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Abstract We consider smooth complete solutions to Ricci flow with bounded cur-
vature on manifolds without boundary in dimension three. Assuming an open ball at
time zero of radius one has sectional curvature bounded from below by −1, then we
prove estimates which show that compactly contained subregions of this ball will be
smoothed out by the Ricci flow for a short but well-defined time interval. The esti-
mates we obtain depend only on the initial volume of the ball and the distance from
the compact region to the boundary of the initial ball. Versions of these estimates for
balls of radius r follow using scaling arguments.
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1 Introduction

In this paper, we consider smooth solutions (M, g(t))t∈[0,T ) to Ricci flow

∂

∂t
g = −2Ricci(g)
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as introduced andfirst studied inR.Hamilton’s paper [7]. The solutions (M, g(t))t∈[0,T )

we consider are smooth (in space and time), connected, complete for all t ∈ [0, T ),
and M has no boundary. We usually assume that the solution (M, g(t))t∈[0,T ) has
bounded curvature, that is that supM×[0,T ) |Riem(x, t)| < ∞. The value k0 :=
supM×[0,T ) |Riem(x, t)| < ∞ will play no role in the estimates we obtain.

In the paper [12], G. Perelman proved a Pseudolocality Theorem for solutions of the
type described above: if a ball 0Br (p0) of radius r > 0 in an n-dimensional manifold
(Mn, g(0)) at time zero is almost Euclidean (see sect. 10 in [12]), and (Mn, g(t))t∈[0,T )

is a complete solution to the Ricci flow with bounded curvature, then for small times
t ∈ [0, ε2(n)r2)),wehave estimates onhow the curvature behaves onballs t Bε(n)r (p0).
There are a number of versions of this theorem: see the introduction in the paper [13]
for references and further remarks. In the paper [13], we generalised this result in the
two-dimensional setting. In particular, we allow regions at time zero which are not
necessarily almost Euclidean: see Theorem 1.1 in [13] and the remarks before and
after the statement of Theorem 1.1 there. The purpose of this paper is to generalise
this result to the three-dimensional setting.

Notation 1.1 In this paper, R(g) always refers to curvature operator. When we write
R(g) ≥ c for a constant c ∈ R, then we mean that

Riem(g)ik jlωikω jl ≥ cgi j gklωikω jl on M for all two forms ω = ωi j dxi ⊗ dx j ,
ωi j = −ω j i , where Riemi jkl is the full Riemannian curvature tensor. A two form ω

has length one, if |ω|2g := gi j gklωikω jl = 1.

We show the following in this paper.

Theorem 1.2 Let r, v0 > 0 and 0 < α < 1 be given. Let (M3, (g(t))t∈[0,T ) be a
smooth complete solution to Ricci flow with bounded curvature and no boundary, and
let p0 ∈ M be a point such that

• vol(0Br (p0)) ≥ v0r3 and
• R(g(0)) ≥ − 1

r2
on 0Br (p0).

Then there exist an N = N (v0, α) and a ṽ0 = ṽ0(v0) > 0 such that

(a) vol(t Br (p0)) ≥ ṽ0r3,

(b) R(g(t)) ≥ − N2

r2
on t Br(1−α)(p0) and

(c) |Riem | ≤ N2

t on t Br(1−α)(p0)

as long as t ≤ r2

N2 and t ∈ [0, T ).

Remark 1.3 By scaling, it suffices to prove the theorem for r = 1.

Remark 1.4 The regions which are considered are not necessarily almost Euclidean
at time zero (see the introduction in the paper [13] for further remarks and comments).

Remark 1.5 This localises the global results of Theorem 1.7 of [14] and Theorem 1.9
of [15] which proved a similar result for the case that the curvature operator is bounded
from below by minus one on the whole manifold, and that the solution has bounded
curvature and vol(0B1(x)) ≥ v0 > 0 for all x in the manifold at time zero.
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The above result (Theorem 1.2) is obtained as a corollary of the following theorem
(Theorem 1.6) combined with Theorem 3.1 (which is a modified version of Theorem
2.2 of [13]), as we explain in the last section of this paper.

Theorem 1.6 Let r, v0 > 0 be given and (M3, g(t))t∈[0,T ) be a smooth complete
solution to Ricci flow with bounded curvature and no boundary. Let p0 ∈ M be a fixed
point and assume that

• vol(0Bs(x)) ≥ v0s3 for all s > 0 and x ∈ M3 which satisfy 0Bs(x) ⊆ 0Br (p0)
and

• R(g(0)) ≥ − 1
r2

on 0Br (p0).

Then there exist a (large) K = K (v0) and a (small) σ0 = σ0(v0) > 0 such that

(i) R(g(t))(x)(r − dt (x, p0))2 > −K 2

for all x ∈ t Br−(K
√
t/

√
σ0)

(p0) and t ≤ r2σ0
K 2 and t ∈ [0, T ). Here dt (x, p0) =

d(g(t))(x, p0) is the distance from x to p0 measured using g(t).

Remark 1.7 We may change the result of the theorem to the statement ‘Then there
exists a (large) N = N (v0) and a (small) σ0 = σ0(v0) > 0 such that

(i) R(g(t))(x)(r − dt (x, p0))2 > −σ0N 2

for all x ∈ t Br−N
√
t (p0) which satisfy t ≤ r2

N2 and t ∈ [0, T )’, by setting N 2 = K 2

σ0
.

This is the statement that we shall prove.

2 Comments on the Proof of Theorem 1.2 and the Use of Perelman’s
Pseudolocality Theorem Therein

The main ingredients of the proof of Theorem 1.2 are as follows: (i) Theorem 1.5
of [13], (ii) The Pseudolocality Theorem of G. Perelman (sect. 10 in [12]) and (iii)
Theorem 3.1 of this paper (which is a modified version of Theorem 2.2 of [13]).

The idea is essentially as follows: Theorem 1.2 follows from Theorem 1.6 and
the results (slightly modified) of [13]. So we have to prove Theorem 1.6. We use the
notation from Remark 1.7. We choose N (v0) > 0 large and σ(v0) small: they are
specified in the proof. The first part of the proof of Theorem 1.6 is a scaling argument
which gets us into a setting where the scaled radius r is now L , and the first valid time
and point t = t0 and x = z0 whereR(g(t))(x)(L−dt (x, p0))2 > −σ0N 2 fails to hold
satisfies (after scaling): t0 ∈ [0, 1], and the new radius L is very large, in particular
L ≥ N ,

(a) vol(0Bs(x)) ≥ v0s3 for all 0Bs(x) ⊆ 0BL(p0),
(b) R(g(t))(x) dist2L ,t (x) ≥ −σ0N 2 for all x ∈ t BL−N

√
t (p0)which satisfy t ≤ t0 ≤

1,
(c) distL ,t0(z0) = N , R(g(t0))(z0)(ω, ω) = − σ0N2

dist2L ,t0
(z0)

= −σ0 for a two form ω of

length one (w.r.t to g(t0)) and
(d) R(g(0))(x) ≥ − 1

L2 ≥ − 1
N2 on 0BL(p0),
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where distL ,t (x) = (L − dt (x, p0)) for x ∈ t BL(p0) and is 0 otherwise.
We next show that (a),(b),(c) and (d) lead to a contradiction if the constant σ(v0) is

small enough, and the constant N (v0) is large enough. Here we give a rough sketch
of the proof idea. There are two cases that need to be considered, when obtaining this
contradiction:

Case (i): t0 is not too near to 1 (t0 ≤ 1 − 10β0 with β0 = σ
1/4
0 suffices).

In this case, we see (see the proof) that t Bβ0N (z0) ⊆ t BL−N
√
t (p0) for all t ≤ t0,

and hence we have the estimate (b), at any point in the space-time cylinder of radius
β0N centred at z0 with base time 0 and top time t0,∪t∈[0,t0]t Bβ0N (z0)×{t}, and hence
R(·, ·) ≥ −1 on the same space-time cylinder of half the radius, in view of (b). Note
that, the radius β0N is very large by assumption (see proof). Regularity estimates of
the previous papers (in particular the paper [13]), which do not rely on Perelman’s
Pseudolocality result, show us that the norm of the full curvature tensor is bounded
by C(v0)

t for some constant C(v0), at any point (x, t) in a space-time cylinder of a
smaller (but still large enough) radius, with the same centre point, and base resp. top
time. Then, (d) and a regularity result from [13], tells us thatR(z0, t0) ≥ −ε(N ) → 0
as N → ∞: this contradicts (c) if N = N (v0) is chosen large enough initially. That
is: the case t0 ≤ 1 − 10β0 follows from this scaling or ‘blow up’ argument and the
(slightly modified) results of [13], and the use of Perelman’s Pseudolocality Theorem
is not necessary in this case.

Case (ii): The case that t0 is near to one, that is 1 ≥ t0 ≥ 1 − 10β0.
This case cannot be immediately handled in the same way as Case (i). The reason

is: it could be that we cannot find a large enough radius R > 0 such that t BR(z0) ⊆
t BL−N

√
t (p0) for all t ≤ t0, and hence we do not have the estimate (b) on some

space-time cylinder with large (enough) radius centred at z0 with base time 0 and top
time t0. In the extreme case we have t0 = 1, and hence d1(p0, z0) = L − N (since
distL ,1(z0) = N ) and hence z0 is in the boundary of t0BL−√

t0N (p0) = 1BL−N (p0)
at time t0. To get around this problem, we proceed as follows: Using the method
described in Case (i), we see that |Riem(x, s)| ≤ C(v0)

s for all points (x, s) on some
space-time cylinder with large radius centred at z0 with base time 0 and top time
t , as long as t ≤ 1 − 10β0. The (second) Pseudolocality Theorem of G. Perelman
for times t ∈ [1 − 10β0, t0], combined with the estimates which were obtained for

t ≤ 1 − 10β0, allows us to extend this estimate to |Riem(·, t)| ≤ C̃(v0)
t for all

t ∈ [0, t0] on some space-time cylinder with large radius centred at z0 with base time
0 and top time t0. Now we use the regularity result of [13], as in Case (i), and get that
R(z0, t0) ≥ −ε(N ) → 0 as N → ∞, which contradicts (c) if N = N (v0) is chosen
large enough initially.

We write ‘rough sketch’ above, because many of the difficulties which occur in the
proof are avoided in this sketch. In particular, we actually prove estimates on cylinders
of the type explained abovewith arbitrary centre points y0 ∈ 0BL−N+ 3

4β0N
(p0) instead

of z0, and then we show, by proving estimates on how distances can change, that z0
is in fact a point in 0BL−N+ 3

4β0N
(p0), and hence the estimates of the type explained

above (for z0) do hold.
Note that the use ofG. Perelman’s Pseudolocality Theorem is very necessary for this

proof. The difficult case is t0 ≥ 1 − 10β0. As we pointed out above, this corresponds
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to z0 being close to or in the boundary of BL−N
√
t0(p0). In all such blow up arguments

in geometric analysis, this is the difficult case and there is no guarantee that this case
can be dealt with. Whether this case can be dealt with or not will depend on the flow
being considered. For the Ricci flow, the Pseudolocality Theorem enables us to deal
with this case.

Note that Theorem 1.2 (respectively, Theorem 1.6) of this paper is almost a truly
local theorem: we only need assumptions at time zero along with the assumption that
the solutionwe are considering has bounded curvature and is complete.We say almost,
because we require an assumption on the solution itself, namely that the solution has
bounded curvature and is complete, in order to apply the Pseudolocality Theorem.
The regularity theorem, Theorem 1.5, of the paper [13] is not a truly local theorem:
one of the requirements of that theorem is that |Riem | ≤ c/t for some c > 0 on the
ball t Br (p0) (for all t ∈ [0, T ]) that we are considering. This is a strong assumption
on the solution.

3 Some Local Results

In this section we prove some lemmata, which follow readily from previously proved
results. These results will be required in the proof of Theorem 1.6.
First we prove a modified version of Theorem 2.2 of [13]. The result of the theorem
below and that of Theorem 2.2 of [13] differ in the following way: In Theorem 2.2 of
[13] condition (a), there was ‘[a] : vol(t Br (p0)) ≥ v0rn for all t ∈ [0, T )’. Here we
only require vol(0Br (p0)) ≥ v0rn at time zero.

Theorem 3.1 Let r, V, v0 > 0, 1 > α > 1/2 and (Mn, g(t))t∈[0,T ) be a smooth,
complete solution to Ricci flow with no boundary which satisfies

(a) vol(0Br (p0)) ≥ v0rn,
(b) R(x, t) ≥ − V

r2
for all t ∈ [0, T ), x ∈ t Br (p0).

Then, there exist 0 < m0 = m0(n, v0, α, V ), c0 = c0(n, v0, α, V ) < ∞ and
ṽ0 = ṽ0(n, v0, V ) > 0 such that

(c) |Riem(x, t)| < c0
t for all x ∈ t Br(1−α)(p0), t ∈ [0,m0r2) ∩ [0, T ) and

(d) vol(t Bs(p0)) > ṽ0sn for all t ∈ [0,m0r2) ∩ [0, T ), for all s < r .

Remark 3.2 Note that here we do not require that (Mn, g(t))t∈[0,T ) is a solution with
bounded curvature.

Proof Let (M, g(t))t∈[0,T ) be as in the statement of the theorem. Without loss of
generality, after scaling, we have r = 1. We prove the case s = 1 : the general
statement in (d) then follows from the Bishop–Gromov comparison principle.

We know that vol(0B1/800(p0)) ≥ V0(v0, V, n) > 0 due to the Bishop–Gromov
volume comparison principle. From the Appendix, Theorem 1.1, we see that the
following is true: there exists an ε0 = ε0(V0, n) = ε0(v0, V, n) > 0 such that if
dGH (t B1/800(p0), 0B1/800(p0)) ≤ ε0 for some t ∈ [0, T ), then vol(t B1/800(p0)) >

ε0. Assume there is a first time S ∈ (0, T ) where vol(t B1/800(p0)) > ε0 is violated:
vol(t B1/800(p0)) > ε0 for all 0 ≤ t < S and vol(S B1/800(p0)) = ε0. From Theorem

2.2 of [13], we have |Riem | < N2

t on t B1−α(p0) for all t ≤ min(T̂ (ε0, n, α, V ), S) =
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min(T̂ (v0, V, n, α), S) for some N = N (ε0, n, α, V ) = N (v0, V, n, α) and T̂ =
T̂ (ε0, n, α, V ) = T̂ (v0, V, n, α) > 0. But then, this estimate, (b) and [9] (Lemma 17.3
combined with Theorem 17.4) imply (for such t) that eta(n)V d0(x, y) ≥ dt (x, y) ≥
d0(x, y)−a(n)N

√
t for all x, y ∈ t B1/200(p0) (see sect. 4 of [8]), since any geodesic

at time t between such x and y must lie in t B1/2(p0), due to the triangle inequality.
This means that t B1/700(p0) ⊆ 0B1/400(p0) ⊆ t B1/200(p0) and

(1 + ε20)d0(x, y) ≥ dt (x, y) ≥ d0(x, y) − ε20 on
t B1/700(p0) (3.1)

for all such t which also satisfy t ≤ T̃ (v0, V, α, n), where T̃ (v0, V, α, n) > 0 is
small enough. Assume S ≤ min(T̃ (v0, V, α, n), T̂ (v0, V, n, α), T ). Then we have
dGH (S B1/800(p0), 0B1/800(p0)) < ε0 (a Gromov–Hausdorff approximation
f : S B1/800(p0) → 0B1/800(p0) is given by f (x) = x for x ∈ S B1/800(p0) ∩
0B1/800(p0) and f (x) = x̃ for x ∈ S B1/800(p0)\0B1/800(p0) where x̃ ∈ 0B1/800(x0)
is an arbitrary pointwith d0(x, x̃) ≤ 10ε20: such a point exists in viewof the inequalities
(3.1)). This is a contradiction to the definition of ε0. �

The next lemma is an integrated version of Lemma 8.3 (b) of Perelman, [12], in the
case that the curvature behaves like a constant divided by time.

Lemma 3.3 For any j0, � > 0, n ∈ N, there exists a constant a(n, j0, �) such that
the following is true. Let (Mn, g(t))t∈[0,T ] be a complete smooth solution to Ricci
flow with bounded curvature, and no boundary, and let s0 ≤ min(1, T ). Assume that
y0, x0 ∈ M and that |Ricci(·, t)| ≤ �

t on both
t B j0(x0) and

t B j0(y0) for all t ∈ [0, s0].
Then ds(y0, x0) ≥ d0(y0, x0) − a(n, j0, �) for all 0 ≤ s ≤ s0.

Proof For t ≤ j20 , we have |Ricci(x, t)| ≤ �
t for any x ∈ t B√

t (x0) and for any

y ∈ t B√
t (y0), since

√
t ≤ j0. Hence we may apply Lemma 8.3 (b) of [12] to this

with t0, K , r0 of Lemma 8.3 (b) of [12] given by t0 = t , K = �
t , r0 = √

t to obtain

∂

∂t
dt (x0, y0) ≥ −2(n − 1)

(
2

3
Kr0 + r−1

0

)

= −2(n − 1)

(
2�

√
t

3t
+ 1√

t

)

=: 1√
t

(
−4(n − 1)�

3
+ 1

)
, (3.2)

for t ≤ j20 , where the time derivative is to be understood in the sense of forward
difference quotients. For t ∈ [ j20 , s0], we have that |Ricci(·, t)| ≤ �

j20
and hence

applying Lemma 8.3 (b) of [12] with t0 = t , K = �

j20
, r0 = j0, we get

∂

∂t
dt (x0, y0) ≥ −2(n − 1)

(
2

3
Kr0 + r−1

0

)

= −2(n − 1)

(
2 j0�

3 j20
+ 1

j0

)
(3.3)
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for t ∈ [ j20 , s0], where the time derivative is to be understood in the sense of forward
difference quotients. Integrating first Equation (3.2) from 0 to j20 and then Equation
(3.3) from j20 to s gives us the result (if s ≤ j20 then we merely integrate Equation
(3.2) from 0 to s). �

The last lemma of this section is a technical lemma, which uses some facts from
differential geometry.

Lemma 3.4 For every ṽ0, � > 0 and δ ∈ (0, 1), the following is true. Let (Mn, g) be
a smooth Riemannian manifold, x0 ∈ M, with no boundary such that the closure of
B1(x0) is compactly contained in M and

(i) |Riem | ≤ � on B1(x0) and
(ii) vol(B1(x0)) ≥ ṽ0.

Then there exists an R0(n, �, ṽ0, δ) > 0 such that

|Riem |(·) ≤ 1

R2
0

on BR0(x0)

vol(BR0(x0)) ≥ ωn(1 − δ)Rn
0 ,

where ωn is the volume of an n-dimensional Euclidean ball of radius one.

Proof The inequalities (i) and (ii) imply that inj(g)(x0) ≥ i0(n, ṽ0, �) > 0 for some
i0(n, ṽ0, �) > 0 in view of the estimate of J. Cheeger/M. Gromov/M. Taylor, (4.22) in
Theorem 4.3 of [5]. Hence, using Riemannian normal coordinates (see Theorem 1.53
and the proof thereof in [2]), we see that

vol(Br (x0)) ≥ ωn(1 − δ)rn

for all r ≤ R0(n, �, i0(n, ṽ0, �), δ) = R0(n, �, ṽ0, δ), if R0(n, �, ṽ0, δ) > 0 is small
enough, where ωn is the volume of the unit ball in n-dimensional Euclidean space.
Without loss of generality, we also have

|Riem(y)| ≤ 1

R2
0

on BR0(x0), since without loss of generality 1
R2
0(n,�,ṽ0,δ)

≥ �: if not, decrease

R0(n, �, ṽ0, δ) until it is. �

4 Proof of Theorem 1.6

In order to obtain local estimates,we introduce the following distance function for balls
which are evolving in time under the Ricci flow. Let (M, g(t))t∈[0,T ) be a solution to
Ricci flow. Let t Br (p0) be the open ball of radius r at time t centred at p0 ∈ M . Notice
that x ∈ t Br (p0) does not necessarily guarantee that x ∈ s Br (p0) for a different time
s. For x ∈ t Br (p0), we define
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distr,t (x) := (r − dt (p0, x))

where dt (p0, x) is the distance from x to p0 measured using the evolving metric g(t).
Cut-off functions of this type were used in the papers [6,16] and [17] in combination
with Ricci flow to prove that local estimates hold, if one a priori assumes that the
curvature satisfies a bound of the type |Riem(·, t)| ≤ c/t .

Notice that 0 < distr,t (x) ≤ r for all x ∈ t Br (p0). distr,t (x) is a measure of how
far the point x at time t is from the boundary of t Br (p0). In the case that g(t) = δ the
Euclideanmetric onRn , then we see that distr,t (x) := (r−dt (p0, x)) = (r−|x− p0|)
is the distance from x to the boundary of Br (p0). Due to scaling, it will be sufficient
to consider the case r = 1. Let 0B1(p0) be a ball at time zero with curvature bounded
from below by minus one. The following theorem implies a lower bound on the
curvature at x ∈ t B1(p0) depending on dist1,t (x) at later times for a well-defined time
interval, as long as dist21,t (x) ≥ N 2t where N 2= N 2(v0) is sufficiently large, and v0
is a lower bound (at time zero) on the volume quotient of balls contained in the ball
we are considering, and the curvature of 0B1(p0) at time zero is bounded from below
by −1. Combining this theorem with the results of sect. 3 will imply the result of
Theorem 1.2 stated in the introduction (see sect. 5 for the proof of Theorem 1.2). Here
we restate Theorem 1.6 for the case r = 1 using the notation that we just introduced,
and Remark 1.7.

Theorem 4.1 Let (M3, (g(t))t∈[0,T ) be a smooth complete solution to Ricci flow with
bounded curvature and no boundary and v0 > 0. Let p0 ∈ M be a point such that

• vol(0Br (x)) ≥ v0r3 for all x ∈ M3, and r > 0 which satisfy 0Br (x) ⊆ 0B1(p0)
and

• R(g(0)) ≥ −1 on 0B1(p0)

Then there exists an N = N (v0), σ0 = σ0(v0) > 0, such that

(i) R(g(t))(x) dist21,t (x) > −σ0N 2

for all x ∈ t B1−N
√
t (p0) which satisfy t ≤ 1

N2 and t ∈ [0, T ).

Proof v0 is fixed throughout the proof and σ0 = σ0(v0) > 0 is a small constant
determined in the proof.

Assuming the theorem is false for some given N = N (v0, σ (v0)) = N (v0) large
and σ0 = σ0(v0) > 0 small (to be determined in the proof), then there must be a first
time t0 ≤ 1

N2 < T where the theorem fails. That is (i) is violated at t0. We show that
if σ(v0) > 0 is chosen small enough, and N = N (v0) > 0 is chosen large enough,
that this leads to a contradiction. Let β0 = σ

1/4
0 throughout the proof. At the end of

the theorem, see Remark 4.2, we give a precise explanation of how N and σ can be
chosen at this point of the theorem.

(i) is violated at some first time t0 means that we can find a z0 ∈ t0B1(p0) and 0 <

t0 ≤ 1
N2 < T with dist21,t0(z0) ≥ N 2t0 such that R(g(t0))(z0)(ψ,ψ) dist21,t0(z0) =

−σ0N 2 for some two form ψ of length one (measured with respect to g(t0)), and
the conclusions of the theorem are correct for 0 < t < t0. Let L2 = N2

dist1,t0 (z0)2
.

Remembering that dist1,t0(z0)
2 ≤ 1, we see that L ≥ N . We scale our solution
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Ricci Flow of Regions with Curvature... 3059

by an appropriate constant, so that the new solution has ˜dist2L ,t̃0(z0) = N 2 at the
new time t̃0 which corresponds to the old time t0 in the original solution: define
g̃(·, t̃) := L2g(·, t̃

L2 ). This solution is defined for t̃ ∈ [0, T̃ = L2T ≥ N 2T ). Then

define for x ∈ t̃ BL(p0)

˜dist2L ,t̃ (x) := (L − d̃t̃ (x, p0))
2 (4.1)

= L2(1 − dt (x, p0))
2

= L2 dist21,t (x) (4.2)

where t = t̃
L2 and d̃t̃ (x, p0) is the distance measured with respect to g̃(t̃).

This value is positive since x ∈ t̃ BL(p0) if and only if d̃t̃ (x, p0) < L . Using the
definition of t̃ and ˜distL ,t̃ , we see that

dist21,t (x) ≥ N 2t ⇐⇒ ˜dist2L ,t̃ (x) ≥ N 2 t̃ . (4.3)

Also,

˜dist2L ,t̃0(z0) = L2 dist21,t0(z0) = N 2

dist1,t0(z0)2
dist21,t0(z0) = N 2 (4.4)

and

t̃0 = t0L
2 = t0

N 2

dist1,t0(z0)2
≤ t0

N 2

N 2t0
= 1.

Notice that

R(g̃(t̃))(x) ˜dist2L ,t̃ (x) = R(g(t))(x) dist21,t (x), (4.5)

in view of the definition of ˜distL ,t̃ and the way curvature changes under scaling.
For ease of reading, we will denote the solution g̃(x, t̃) by g(x, t). Also t̃0 will be

denoted by t0, t̃ by t , and ˜distL ,t̃ by distt (L is now fixed). Then we now have

(a) vol(0Bs(x)) ≥ v0s3 for all 0Bs(x) ⊆ 0BL(p0),
(b) R(g(t))(x) dist2t (x) ≥ −σ0N 2 for all x ∈ t BL−N

√
t (p0)which satisfy t ≤ t0 ≤ 1,

(c) R(g(t0))(z0)(ω, ω) = − σ0N2

dist2t0 (z0)
= −σ0 for the two form ω = L2ψ which has

length one with respect to (the new) g(t0) and
(d) R(g(0))(x) ≥ − 1

L2 ≥ − 1
N2 on 0BL(p0).

The first two inequalities are scale invariant (if they hold for some solution, then
they hold for a scaling of the Ricci flow after adjusting the delimiters, assuming
that we have defined the new distt for the scaled solution as in (4.1): cf. (4.3) and
(4.5)). In the third equality, we used the fact that (after scaling) dist2t0(z0) = N 2
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(see (4.4)): after scaling, we also have R(g(t0))(z0)(ω, ω) dist2t0(z0) = −σ0N 2 and

henceR(g(t0))(z0)(ω, ω) = − σ0N2

dist2t0 (z0)
= −σ0. The last inequality, (d), follows since

we are scaling by L2 and we showed L ≥ N . For all 0 ≤ t ≤ t0, we have

{x ∈ t BL(p0) | dist2t (x) ≥ N 2t} = t BL−N
√
t (p0).

Let x0 ∈ 0BL−N+Nβ0(p0) be an arbitrary point. Clearly 0Bβ0N (x0) ⊆ 0BL(p0), in
view of the triangle inequality (we are using that β0 ≤ 1/2, which we always assume).

The rest of the proof is broken up into three steps.
Step 1 For an arbitrary x0 ∈ 0BL−N (1−β0)(p0) = 0BL−N+Nβ0(p0), we show that

t Bβ0N (x0) ⊆ t BL−N
√
t (p0) for all t ≤ 1−10β0 as long as t ≤ t0, and N = N (v0) > 0

is sufficiently large. Using the estimates of Theorem 3.1, we will then see that this
guarantees that |Riem(·, t)| ≤ c0(v0)

t on t B 1
β0

(x0), and that vol(t B1(x0)) ≥ ṽ0(v0) >

0 for all t ≤ min(1 − 10β0, t0) , for some constants c0(v0), ṽ0(v0) > 0.
Now we present the details of Step 1.
Let x0 ∈ 0BL−N+Nβ0(p0) be arbitrary. We know that x0 ∈ t BL−N

√
t (p0) is valid,

if and only if

dt (x0, p0) ≤ L − N
√
t . (4.6)

In the following we only consider t such that 0 ≤ t ≤ t0, where t0 ≤ 1 was defined
at the beginning of the proof. Hence, starting at time zero and going forward to time
t , as long as x0 ∈ t BL−N

√
t (p0) remains valid, any length minimising geodesic (with

respect to the metric at time t) from p0 to x0 must also completely lie in t BL−N
√
t (p0).

At all points y on such a geodesic, we have

R(g(t))(y) dist2t (y) ≥ −σ0N
2,

in view of (b). Using distt (y) = L − dt (y, p0), we see that this means

R(g(t))(y) ≥ − σ0N 2

dist2t (y)

= − σ0N 2

(L − dt (y, p0))2

for such y.
Using this inequality in the evolution equation for the distance (Lemma 17.3 of

[8]), we see (as long as x0 ∈ t BL−N
√
t (p0) remains valid)

∂

∂t
dt (x0, p0) ≤ sup

γ∈Xt

∫ dt (x0,p0)

0
−2Ricci(γ (s), t)ds

≤ sup
γ∈Xt

∫ dt (x0,p0)

0

σ020N 2

(L − s)2
ds
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= 20σ0N 2

L − s
|s=dt (x0,p0)
s=0

= 20σ0N 2

L − dt (x0, p0)
− 20σ0N 2

L

≤ 20σ0N 2

L − dt (x0, p0)

≤ 20σ0N 2

N
√
t

= 20σ0N√
t

= 20β4
0N√
t

where Xt is the set of distance minimising geodesics from p0 to x0 at time t (that is,
measured with respect to the metric g(t) at time t) parameterised by arc length, and
we have used inequality (4.6). Here, ∂

∂t is to be understood in the sense of forward
difference quotients: see chapter 17 of [8] for more details. Integrating in time from 0
to t , we see that this means

dt (x0, p0) ≤ d0(x0, p0) + 40β4
0Nt1/2

≤ d0(x0, p0) + β2
0N≤ (L − N + Nβ0) + β2

0N≤ L − (1 − 2β0)N (4.7)

for all t ≤ t0(≤ 1) as long as x0 ∈ t BL−N
√
t (p0) remains true, where we have used

that x0 ∈ 0BL−N+Nβ0(p0) (and β2
0 ≤ 1

40 which we will always assume). Restrict now
only to t ≤ 1−10β0 in the above argument. Using the fact that−(1−2β0) ≤ −√

t−β0
for such times 1, and inequality (4.7) , we see that

dt (x0, p0) ≤ L − (1 − 2β0)N
≤ L − N

√
t − β0N (4.8)

for all t ≤ min(t0, 1 − 10β0) as long as x0 ∈ t BL−N
√
t (p0) remains true, and hence

x0 ∈ t BL−N
√
t (p0)will not be violated as long as t ≤ min(t0, 1−10β0). Furthermore,

the triangle inequality combined with (4.8) implies

t Bβ0N (x0) ⊆ t BL−N
√
t (p0)

will not be violated as long as t ≤ min(1 − 10β0, t0): y ∈ t Bβ0N (x0) implies

dt (y, p0) ≤ dt (y, x0) + dt (x0, p0) ≤ β0N + L − N
√
t − β0N

= L − N
√
t

1 Note that−(1−2β0) ≤ −√
t−β0 if and only if

√
t ≤ 1−3β0 if and only if t ≤ (1−3β0)2 = 1−6β0+9β2

0
and hence t ≤ 1 − 10β0 implies t ≤ 1 − 6β0 + 9β2

0 implies −(1 − 2β0) ≤ −√
t − β0 as claimed.
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for such t , in view of the inequality (4.8)
The lower bound on the curvature, (b), is therefore valid on t Bβ0N (x0) as long as

t ≤ 1−10β0 and t ≤ t0, and hence, for x in the ball of half the radius, x ∈ t B β0N
2

(x0),

we have

R(g(t))(x) ≥ − σ0N 2

dist2t (x)

≥ − σ0N 2

(N
√
t + Nβ0

2 )2

≥ −4σ0
β2
0

= −4β2
0 (≥ −1) (4.9)

(σ0 > 0 was chosen to be σ0 = β4
0 ) for all t ≤ 1 − 10β0, t ≤ t0, in view of the fact

that

distt (x) = (L − dt (x, p0))
≥ (L − dt (x, x0) − dt (x0, p0))

≥ (L − β0N

2
− dt (x0, p0))

≥ (L − β0N

2
− L + N

√
t + β0N )

= (
β0N

2
+ N

√
t)

for x ∈ t B β0N
2

(x0),which follows from thedefinitionof distt (x), the triangle inequality

and inequality (4.8). Choosing V = 16, α = 1/2, r = 2
β0

in Theorem 3.1 (this gives

us − V
r2

= −4(β2
0 )), we see that

|Riem(·, t)| ≤ c0(v0)

t
on t B 1

β0
(x0), and

vol(t Bs(x0)) ≥ ṽ0(v0)s
3, for all s ≤ 1

β0
,

for all t ≤ min(1 − 10β0, t0,
m(v0)

β2
0

),

since N is large enough: we are assuming that Nβ0
2 ≥ 2

β0
, and so t B 2

β0
(x0) ⊆

t B β0N
2

(x0) and so the conditions of Theorem 3.1 are satisfied in view of (4.9) and

(a). Note that the dependency of the constants c0,m0, ṽ0 from Theorem 3.1 is c0 =
c0(n, v0, α, V ) = c0(3, v0, 1/2, 16) = c0(v0), m0 = m0(n, v0, α, V ) = m0(v0) > 0,
and ṽ0 = ṽ0(n, v0, V ) = ṽ0(v0) > 0 and c0,m0, ṽ0 do not depend on N or σ0:
decreasing σ0 or increasing N will not affect c0(v0),m0(v0) or ṽ0(v0). We assume
that β2

0 = σ
1/2
0 ≤ m0(v0), so that
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|Riem(·, t)| ≤ c0(v0)

t
on t B 1

β0
(x0) and

vol(t Bs(x0)) ≥ ṽ0(v0)s
3, for all s ≤ 1

β0
,

for all t ≤ min(1 − 10β0, t0) (4.10)

in view of the fact that t0 ≤ 1. Let ε(3), δ(3) be the constants appearing in the second
Pseudolocality Theorem of G. Perelman, Theorem 10.3 in [12], in the case that n = 3
(as it is here). From Lemma 3.4 with n = 3, � = 2c0(v0), ṽ0 = ṽ0(v0), δ = δ(3),
and T0 = min(1 − 10β0, t0), we see that there exists an R0 = R0(3, �, ṽ0, δ) =
R0(3, 2c0(v0), ṽ0(v0), δ(3)) = R0(v0) > 0 such that

|Riem |(·, t) ≤ 1

R2
0

on t BR0(x0) (4.11)

vol(t BR0(x0)) ≥ ω3(1 − δ)R3
0 (4.12)

for all 1
2 ≤ t ≤ min(1 − 10β0, t0).

It is helpful to notice the following at this stage: at the moment we have the freedom
to choose β0 = σ

1/4
0 > 0 as small as we like. Decreasing σ0 (and hence β0) or

increasing N will not change the constant c0(v0) we obtained above, and hence will
not change R0(v0) = R0(3, c0(v0), v0, δ(3))we obtained above.This finishes Step 1.

Step 2
In Step 2 we use the estimates from Step 1 and the (second) Pseudolocality result

of G. Perelman to show that |Riem(·, t)| ≤ c̃(v0)
t on t Br0(x0) for all 0 ≤ t ≤ t0, for

some small r0 = r0(v0) > 0 and some large c̃(v0), if σ0(v0) is chosen sufficiently
small, and x0 is an arbitrary point in 0BL−N (1−β0)(p0). That is, the estimate of Step
1 for 0 ≤ t ≤ min(1 − 10β0, t0) can be extended to 0 ≤ t ≤ t0 (after changing
c0(v0) to a larger constant c̃(v0)) on a small time-dependent neighbourhood of x0 if
necessary: it is only necessary to do this if t0 > 1 − 10β0. Using these estimates, we
then show that |Riem(·, t)| ≤ c̃(v0)

t on the very large ball t B β0N
64

(y0) for 0 ≤ t ≤ t0,

for all y0 ∈ 0BL−N (1− 3
4β0)

(p0), and hence, using Theorem 5.1 of [13] combined

with (a) and (d), we see that R ≥ − 1
N on t B √

N
2

(y0) for all 0 ≤ t ≤ t0 for all

y0 ∈ 0BL−N (1− 3
4β0)

(p0).
Now we present the details of Step 2.

Let ε(3), δ(3) be the constants introduced in Step 1: ε(3), δ(3) are the constants
which appear in the second Pseudolocality Theorem of G. Perelman, Theorem 10.3
in [12], in the case that n = 3 (as it is here). Assume t0 > 1− 10β0. We know t0 ≤ 1.
Using Theorem 10.3 of [12], combined with the estimates (4.12), and (4.11), we get

|Riem(x, t)| ≤ 1

(ε(3)R0)2
for all x ∈ t Bε(3)R0(x0),

for all t ∈ [1 − 10β0, t0) ∩ [1 − 10β0, 1 − 10β0 + R2
0(v0)ε

2(3)).

123



3064 M. Simon

Ifwe chooseβ0 = β0(v0) = σ
1/4
0 (v0) > 0 small enough, so that R2

0(v0)ε
2(3) > 10β0,

then we have 1− 10β0 + R2
0(v0)ε

2(3) > 1 und hence [1− 10β0, t0)∩ [1− 10β0, 1−
10β0 + R2

0(v0)ε
2(3)) = [1 − 10β0, t0), since t0 ≤ 1. This means that

|Riem(x, t)| ≤ 1

(ε(3)R0)2
for all x ∈ t .Bε(3)R0(x0), t ∈ [1 − 10β0, t0)

Combining this with (4.10), we see that

|Riem(x, t)| ≤ c̃(v0)

t
for all x ∈ t Br0(x0), 0 ≤ t ≤ t0 (4.13)

for some small r0(v0) = ε(3)R0(v0) > 0 for all x0 ∈ 0BL−N+Nβ0(p0), where
c̃(v0) = max( 1

ε2(3)R2
0(v0)

, c0(v0)). That is, we have extended the estimates (4.10) up

to time t0 on a small time-dependent ball of fixed radius with middle point x0, for
arbitrary x0 ∈ 0BL−N+Nβ0(p0).

This is the point where we determine β0(v0) = σ
1/4
0 (v0): it is now fixed for the

rest of the argument. We stress the following point. The constants c̃(v0) from (4.13)
and the constant σ0(v0), and hence β0(v0) = (σ0(v0))

1/4) are now fixed. They only
depend on v0 > 0. They do not depend on N : we still have the freedom to choose
N as large as we like without changing c̃(v0), R0(v0), c0(v0), β0(v0), or σ0(v0). In
fact decreasing σ(v0) (and hence β0(v0) = (σ0(v0))

1/4) and increasing N would not
change c̃(v0), R0(v0) or c0(v0) from above, in view of the definitions of c0(v0), R0(v0)

and c̃(v0).
In order to get estimates on a large time-dependent ball, we restrict to points y0

in 0BL−N (1− 3
4β0)

(p0) ⊆ 0BL−N+Nβ0(p0) and use the estimates that we have just

obtained. Let y0 in 0BL−N (1− 3
4β0)

(p0) be arbitrary.

Let z ∈ ∂(0B β0N
32

(y0)). Then, using the estimate (4.13), we see that |Riem(·, t)| ≤
c̃(v0)
t on t Br0(z) for all 0 ≤ t ≤ t0 for some small fixed r0(v0) > 0, and the same is

true on t Br0(y0), since z, y0 ∈ 0BL−N+Nβ0(p0) due to the triangle inequality. Hence,
using Lemma 3.3, we see that dt (y0, z) ≥ d0(y0, z) − a0(v0) = β0N

32 − a0(v0) >
β0N
64

for all t ∈ [0, t0], where a0(v0) = a(3, r0(v0), c̃(v0)) is the constant coming from
Lemma 3.3 (with n = 3, � = c̃(v0) and j0 = r0(v0) there), and we assume without
loss of generality that Nβ0

64 > a0(v0). Hence, since z ∈ ∂(0B β0N
32

(y0)) was arbitrary, it

must be that t B β0N
64

(y0) ⊆ 0B β0N
32

(y0) remains true for all 0 ≤ t ≤ t0: if there exists

a first t ∈ [0, t0] where t B β0N
64

(y0) ⊆ 0B β0N
32

(y0) is violated, then there must exist

a point z ∈ ∂(0B β0N
32

(y0)) ∩ t B β0N
64

(y0) for this t , which contradicts the inequality

dt (y0, z) >
β0N
64 that we just showed.

This implies that

|Riem(x, t)| ≤ c̃(v0)

t
(4.14)
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for all x ∈ t B β0N
64

(y0) for all y0 ∈ 0BL−N (1− 3
4β0)

(p0) in view of (4.13) and the fact

that t B β0N
64

(y0) ⊆ 0B β0N
32

(y0) ⊆ 0BL−N+Nβ0(p0) remains true for all 0 ≤ t ≤ t0. Let

r = √
N . Then we have

R ≥ − 1

L2

≥ − 1

N 2

= − 1

c̃400
(
c̃400

N 2 )

≥ − 1

c̃400
(
1

N
)

= − 1

400c̃r2

at time zero on 0Br (y0) since, without loss of generality, c̃(v0)400 ≤ N and
√
N ≤

β0N
64 which tells us that 0Br (y0) = 0B√

N (y0) ⊆ 0B β0N
64

(y0) ⊆ 0BL−N+Nβ0(p0) ⊆
0BL(p0). Now using Theorem 5.1 of the paper [13] , we see that

R(x, t) ≥ − 1

r2
= − 1

N
(4.15)

for all x ∈ t B r
2
(y0) = t B √

N
2

(y0), for all y0 ∈ 0BL−N (1− 3
4β0)

(p0), for all 0 ≤ t ≤
min(δ̂2(v0)r2, t0) = t0, where δ̂(v0) = δ(v0, c̃(v0),

1
2 ) is the constant coming from

Theorem 5.1 of [13], since without loss of generality δ̂2(v0)r2 = δ̂2(v0)N ≥ 1,
and |Riem(·, t)| ≤ c̃(v0)

t on t B√
N (y0) in view of equation (4.14), since t B√

N (y0) ⊆
t B β0N

64
(y0),where here we are using again the fact that

β0N
32 ≥ √

N . To apply Theorem

5.1 of [13] here, scale so that r = 1 and then scale the conclusion of Theorem 5.1 of
[13] back to the case r = √

N , to obtain the estimate claimed here (the N appearing in
Theorem 5.1 of [13] is N := c̃, where c̃ is the c̃ appearing in the current proof: the N
of the theorem we are proving has nothing to do with the N of Theorem 5.1 of [13]).

This finishes Step 2
Step 3
In Step 3 we use the estimates from above to show that the contradiction point

z0 from the beginning of this argument must in fact be in 0BL−N (1− 3
4β0)

(p0). This

along with the fact that R(z0)(t0) ≥ − 1
N for such points (Step 2) and (c) leads to a

contradiction if N = N (v0) > 0 is large enough.
Now we present the details of Step 3.

Consider once again elements y0 ∈ 0BL−N (1− 3
4β0)

(p0) ⊆ 0BL−N+Nβ0(p0), where
β0 = β0(v0) is as defined in the Steps 1,2 above.

The estimate (4.14) above combined with Lemma 3.3 shows that for y in
∂(0BL−N (1− 3

4β0)
(p0)), that is for y with d0(y, p0) = L − N + 3

4β0N , we have
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dt (y, p0) ≥ d0(y, p0) − a1(v0) = L − N + 3

4
β0N − a1(v0)

≥ L − N + Nβ0

2

for all t ≤ t0, since without loss of generality,
β0N
4 ≥ a1(v0) + 1, where we used that

p0 is also contained in 0BL−N (1− 3
4β0)

(p0), and a1(v0) = a(3, 1, c̃(v0)) is the constant

from Lemma 3.3 (with n = 3, � = c̃(v0) and j0 = 1 there). This implies that

dt (y, p0) ≥ L − N + 1

2
β0N

for all y ∈ ( 0BL−N (1− 3
4β0)

(p0) )c, for all 0 ≤ t ≤ t0 (every length min-
imising geodesic with respect to g(t) which joins p0 to y, where y is outside of
0BL−N (1− 3

4β0)
(p0), must intersect ∂(0BL−N (1− 3

4β0)
(p0))), and hence L−dt (y, p0) ≤

N − 1
2β0N , which means distt (y) = max(0, L −dt (y, p0)) ≤ max(0, N − 1

2β0N ) =
N − 1

2β0N , for all t ≤ t0 for such points y ∈ ( 0BL−N (1− 3
4β0)

(p0) )c. In particu-

lar z0 is not in ( 0BL−N (1− 3
4β0)

(p0) )c since distt0(z0) = N (we scaled so that this

is true), and hence z0 ∈ 0BL−N (1− 3
4β0)

(p0). Now using the fact (inequality (4.15))

that R(·, t) ≥ − 1
N on t B√

N
2

(z0) for all t ∈ [0, t0], we obtain a contradiction to (c),

R(z0, t0)(ω, ω) = −σ0, if N is chosen large enough, for example N ≥ 2
σ0
.

This finishes Step 3 and the proof of the Theorem. �

Remark 4.2 The following important constants appeared, in this order, in the proof
of the theorem: c0(v0) = c0(3, v0, 1/2, 16),m0(v0) = m0(3, v0, 1/2, 16), where
c0(3, v0, 1/2, 16),m0(3, v0, 1/2, 16) are the constants coming from Theorem 3.1,
R0(v0) = R0(3, 2c0(v0), ṽ0(v0), δ(3)), where R0(3, 2c0(v0), ṽ0(v0), δ(3)) is the
constant coming from Theorem 3.4 and δ(3) and ε(3) are the constants coming
from G. Perelman’s Pseudolocality Theorem 10.3 in [12], r0(v0) = ε(3)R0(v0),
c̃(v0) = max( 1

ε2(3)R2
0(v0)

, c0(v0)), a0(v0) = a(3, r0(v0), c̃(v0)), where a(·, ·, ·) is

the constant coming from Lemma 3.3, δ̂(v0) := δ(v0, c̃(v0),
1
2 ), where δ(·, ·, ·) is the

constant coming from Theorem 5.1 of [13], a1(v0) = a(3, 1, c̃(v0)), where a(·, ·, ·)
is the constant coming from Lemma 3.3. The following assumptions on the largeness
of N (v0) and smallness of σ0(v0) and β0(v0) were used in the proof: β2

0 ≤ m0(v0),
Nβ0
2 ≥ 2

β0
,

β0N
4 ≥ a0(v0), 1−10β0+ε(3)R2

0(v0) > 0. This fixes the constants β0 and

σ0. We further require N ≥ a0(v0)
64
β0

, N ≥ 400c̃(v0),
√
Nβ0 ≥ 64, N δ̂2(v0) ≥ 1,

β0N ≥ 4a1(v0) + 1, N ≥ 2
σ
. This determines N . Hence it is possible to determine σ

(and hence β0 = σ
1/4
0 ) and N in the first line of the above given proof.
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5 Proof of Theorem 1.2

Proof of Theorem 1.2 Scale so that r = 1. Then we have due to the Bishop–Gromov
volume comparison theorem,

(i) vol(0Br (x)) ≥ v(α, v0)r3 for all 0Br (x) ⊆ 0B1−α(x0),

• R(g(0)) ≥ − 1
(1−α)2

on 0B1−α(x0).

See the Appendix in Version 1 of ‘Local Smoothing Results for the Ricci flow in
dimensions two and three’, M. Simon, arXiv:1209.4274v1 for a reference: since the
points x are not at the centre of the ball 0B1−α(x0), v(α, v0) can depend on α. Hence,
Theorem 1.6 is valid for r = 1 − α, and we find that there exist K = K (v(α, v0)) =
K (α, v0) and σ0 = σ0(v(α, v0)) = σ0(α, v0) > 0 such that

R(g(t))(x)(1 − α − dt (x, x0))
2 > −K 2

for all x ∈ t B1−α(x0) which satisfy (1 − α − dt (x, x0))2 ≥ K 2

σ0
t and t ≤ σ0(1−α)2

K 2

and t ∈ [0, T ). In particular, R(g(t))(x) > − K 2

α2 (∗) for all x ∈ t B1−2α(x0) for

all t ≤ min( σ0α
2

K 2 ,
σ0(1−α)2

K 2 ) with t ∈ [0, T ). Now we may use Theorem 3.1, with

r = 1−2α to further conclude that |Riem(x, t)| ≤ c0(α,v0)
t (∗∗) for all x ∈ t B1−4α(x0),

t ≤ S(α, v0). Choosing α = 1/10 in the above argument, we see that we also get
vol(t B1(x0)) ≥ ṽ0(v0)(4/5)3(∗ ∗ ∗) for all t ≤ S(α, v0), for some ṽ0(v0) > 0. The
estimates (*),(**) and (***) are the desired estimates. �

Appendix: Dimension of Gromov–Hausdorff Limits of Collapsing and
Non-collapsing Spaces

We explain why some certain well-known properties of collapsing, respectively, non-
collapsing manifolds, with curvature bounded from below hold. These properties
follow from the results contained in [3] (see also [4]). Note that the definition of
Alexandrov space with curvature bounded from below in [3] (Definition 2.3) and [4]
(Proposition 10.1.1) agree.

Theorem 1.1 Let (B1(pi ), gi ), (B1(qi ), hi ), i ∈ N be balls whose closure is com-
pactly contained in smooth Riemannian manifolds without boundary of dimension n ∈
Nfixed.Assume that sec ≥ −V on theseballs and that dGH ((B1(pi ), gi ), (B1(qi ), hi ))
→ 0 as i → ∞, and vol((B1(pi ), gi )) ≥ v0 > 0 for all i ∈ N. Then it cannot be that
vol(B1(qi ), hi ) → 0 as i → ∞.

Proof Assume the theorem is false.We know that (B1(pi ), gi , pi ) and (B1(qi ), hi , qi )
Gromov–Hausdorff converge, after taking a subsequence, to the same space (X =
B1(p), d, p) by the theorem of M. Gromov, and that (X, d, p) is an Alexandrov
space (see Notes on Alexandrov Spaces below). Without loss of generality, we may
assume that sec ≥ −k2 on the balls we are considering, where k2 > 0 is as
small as we like. This can be seen as follows. Without loss of generality (renumber
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the indices i), we have vol(B1/ i (qi ), hi ) ≤ vol(B1(qi ), hi ) ≤ 1
in+1 . The Bishop–

Gromov Comparison principle implies that vol(B1/ i (pi ), gi ) ≥ c(v0, n) 1
in . Scaling

both Riemannian metrics by i2, we have (we also call the rescaled metrics gi and
hi ) vol(B1(pi ), gi ) ≥ c(v0, n) > 0 and vol(B1(qi ), hi ) ≤ 1

i and sec ≥ − V
i2

. So we

assume sec ≥ −k2 with k > 0 arbitrarily small.
Let Ba(y) ⊆ B1−10a(p) and let {BR/3(s j )} j∈{1,...,N } be any maximally pair-

wise disjoint collection of balls with R << a < 1/(10) and centres s j in Ba(y).
By maximally pairwise disjoint we mean that if we try and add a ball BR/3(z) to
the collection, where z ∈ Ba(y), then the new collection is not pairwise disjoint.
Then clearly {BR(s j )} j∈{1,...N } must cover Ba(y). Let s̃ j , respectively, p̃ = pi , ỹ
be the corresponding points in (B1(pi ), gi , pi ) which one obtains by mapping s j ,
respectively, p,y back to (B1(pi ), gi , pi ) using theGromov–Hausdorff approximation
fi : (B1(p), d, p) → (B1(pi ), gi , pi ): we write pi = p̃, and so on, suppressing the
dependence of the points on i sometimes, in order to make this explanation more read-
able. For i large enough, {B2R(s̃ j )} j∈{1,...N } must cover Ba(ỹ) and {BR/4(s̃ j )} j∈{1,...,N }
must be pairwise disjoint and contained in B2a(ỹ) ⊆ B1( p̃). The Bishop–Gromov
volume comparison principle implies that c2(v0,a,n)

Rn ≤ N ≤ c1(v0,a,n)
Rn , for some fixed

0 < c0(v0, V, a, n), c1(v0, a, V, n) < ∞ and hence the rough dimension of Ba(y)
(see Definition 6.2 in [3]) must be n.

This means that the Hausdorff dimension and burst index of Bs(p) is also n for
all s < 1 (see Lemma 6.4 and Definition 6.1 in [3]). Assume ε ≤ 1

1000n in all
that follows. Now let z ∈ B1/4(p) be a point for which there is an (n, ε) explosion
(Definition5.2 in [3]: an (n, ε) explosion is called an (n, ε) strainer in [4], seeDefinition
10.8.9 there). Note that for any 1

1000n ≥ ε > 0 such a point exists (see Corollary
6.7 in [3]). Let (ak, bk)k∈{1,...n} be such an (n, ε) explosion at z and assume that
ak, bk ∈ Bs(z) for all k = 1, . . . , n with s << 1: as pointed out in [3] (just after
Definition 5.2), we can always make this assumption, see also Proposition 10.8.12
in [4]. Then there exists a small ball Br (z) such that (ak, bk)k∈{1,...n} is an (n, ε)

explosion at x for all x ∈ Br (z) and (ak, bk)k∈{1,...n} is in Bs(p)\B2r̂ (z) where s >>

r̂ >> r > 0: distance is continuous in X and comparison angles (which are measured
in M2(−V ) := hyperbolic space with curvature equal −V ) change continuously as
distances change continuously and stay away from zero (see [11], equation (44)).With
s >> r̂ >> r , we mean r̂

s << 1 and r
r̂ << 1.Going back to (B1(qi ), hi , qi )with our

Gromov–Hausdorff approximation, we see (once again dropping dependence on i for
readability) that there exists a ball Br (z̃) ⊆ B1/2(qi ) and an explosion (ãk, b̃k)k∈{1,...n}
in B2s(z̃)\Br̂ (z̃) (if i is large enough) such that (ãk, b̃k)k∈{1,...n} is an (n, 4ε) explosion
at x for all x ∈ Br (z̃): once again, this follows from the fact that angle comparisons
change continuously as distances change continuously and stay away from zero, and
distance changes at most by δ(i), with δ(i) → 0 as i → ∞, under our Gromov–
Hausdorff approximation. There are no ((n + 1), ε) explosions in (B1(qi ), hi , qi ),
as the Hausdorff dimension of the manifold (and hence the burst index) is n (see
Theorem 5.4 in [3] or Proposition 10.8.15 in [4]). Fix 0 < ε(n) << 1

2000n . But
then, using Theorem 5.4 in [3], see also Theorem 10.8.18 in [4], (more explicitly,
using the proofs thereof) we see that there is a r̃ = r̃(n, r) > 0 and a bi-Lipschitz
homeomorphism from f : Br̃ (z̃) → f (Br̃ (z̃)) ⊆ R

n,where the bi-Lipschitz constant
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may be estimated by 1
c(n)

di (x, y) ≤ | f (x)− f (y)| ≤ c(n)di (x, y) for some c(n) > 0,
and hence vol(B1(qi ), hi , qi ) ≥ ε(n, r) > 0 for i large enough, as r, n do not depend
on i . This shows, that after taking a subsequence, we must have vol(B1(qi ), hi , qi ) ≥
ε(n, r) > 0. �

Notes on Alexandrov Spaces
The fact that (B1(pi ), gi , pi ) and (B1(qi ), hi , qi ) Gromov–Hausdorff converge to

somemetric space (X = B1(p), d) after taking a subsequence follows fromGromov’s
Convergence Theorem (we apply the theorem to the closed balls B1− 1

i
(p) ⊆ B1(p)

with i ∈ N, and then take a diagonal subsequence). See 10.7.2 in [4]. The limit space
has the property that Bs(p) is complete for all 0 < s < 1 (by construction), and Bs(p)
is compact for all 0 < s < 1, since it is also totally bounded (due to the Bishop–
Gromov comparison principle: see the argument on the rough dimension of Ba(y) at
the beginning of the proof above).

In order to guarantee that (X = B1(p), d, p) is anAlexandrov space, a local version
of the Globalisation Theorem of Alexandrov–Toponogov–Burago–Gromov–Perelman
(Theorem 3.2 in [3]) is necessary, as the spaces we are considering are not complete.
Such a local version of the theorem exists, as pointed out in Remark 3.5 in [3]. Proofs
of theGlobalisation Theorem can be found in the book [1] and a similar proof, obtained
independently, is given in the paper [10]. Examining the proofs of the Globalisation
Theorem (in the case sec ≥ −1) in any of the proofs mentioned above, we see that
the proofs are local. Examining any of the proofs mentioned above, we see that the
following is true: if (B1(x0), g) is compactly contained in a smooth manifold, and
sec ≥ −1 on (B1(x0), g) and z ∈ B1(x0) has d(x0, z) = 1 − r , then the quadruple
condition (or the hinge condition , or any of the other equivalent conditions, see sect. 2
in [3] or 8.2.1 in [1], or the discussion on page 3 of [10] to see why these conditions
are equivalent) hold on the ball Brc(z) ⊆ B1(x0) for some fixed constant 0 < c << 1
independent of z or r . Note that the space (X = B1(p), d) we obtain this way is
locally intrinsic: for all x ∈ X , for all z, q ∈ Bε(x) for all B5ε(x) ⊆ B1−α(p) for
all 1 > α, ε > 0 there exists a length minimising geodesic between z and q which is
contained in B5ε(x): see the proof of Theorem 2.4.16 in [4].
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