that if

inf
x∈R,t∈[0,T ) r

2(x, t) = 0,

then we also have
inf

x∈(−∞,−A]∪[A,+∞),t∈[0,T ) r
2(x, t) > 0

for some constantA, 0 < A < ∞. We essentially attain this result for free from
Theorem 7.1.

Theorem 7.1.Letg0(x, q) = h0(x)⊕ r2
0(x)γ (q) ∈ C(N, γ ) satisfy (4) and let

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T )
be the maximal warped product solution to (1.1) satisfying (4) for eacht ∈ [0, T )
andg(0) = g0 (see Theorem 5.1). Then

r2(x, t) ≥ r2
0(x, t)− 2kt for all x ∈ R, t ∈ [0, T ). (7.1)

Proof. Equation (6.3) implies

∂

∂t
r2 = h

1(r2)+ (2n− 4)
h|h∇r|2 − 2k

= 2r
h

1r + (2n− 2)
h|h∇r|2 − 2k

≥ 2r
h

1r − 2k,

and hence, in view of condition (1), we obtain

∂

∂t
r2 ≥ −2k.

ut
Theorem 7.2.Letg0(x, q) = h0(x)⊕ r2

0(x)γ ∈ C(N, γ ) satisfy (4) and let

g(x, q, t) = h(x, t)⊕ r2(x, t)γ (q) ∈ C(N, γ ), t ∈ [0, T )
be the maximal warped product solution to (1.1) satisfying (4) for eacht ∈ [0, T ),
andg(0) = g0 (see Theorem 5.1). ThenT < ∞ and there exists someA > 0 such
that

inf
x∈[−A,A],t∈[0,T ) r

2(x, t) = 0 (7.2)
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and
inf

x∈(−∞,−A]∪[A,+∞),t∈[0,T ) r
2(x, t) > 0, (7.3)

which implies that
(
R ×N, g(t)

)
pinches on the set[−A,A] ×N at timeT .

Proof. We haveT < ∞ and (7.2) from corollary 6.2. We now show that the
manifold does not completely collapse away, that is that (7.3) is true. Theorem 7.1
implies that

r2(x, t) ≥ r2
0(x)− 2kt.

By (6), there exists anA > 0 such that

r2
0(x) ≥ 2kT + 1 for all x ∈ (−∞,−A] ∪ [A,+∞).

Hence,

r2(x, t) ≥ 2kT + 1 − 2kt ≥ 1 for all x ∈ (−∞,−A] ∪ [A,+∞), t ∈ [0, T ),
and hence (7.3) is also true. We must also show that (7.2) and (7.3) imply that the
manifold has pinched. We know from theorem 5.1, that (1) and (2) remain true
for the evolving metricg(t) under Ricci-flow. From Lemma 2.2, and inequalities
(2.15), (2.16) and (7.3) we see that

sup
x∈(−∞,−A]∪[A,+∞),t∈[0,T )

g(t)|g(t)Riem(x, t)|2 ≤ v, (7.4)

for some constantv < ∞. By (7.2) and (7.3), fort close toT , there existsxt ∈
[−A,A] such that the infimum ofr is attained:

r(xt , t) = inf
x∈R

r(x, t).

Then since
h∇r(xt , t) = 0, we may substitute this into (2.3) to obtain

g

Rαβτσ (xt , t) = r2(xt , t)
γ

Rαβaσ .

Then

gατ gβσ
g

Rαβτσ (xt , t) = 1

r2(xt , t)
γ ατ γ βσ

γ

Rαβτσ = kn

r2(xt , t)
,

where here we have used thatγ is an Einstein metric with Einstein constantk(> 0).
Hence

g(t)|gRiem(xt , t)| ≥ gατ gβσ
g

Rαβτσ (xt , t) = kn

r2(xt , t)
→ ∞ ast → T ,

in view of (7.2), which together with (7.4) implies thatg(t) pinches at timeT . ut
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