Projekte des Instituts für Analysis und Numerik

Abgeschlossene Projekte

ALE-FEM für Zweiphasenströmungen mit Surfactants
Laufzeit: 01.11.2012 bis 30.09.2017

Numerische Berechnungen von Zweiphasenströmungen mit oberflächenaktiven Substanzen (Surfactants) sind sehr gefragt in verschiedenen wissenschaftlichen und technischen Anwendungen. Die Anwesenheit der Surfactants erhöht die Komplexität, der ohnehin schon herausfordernden Berechnung der Zweiphasenströmung. Surfactants verändern die Strömungsdynamik deutlich durch eine Senkung der Oberflächenspannung an der Grenzfläche. Darüber hinaus ist die Konzentration von Surfactants an der Grenzschicht oft nicht homogen wodurch Marangoni Kräfte induziert werden. Zusätzlich finden, im Falle von löslichen Surfactants, Adsorption und Desorption an der Grenzschicht und zwischen den Bulkphasen statt. Das Ziel dieses Projektes ist die Analyse und Implementierung von ALE-Finite-Elemente basierte Diskretisierung für die robuste und akurate Simulation von Zweiphasenströmungen mit löslichen und unlöslichen Surfactants im dreidimensionalen Fall.

Projekt im Forschungsportal ansehen

GRK 1554 Mikro-Makro-Wechselwirkungen in strukturierten Medien- und Partikelsystemen "Discretization of coupled pdes for surfacant influenced interfaces"
Laufzeit: 01.03.2012 bis 28.02.2017

Das Projekt befasst sich mit der Konzentrationsverteilung von Surfactants in den Kernphasen und auf der Oberfläche. Es sind FEM -basierte Lösungsverfahren für die gekoppelten Systeme partieller Differentialgleichungen zu entwickeln und zu analysieren.

Projekt im Forschungsportal ansehen

Diffusion of magnetic particles in magnetic fluid seals
Laufzeit: 01.06.2011 bis 31.05.2013

Modeling the influence of diffusion of magnetic partieles on the stability of dynamic magnetic fluid seal. Analysis and simulation for noncoezcive elliptic convective-diffusive problem, using mixed finite element finite volume approach.

Projekt im Forschungsportal ansehen

FEM für die Navier-Stokes-Gleichungen in zeitabhängigen Gebieten
Laufzeit: 01.05.2009 bis 31.12.2011

Ziel des Projektes ist die Entwicklung mathematischer Algorithmen zur Simulation von Strömungen mit freien Oberflächen um feste Hindernisse. Die nicht isothermen Strömungen werden hierbei als inkompressibel angenommen. Die entwickelten Methoden sollen zum Studium des Mikroverhaltens von Tropfen bei der Sprühkühlung verwendet werden. Das Projekt ist Bestandteil des DFG Graduiertenkollegs "Mikro-Makro-Wechselwirkungen in strukturierten Medien- und Partikelsystemen.

Projekt im Forschungsportal ansehen

Gekoppelte Simulation von Partikelpopulationen in turbulenten Strömungen
Laufzeit: 01.07.2007 bis 30.06.2010

Im Verbundsprojekt werden neue Methoden der angewandten Mathematik zur Behandlung gekoppelter Populationsbilanzen in Strömungsfeldern entwickelt und zur modellgestützten Analyse und Führung eines industriellen Kristallisationsprozesses genutzt. Die Ergebnisse der mathematischen Methodenentwicklung und deren Übertragung auf den industriellen Prozeß sollen über die Know-How-Transfer-Kette der Verbundpartner zur Analyse und Verbesserung von partikelbildenden strömungssensitiven Verfahrensprozessen eingesetzt werden.

Projekt im Forschungsportal ansehen

Numerical simulation of the interactions between a ferrofluid and an immersed permanent magnet
Laufzeit: 01.04.2007 bis 31.05.2010

This project is devoted to the numerical modelling of interactions between a ferrofluid with a free surface and a permanent magnet immersed in this ferrofluid.

It is a highly nonlinear problem involving the numerical simulation of magnetic fields, incompressible fluid flow and rigid body motion. All these components influence each other and both the position of the rigid bodies and the form of the domain occupied by the ferrofluid are generally not known in advance.

The goal is to develop robust, accurate and efficient solvers for problems of the mentioned type. This will include research on linearization strategies, time stepping techniques, discretization concepts and efficent solvers for the arising large sparse systems of linear equations. In addition, appropriate tools for handling the moving boundaries have to be developed.

Projekt im Forschungsportal ansehen

Hochauflösende numerische Verfahren für dynamische Zweiphasensysteme mit Surfactants
Laufzeit: 01.08.2006 bis 28.02.2010

In vielen zweiphasigen Prozessen spielen grenzflächenaktive Substanzen wie z. B. Tenside, sogenannte Surfactants (surface active agents), eine wesentliche Rolle. Diese lagern sich an der Grenzfläche eines Fluids an und verändern seine Grenzflächenspannung. Dadurch entstehen die Marangoni-Kräfte, die zu einem veränderten Strömungsverhalten nahe der Grenzfläche führen. Ziel des Projektes ist die Entwicklung, Analyse und Implementation hochauflösender numerischer Verfahren, um die Dynamik der sich wechselseitig beeinflussenden Prozesse besser verstehen zu können. Die Modellierung basiert auf den inkompressiblen Navier-Stokes Gleichungen für beide Phasen, je einer zusätzlichen Bilanz für die Konzentration des Surfactants in den Kernphasen und auf der Grenzfläche, einer thermodynamischen Gleichgewichtsbeziehung und einem Gesetz, das die Abhängigkeit der Grenzflächenspannung von der Grenzflächenkonzentration des Surfactants beschreibt. Numerisch erfordert die Bilanz der oberflächenaktiven Substanzen - mathematisch gesehen eine dynamische Randbedingung - eine sehr genaue Auflösung der dynamisch bewegten Grenzfläche, die durch isoparametrische finite Elemente höherer Ordnung und eine ALE-(Arbitrary-Langrangian-Eulerian)-Formulierung der Gleichungen in den Kernbereichen erzielt werden soll.

Projekt im Forschungsportal ansehen

Analysis und Numerik von SMB-Prozessen
Laufzeit: 01.02.2004 bis 31.10.2008

Ziel des Projektes ist die mathematische Modellierung und effiziente numerische Simulation von SMB-(Simulated-moving bed) Prozessen in der Verfahrenstechnik als Basis für die Anwendung von Optimierungsverfahren. Das Projekt ist Bestandteil der DFG-Forschergruppe 468 "Methods from discrete mathematics"

Projekt im Forschungsportal ansehen

Modellierung und FEM-Analysis in Membranreaktoren
Laufzeit: 01.09.2005 bis 31.08.2007

Ziel ist die Numerische Simulation der Strömungsphänomenen in Membranreaktoren. Die Modellierung führt auf nichtlineare gekoppelte Reaktions-Diffusions-Gleichungen und die inkompressiblen Navier-Stokes-Gleichungen mit zusätzlichen Reibungstermen. Der Einsatz analytischer Methoden führt zu vereinfachten Modellen die mit numerischen Verfahren effizient gelöst werden. Das Projekt ist Bestandteil der DFG-Forschergruppe 447 "Membranunterstützte Reaktionsführung"

Projekt im Forschungsportal ansehen

FEM zur numerischen Simulation von Ferrofluiden
Laufzeit: 01.01.2005 bis 31.07.2006

Ziel ist die Numerische Simulation der Form von Ferrofluidtropfen in einem gleichmäßigen äußerem Magnetfeld. Für das aus den Maxwell und der Young-Laplace Gleichung bestehende gekoppelte partielle Differentialgleichungssysteme wurden gekoppelte BEM-FEM Methoden für die Feldgleichungen und ein angepaßtes FD-Schema für die Berechnung der freien Oberfläche entwickelt.

Projekt im Forschungsportal ansehen

Numerische Methoden für Mehrskalenprobleme
Laufzeit: 01.01.2004 bis 31.12.2005

Ziel des Projektes ist die Entwicklung von numerischen Verfahren für Mehrskalenproblemen, deren direkte numerische Simulation Gitterweiten erfordert, die jenseits der heute verfügbaren Rechentechnik liegen. Im Fokus liegen variationelle Mehrskalenmethoden für die Simulation turbulenter Strömungen und die Analyse von RFG (residual free bubble) Techniken zur genauen Approximation von Lösungen partieller Differentialgleichungen mit Grenzschichten.

Projekt im Forschungsportal ansehen

Modellierung und FEM-Analysis in Membranreaktoren
Laufzeit: 01.09.2002 bis 31.08.2005

Ziel ist die Numerische Simulation der Strömungsphänomenen in Membranreaktoren. Die Modellierung führt auf nichtlineare gekoppelte Reaktions-Diffusions-Gleichungen und die inkompressiblen Navier-Stokes-Gleichungen mit zusätzlichen Reibungstermen. Der Einsatz analytischer Methoden führt zu vereinfachten Modellen die mit numerischen Verfahren effizient gelöst werden. Das Projekt ist Bestandteil der DFG-Forschergruppe 447 "Membranunterstützte Reaktionsführung".

Projekt im Forschungsportal ansehen

Graduierten Kolleg `Modellierung, Berechnung und Identifikation mechanischer Systeme`
Laufzeit: 01.03.1997 bis 28.02.2001

Zeitdiskretisierungsverfahren für das instationäre Navier-Stokes-Problem, numerische Behandlung partieller Differentialgleichungen, numerische Lösung von Kristallwachstumsprozessen, numerische Analyse von Filmsiedeprozessen.

Projekt im Forschungsportal ansehen

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Randwertprobleme für Willmoreflächen - Analysis, Numerik und numerische Analysis
Laufzeit: 01.10.2008 bis 31.03.2013

Die Willmoregleichung, d.h. die Euler-Lagrange-Gleichung zum Willmorefunktional, zählt zu den wichtigen und anspruchsvollen Herausforderungen der nichtlinearen Analysis: Sie ist quasilinear und von vierter Ordnung; viele aus der Theorie von Gleichungen und Systemen zweiter Ordnung her wohlbekannten Methoden versagen zu einem großen Teil. Dennoch konnten in letzter Zeit einige bemerkenswerte Fortschritte u.a. von L. Simon, E. Kuwert, R. Schätzle, T. Riviere u.a. erzielt werden. Bislang wurde das Willmorefunktional meist nur auf unberandeten kompakten Mannigfaltigkeiten studiert, da hier großer Gewinn aus globalen differentialgeometrischen Eigenschaften gezogen werden konnte. Hinsichtlich Randwertproblemen liegen erst ganz wenige Resultate vor: Die ohnehin schwierige Gewinnung von Kompaktheit / Abschätzungen wird hier nochmals komplizierter. Wir wollen mit numerischen Studien und analytischen Untersuchungen von Randwertproblemen in symmetrischen Prototypsituationen beginnen und damit eine Richtung aufzeigen, unter welchen Bedingungen zu erwarten sein wird, mit a-priori-beschränkten Minimalfolgen arbeiten und a-priori-beschränkte klassische Lösungen erhalten zu können. Es soll auch das allgemeinere und nicht mehr konform invariante Helfrich-Funktional studiert werden und mit der Analysis echt zweidimensionaler Randwertprobleme begonnen werden.  Darüber hinaus sollen numerische Algorithmen und Konvergenzsätze in allgemeineren Situation entwickelt werden, z.B. für Graphen über zweidimensionalen Gebieten. Diesbezügliche Ergebnisse könnten Entwicklungen hin zu parametrisch beschriebenen Flächen vorbereiten. Im vorliegenden Projekt werden Analysis, numerische Analysis und Numerik gleichberechtigt und eng miteinander verzahnt bearbeitet. Die Analysis profitiert von den numerischen Studien, während die Numerik ganz wesentlich auf die analytischen Vorarbeiten aufbaut. Die numerische Analysis schlie\ss lich setzt sowohl auf den numerischen als auch den analytischen Vorarbeiten auf und wirkt umgekehrt hierauf zurück.

Projekt im Forschungsportal ansehen

Galerkin-Verfahren fuer Kontrollprobleme mit partiellen Differentialgleichungen
Laufzeit: 01.10.2009 bis 30.09.2012

Das Projekt befasst sich mit der Entwicklung und Analyse von Diskretisierungen von Optimalsteuerungsproblemen, in denen die Zustandsgleichungen durch parabolische partielle Differentialgleichungen gegeben sind.

Projekt im Forschungsportal ansehen

Galerkin-Verfahren fuer Kontrollprobleme mit partiellen Differentialgleichungen
Laufzeit: 01.07.2006 bis 30.06.2008

Das Projekt befasst sich mit der Entwicklung und Analyse von Diskretisierungen von Problemenim Bereich der optimalen Steuerung partieller Differentialgleichungen unter Kontroll-und Zustands-schranken.

Projekt im Forschungsportal ansehen

Topological and geometrical methods in nonlinear higher order elliptic equations and related (second order) parabolic problems
Laufzeit: 01.01.2005 bis 31.12.2006

The main focus of the present project is on higher (i.e. at least 4th) order elliptic problems. Here, many of those methods familiar from second order equations do not work at all or need at least a fundamental modification. In order to gain a better understandingof nonlinear higher order equations in general we try to find out to which extent results from second order equations can be extended and generalized to higher order equations. The needed techniques are more involved and in many situations completely different.Beside our investigations on higher order elliptic equations we want to study the dynamical behaviour in certain semilinear parabolic equations, which are closely related to the stationary problems discussed in the first part.With these investigations we hope to form a basis for further investigations in higher order {\it parabolic} problems too. These are even more involved than higher order elliptic problems since they are known to enjoy no positivity preserving property at all.

Projekt im Forschungsportal ansehen

Elliptische und parabolische Probleme in der Hermiteschen Geometrie
Laufzeit: 01.12.2000 bis 30.09.2005

Konstruktion Hermitesch-harmonische Abbildungen auf nichtkompakten Mannigfaltigkeiten, Eigenschaften der entsprechenden parabolischen Systeme; Studium analoger Gleichungen mit dem komplex-holomorphen Zusammenhang anstelle des Riemannschen Levi-Civita- Zusammenhangs Existenz und Eigenschaften extremaler Metriken auf Kaehlerschen Mannigfaltigkeiten; Deformation Ricci-flacher Metriken.

Projekt im Forschungsportal ansehen

'Solutions to Ricci flow whose Scalar curvature is bounded in L^p (II)
Laufzeit: 01.01.2020 bis 31.12.2023

Ziele: The aim of this project is to further investigate the types of finite time singularities that occur for the Ricci flow in four dimensions in the real case, and higher dimensions in the Kaehler case, when the scalar curvature is bounded in the L^p norm

Projekt im Forschungsportal ansehen

Lösungen des Ricci-Flusses mit Skalarkrümmung beschränt in L^p
Laufzeit: 01.01.2017 bis 31.12.2021

Das Ziel dieses Projektes ist es, Singularitäten des Ricci-Flusses in vier Dimensionen zu verstehen, wenndie Topologie bzw. die Geometrie eingeschränkt ist. Für vier-dimensionale Lösungen mit beschränkter Skalarkrümmung wurde folgendes in Arbeiten von R. Bamler, Q. Zhang und (unabhängig davon) dem Antragsteller gezeigt: Falls die Lösung in endlicher Zeit singulär wird, dann sind die Singularitäten vom Orbifold-Typ. Weiterhin wurde in einer Arbeit des Antragstellers gezeigt, dass die Lösung mit dem Orbifold Ricci-Flussfortgesetzt werden kann. In diesem Projekt möchten wir die Situation untersuchen, dass die Skalarkrümmung inLp gleichmässig in der Zeit, oder durch (T-t)-dafür ein kleines a>0 zu jeder Zeit t

Projekt im Forschungsportal ansehen

Lösungen des Ricci-Flusses mit Skalarkrümmung beschränkt in L^p
Laufzeit: 01.10.2017 bis 31.12.2019

Das Ziel dieses Projektes ist es, Singularitäten des Ricci-Flusses in vier Dimensionen zu verstehen, wenn die Topologie bzw. die Geometrie eingeschränkt ist. Für vier-dimensionale Lösungen mit beschränkter Skalarkrümmung wurde folgendes in Arbeiten von R. Bamler, Q. Zhang und (unabhängig davon) dem Antragsteller gezeigt: Falls die Lösung in endlicher Zeit singulär wird, dann sind die Singularitäten vom Orbifold-Typ. Weiterhin wurde in einer Arbeit des Antragstellers gezeigt, dass die Lösung mit dem Orbifold Ricci-Fluss fortgesetzt werden kann. In diesem Projekt möchten wir die Situation untersuchen, dass die Skalarkrümmung in Lp gleichmässig in der Zeit, oder durch (T-t)-a für ein kleines a>0 zu jeder Zeit t

Projekt im Forschungsportal ansehen

Ricci fluss von singulären metrischen Räumen
Laufzeit: 01.04.2009 bis 31.03.2012

Der Ricci-Fluss ist eine parabolische Gleichung 2. Ordnung auf einer Mannigfaltigkeit. In dem Fall, dass die Mannigfaltigkeit einfach zusammenhängend ist und Dimension drei hat, wurde dieser Fluss von R.Hamilton, G.Perelman und anderen dazu benutzt, die Richtigkeit der Poincaré-Vermutung zu beweisen.
Mithilfe des Ricci-Flusses hofft man, noch viele andere offene geometrische Fragen beantworten zu können.
Dieses Projekt hat folgende Ziele:
1. Einen Ricci-Fluss für nicht glatte Anfangsdaten zu definieren.
2. Abschätzungen herzuleiten, die nur von einfachen geometrischen Größen anbhängig sind. Zu diesen geometrischen. Größen gehören: Volumen, Durchmesser, untere Krümmungsschränken, Distanz.
3. Besseres Verständnis für Räume mit unteren Krümmungsschränken zu bekommen
4. Besseres Verständnis für die Singularitäten des Ricci-Flusses zu bekommen
Gegenstand des Teilprojekts von Herrn Arthur Schlichting sind Punkte 1 und 3, wobei die bisherigen Ergebnisse auch neue Informationen zu 2 und 4 liefern.
In Teil I der Arbeit beschäftigt sich Herr Schlichting mit dem Glätten geklebter Mannigfaltigkeiten. Genauer: Wir betrachten zwei Riemannsche Mannigfaltigkeiten mit Rand, wobei
a) die Riemannschen Mannigfaltigkeiten isometrisch am Rand sind,
b) die Summe der zweiten Fundamentalformen am Rand nichtnegativ ist
c) die Eigenwerte des Krümmungsoperators nach unten durch K beschränkt sind.

Durch Identifikation der Ränder ('Kleben') erhält man eine Riemannsche Mannigfaltigkeit mit stetiger Metrik (vgl. A.Petrunin, N.N. Kosovskii). Herr Schlichting hat gezeigt, dass auf der geklebten Mannifaltigkeit glatte Metriken konstruiert werden können, so dass die Eigenwerte des Krümmungsoperators nach unten durch K-s beschränkt sind, wobei s beliebig klein ist. Die geglätteten Mannigfaltigkeiten konvergeiren dann in der C0-Norm gegen die ursprungliche geklebete Mannigfaltigkeit.
In Teil II der Arbeit geht es speziell um den Fall K=0. In diesem Fall hat er gezeigt, dass ein Riccifluss der geklebten Mannigfaltigkeit existsiert, der die Mannigfaltigkeit glättet, so dass die Krümmungsschranke K= 0 erhalten wird.

Projekt im Forschungsportal ansehen

The SHTC-Model and Multiphase Flows
Laufzeit: 01.01.2019 bis 31.12.2022

The modeling, analysis and numerical treatment of multiphase fluid dynamics provide several challenging problems treated in the past as well as in very recent literature. Recently interest in the works by Godunov, Müller, Ruggeri, Romenski and their co-authors is growing. In particular Godunov and Romenski suggest an approach which leads to symmetric hyperbolic systems which are derived from physical principles, i.e. symmetric hyperbolic and thermodynamic consistent models (SHTC). These hyperbolic models are capable of describing multiphase fluid dynamics including heat conduction and viscosity which are typically second order effects. In this project we want to combine the expertise on these models provided by Prof. Romenski and Prof. Dumbser with our expertise on sharp interface models. This project includes different goals related to the diverse aspects of the topic. One main problem is to discuss the Riemann problem for a barotropic submodel of the main model provided by Romenski. With this we obtain further analytical insight and additionally can verify numerical methods.
A further aim is to reveal the connection between the diffuse and the sharp interface two-phase flows considered in this context.

Projekt im Forschungsportal ansehen

Two-Phase Flows with Phase Transition - Modelling, Analysis and Numerics
Laufzeit: 01.01.2019 bis 31.12.2022

Starting from existing work in this research group on this topic, our aim is to discuss several open questions in this context. Concerning the modelling it seems in the literature that there is a need to further investigate the derivation and formulation of balance laws in the presence of singularities, e.g.
shocks and phase boundaries. Due to the general character of the underlying theory this will be also helpful for other models and problems. In the preceding work general analytical results for isothermal two-phase flows were obtained. A further objective is to discuss general flows where heat conduction is taken into account. In particular we want to use the hyperbolic formulation introduced by Romenski. For this work we will also collaborate with the group of Prof. Munz in Stuttgart. As in the isothermal case we first want to investigate the corresponding Riemann problem. The numerics of two-phase flows are still a major problem. In particular when multidimensional problems are considered. Effects like surface tension and phase creation have to be considered. In the context of sharp interface models we suggest to investigate algorithms used for combustion problems since we expect some analogies in the numerical treatment of these topics. Parallel to these questions we further seek to compare the obtained results to other diffuse interface models used in the group (Warnecke/Matern) and the literature. Thus this project is also strongly linked to the previous one.

Projekt im Forschungsportal ansehen

Radialsymmetrische Lösungen der ultrarelativistischen Euler-Gleichungen als Benchmark-Tests zu numerischen Verfahren für hyperbolische Erhaltungsgleichungen in höheren Raumdimensionen
Laufzeit: 01.10.2020 bis 30.09.2022

Mit Hilfe von Systemen hyperbolischer Erhaltungsgleichungen lassen sich Wellenausbreitungen
von strömenden Flüssigkeiten und Gasen unter Vernachlässigung von Reibungseffekten beschreiben. Solche nichtlinearen Systeme ermöglichen insbesondere die Vorhersage von Stosswellen, die sich im allgemeinen selbst für glatte Anfangsvorgaben der Felder (z.B. für die Massendichte, die Strömungsgeschwindigkeit und den Druck) zu späteren Zeitpunkten ausbilden können. Dabei treten dann sprunghafte Änderungen der Felder beim Durchqueren der Stossfronten auf. Im Preprint 02/2020 "Radially symmetric solutions of the ultra-relativistic Euler equations"(erscheint in "Methods and Applications of Analysis") haben wir für die ultrarelativistischen Euler-Gleichungen in drei Raumdimensionen ein spezielles numerisches Verfahren zur Berechnung der radialsymmetrischen Lösungen entwickelt, das sich mit Hilfe von bestimmten koordinatenabhängigen Kurvenintegralen
auf nur eine Raumdimension (für den Radius) reduzieren lässt. Dieses System hyperbolischer Erhaltungsgleichungen zeigt viele Ähnlichkeiten mit den klassischen Euler-Gleichungen, ist aber mathematisch einfacher, da eine Gleichung für die Teilchenzahldichte vom Rest des Systems entkoppelt. Mit Hilfe dieses Verfahrens konnten wir erstmals die Entwicklung und den Kollaps einer implodierenden Stosswelle für geeignete Anfangsdaten (Start mit einer Überdruckblase symmetrisch zum Nullpunkt) numerisch simulieren. Die voll dreidimensionalen numerischen Methoden waren bisher nicht in Lage den dabei resultierenden Blow-up der Felder zu approximieren, da dieser in einem sehr kleinen Bereich der Raum-Zeit stattfindet. Deshalb haben wir nun das Verfahren auch für
den zylindersymmetrischen Fall entwickelt, um es direkt mit den numerischen Lösungen
zweidimensionaler Anfangswertprobleme vergleichen zu können. Da es bisher vergleichsweise
wenig Literatur zu der numerischen Simulation dieses Systems gibt, wird so aus zwei Gründen ein wichtiger Beitrag geleistet. Zum einen werden so erstmals echt mehrdimensionale Probleme numerisch gelöst und mit verfügbaren Lösungen verglichen, welche qualitativ nahezu exakten Lösungen entsprechen. Zum anderen können dann mit den so verifizierten Methoden komplexere Probleme simuliert welche dann auch als Vergleich für weitere Verfahren dienen. Es ist auch davon auszugehen, dass für Verfahren höherer Ordnung geeignete Limiter konstruiert werden müssen um die Stabilität der Verfahren zu gewährleisten.

Projekt im Forschungsportal ansehen

Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications
Laufzeit: 01.01.2019 bis 31.12.2021

Out intention is to intensify cooperation in the mathematical field of " Advanced Numerical Methods for Nonlinear Hyperbolic Laws and Their Applications" between 11 research institutions: On the Chinese side five top universities, i.e. Beijing University of Aeronautics and Astronautics, Peking University, Tsinghua University, and Xiamen University, as well at the Institute of Applied Physics and Computational Mathematics , Beijing ; on the German side RTWH Aachen University, as well as the universities of Freiburg, Mainz, Magdeburg, Stuttgart and Würzburg. During the past decade individual cooperation and joint publications by specialists involved in our project showed parallel interests and activites that should be coordinated. The main sources  of such occasional contacts were international conferences, research visits, and longer exchanges of young scientists.

Fundamental mathematical research in our field has a strategic importance for many challenges in other fields of research and development, e.g. in engineering, physics and ecology. Central topics are advanced numerical methods for nonlinear hyperbolic balance laws that are particularly important for incompressible fluid flows and related systems of equations. The numerical methods we are focused on are finite volume/finite difference, discontinuous Galerkin methods, and kinetic-type schemes. There are still very basic and challenging open mathematical research problems in this field, such as multidimensional shock waves, interfaces with different phases or efficient , problem suited adaptive algorithms. Consequently, our main objective is to derive and analyze novel high-order accurate schemes that will reliably approximate underlying physical models and preserve important physically relevant properties. This combination remains an open and challenging problem and will be addressed in our project proposal.
Within this project we will establish a long-term cooperation between our groups, particularly among young scientists, in order to achieve a significant development in this field  and to meet future demands from numerous partical applications. We will also take this project as basis to support each other to proceed research on higher level cooperation such as the framework of 973 in China, SFB in Germany and even the European framework.

Projekt im Forschungsportal ansehen

Forced Periodic Non-isothermal Operation of Chromatographic Columns
Laufzeit: 01.11.2017 bis 31.10.2021

Chromatography is a powerful and very selective separation and purification process exploiting specific interactions of the compounds to be separated with dedicated adsorbents. A high purity and a high yield at reasonable production rate are the main demands of scientists working in this area. Typically isothermal conditions are applied, although potential was seen already in non-isothermal operation. The temperature fluctuations were found to be partly helpful in the case of gas phase separations. However, such effects have been neglected in the liquid phase chromatography. This project focuses on optimizing the separation of two components of a liquid mixture whose concentrations are effected by the interaction and reaction with the solid phase packed inside the column. We impose a non-isothermal condition by controlling temperature variations in the column in such a way that a preceding component of the mixture is warmed up to leave the column more quickly as compared to the succeeding component which is cooled down and, thus, migrates slower. The basic model, which we will consider in the beginning, is called as equilibrium dispersive model (EDM). It incorporates the well-known mass balance equation of a column coupled with the energy balance and specific initial and boundary conditions. The aim of this project is to provide theoretical understanding of the said setup, to resolve sharp discontinuities in the absence of axial dispersion by using Riemann Problems approach, to analyze the effects of temperature fluctuations on the process, and to approximate the full nonlinear model by using a high resolution finite volume scheme. Experimental tests will be done later on in collaboration with scientists in MPI Magdeburg, who are working on experimental chromatographic processes.

Projekt im Forschungsportal ansehen

Graduiertenkolleg 1554, Micro-Macro-Interactions in structured Media and Particle Systems
Laufzeit: 01.07.2016 bis 31.03.2021

Disperse Zwei-Phassen-Strömungen mit Phasenübergängen
Sowohl in der Natur als auch in industriellen Anwendungen treten mehrkomponentige Mehrphasensttrömungen auf. Die Modellierung und Simulation kompressibler Mehrphasenströmungen stellt eine interdisziplinäre Herausforderung sowohl für Mathematiker, als auch für Physiker und Ingenierure oder Chemiker dar. Die Schwierigkeiten resultieren hauptsächlich aus den Prozessen an den Phasengrenzen, insbesondere aus dem Massenübergang zwischen den einzelnen Phasen. Massentransfer erfolgt dabei sowohl durch den Phasenübergang, als auch durch chemische Reaktionen.
Obwohl die Untersuchung von Phasengrenzen z. B. zwischen Gasen und Flüssigkeiten schon seit langem Gegenstand der Forschung ist, sind die Ergebnisse in diesem Gebiet noch unzureichend und es gibt viele offene Fragen.
Im Projekt werden schwach hyperbolisch Mehrphasen-Gemischgleichungssysteme bestehend aus partiellen Differentialgleichungen analytisch diskutiert und numerisch berechnet. In den Euler-Euler-Beschreibungen werden sowohl Massen-, als auch Impuls- und Energiebilanzen einzelner Komponenten oder Phasen sowie Bilanzen für Blasenanzahldichte, Blasengröße oder das Volumen der Komponenten bzw. Phasen berücksichtigt.

Projekt im Forschungsportal ansehen

Simulation von "excitation contraction coupling" in ventrikulären Kardiomyzyten
Laufzeit: 01.04.2016 bis 31.12.2020

Weitere Förderung: Deutsche Forschungsgemeinschaft (DFG): 1.10.2013 - 15.02.2017

Arrhytmia und Fibrillation sind führende Ursachen für Herztod. Sie können durch Alternas und arrhythmogene Prozesse auf Zellebene verursacht werden. Ca2+Dynamik ist involviert bei einigen von ihnen. Das Projekt wird zelluläre arrhythmogene Prozesse untersuchen, die zum Teil  bekannt aber in ihrer Wechselwirkung wenig verstanden sind, durch die Simulation von excitation contraction coupling (ECC) in ventrikulären Kardiomyozyten. Membrandepolarisation wird in tausenden diadischen Spalten in ein Kalziumsignal übertragen. Der große Bereich von Raum- und Zeitskalen des Problems verlangt eine Multiskalentechnik, die die Konzentration in den Spalten durch quasistatische Greensche Funktionen beschreibt,  und die Reaktions-Diffusions-Prozesse im Volumen mit Finite-Element-Methoden (FEM) simuliert. Die Dynamiken der Ionenkanäle in den Spalten werden wir stochastisch simulieren. Das Membranpotentialmodell wird zelltyp- und speziesspezifisch sein. Wir werden problemspezifisches hybrid stochastisch-deterministisches Zeitschritt-Management entwickeln. Der Bereich von Raum- und Zeitskalen im Volumen erfordert räumliche und zeitliche Adaptivität der FEM. Wir werden Algorithmen für ihre gleichzeitige Nutzung erarbeiten, und lineare implizite Runge-Kutta-Methoden höherer Ordnung einsetzen, um den Anforderungen an das Zeitschritt-Management gerecht zu werden. Für die Nutzung von Hochleistungsrechnern werden wir angepasste "load balancing"-Methoden entwickeln.

Projekt im Forschungsportal ansehen

Graduiertenkolleg 1554, Micro-Macro-Interactions in structured Media and Particle Systems "Mehrkomponenten-Phasenfeld-Gemischmodelle mit chemischen Reaktionen"
Laufzeit: 01.08.2017 bis 31.03.2020

Im Fokus dieser Arbeit steht ein von Dreyer, Giesselmann und Kraus hergeleitetes Phasenfeld-
Gemischmodell zur Beschreibung reaktiver Mehrphasen-Strömungen. Obwohl die Untersuchung von Phasengrenzen z.B. zwischen Gasen und Flüssigkeiten schon seit langem Gegenstand der Forschung ist, sind die Ergebnisse in diesem Gebiet noch unzureichend und es gibt viele offene Fragen.
Die Einführung eines Phasenfeldes erlaubt eine einfachere Behandlung der Probleme, die durch scharfe Phasengrenzen auftreten. Daher kann die angestrebte Arbeit einen wichtigen Beitrag zur Forschung im Bereich der Simulation und Modellierung kompressibler Mehrphasenströmungen leisten.
 
Das hier betrachtete Modell und geeignete Untermodelle sollen analytisch diskutiert und numerisch berechnet werden. Sofern möglich, sind exakte Lösungen zu konstruieren. Von besonderem Interesse sind die Quellterme des Modelles, die chemische Reaktionen und Phasenübergänge beschreiben. Umfangreiche Vergleiche mit anderen Modellen in der Literatur und experimentellen Daten werden durchgeführt. Hierzu soll eine kooperation mit der Arbeitsgruppe von Prof. Thévenin (OvGU Verfahrenstechnik) im Rahmen des Kollegs erfolgen.

Projekt im Forschungsportal ansehen

An Immersed Boundary Method for Gas Flows around Moving Solids
Laufzeit: 01.01.2016 bis 31.12.2019

This project considers a new diffuse interface model for the numerical simulation of compressible flows round fixed and moving solid bodies of arbitrary shape. The solids are assumed to be moving rigid bodies, without any elastic properties. The mathematical model is a simplified case of the seven-equation Baer-Nunziato model of compressible multi-phase flows. The resulting governing PDE system is a nonlinear system of hyperbolic conservation laws with non-conservative products. The geometry of the solid bodies is simply specified via a scalar field that represents the volume fraction of the fluid present in each control volume. This allows the discretization of arbitrarily complex geometries on simple uniform or adaptive Cartesian meshes. One main goal was to prove that at the material interface, i.e. where the volume fraction jumps from unity to zero, the normal component of the fluid velocity assumes the value of the normal component of the solid velocity. We were able to show that this result can be directly derived from the governing equations, either via Riemann invariants or from the generalized Rankine Hugoniot conditions according to the theory of Dal Maso, Le Floch and Murat.which justifies the use of a path-conservative approach for treating the nonconservative products.

Projekt im Forschungsportal ansehen

Two phase mixture conservation laws for flows with chemical reactions
Laufzeit: 01.05.2014 bis 30.04.2018

We want to use the system of two mixture conservation laws to model chemical reactions in bubble column reactors. These partial differential equations are complemented by mass balances and reaction kinetics for the chemical reactions. The aim is to develope efficient numerical methods to compute examples which come from specific experiments that are being made by cooperation partners.

Projekt im Forschungsportal ansehen

Numerical simulation of population balance equations and lime shaft kilns
Laufzeit: 01.06.2013 bis 27.08.2016

The numerical simulation of a one-dimensional mathematical model is developed describing the lime calcination process in different types of shaft kilns. The model comprises a system of ordinary differential equations derived from mass and energy balances. A particle model for the chemical reaction is used and is connected to the energy balance equations for the gas and the solid inside the kiln taking into account the size distribution of solid particles.

This mixed initial value problem leads to a very unstable behavior of the existing numerical methods for boundary value problems. A stable numerical scheme for the solution of the equations is developed and analyzed. With this the influence of several parameters on the lime calcination process can be investigated. The results of this study can be transferred directly to the praxis for design, operation, regulation and optimization of normal shaft kilns.

Projekt im Forschungsportal ansehen

Numerics of population balance equations in biology
Laufzeit: 01.04.2011 bis 31.12.2014

In my field of research I deal with the evolution of distributed quantities in epidemiology. The underlying mathematical model is complex and consists of ordinary, partial differentials and integral terms. I want to develop a convergent numerical scheme solving a weakly coupled system of those partial integro differential equations approximately. Beginning with a testcase of 2 independent variables / characterics of such an evolution process it will be the aim to deal with a high dimensional model later on.

Projekt im Forschungsportal ansehen

Discontinuous Galerkin Methods for Reaction-Diffusion Systems: A Case of Intracellular and Intercellular Calcium Dynamics
Laufzeit: 01.10.2010 bis 31.03.2014

Kalzium ist ein wichtiger Botenstoff. Kalziumwellen übermitteln Signale in lebenden Zellen und nehmen an der Kommunikation zwischen Zellen teil. Die Dynamik der Konzentration von Kalziumionen ist durch einen Übergang von lokalen stochastischen Ausstößen aus Puffern zu globalen Wellen und Oszillationen gekennzeichnet. Die Modellierung der Diffusion, der Bindung und des Membrantransports von Kalziumionen führt auf ein System von Reaktions-Diffusions-Gleichungen. Diskontinuierliche Galerkin-Methoden verbinden Eigenschaften der Finite-Element-Methoden und der Finite-Volumen-Methoden. Diese robusten und genauen Methoden finden eine immer stärkere Verbreitung.
Dieses Projekt soll effiziente, zuverlässige, adaptive numerische Lösungen zu Reaktions-Diffusions-Systeme für obige Anwendungen entwickeln.

Projekt im Forschungsportal ansehen

International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering Magdeburg "Efficient and accurate numerical simulations of non-isothermal nonlinear reactive chromatographic models"
Laufzeit: 01.04.2010 bis 31.07.2013

In this work models capable to describe non-reactive and reactive liquid chromatography were investigated numerically and theoretically. These models have a wide range of industrial applications e.g. to produce pharmaceuticals, food ingredients, and fine chemicals. Two established models of liquid chromatography, the equilibrium dispersive model and the lumped kinetic model, were analyzed using Dirichlet and Robin boundary conditions to solve the column balances. The models consist of systems of convection-diffusion-reaction partial differential equations with dominating convective terms coupled via differential or algebraic equations. The Laplace transformation is used to solve them analytically for the special case of single component linear adsorption. Statistical moments of step responses were calculated and compared with numerical predictions generated by using the methods studied in this thesis for both sets of boundary conditions. For nonlinear adsorption isotherms, only numerical techniques provide solutions. However, the strong nonlinearities of realistic thermodynamic functions and the stiffness of reaction terms pose major difficulties for the
numerical schemes. For this reason, computational efficiency and accuracy of numerical methods are of large relevance and a focus of this work. Another goal is to analyze the influence of temperature gradients on reactive liquid chromatography, which are typically neglected in theoretical studies. By parametric calculations the influence of  temperature gradients on conversion and separation processes during reactive liquid chromatography were analyzed systematically. Additionally, the complex coupling of concentration and thermal fronts was illustrated and key parameters that  influence the reactor performance were identified. Two numerical schemes, namely the finite volume scheme of Koren and the discontinuous Galerkin finite element method, were applied to numerically approximate the models considered.
These schemes give a high order accuracy on coarse grids, resolve sharp fronts, and avoid numerical diffusion and dispersion. Several case studies to analyze non-reactive and reactive liquid chromatographic processes are carried out. The results of the suggested numerical methods were validated qualitatively and quantitatively against some finite volume schemes from the literature. The results achieved verify that the proposed methods are robust and well suited for dynamic simulations of chromatographic processes.

Projekt im Forschungsportal ansehen

International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering Magdeburg " The Singular Coagulation and Coagulation-Fragmentation Equations"
Laufzeit: 01.08.2009 bis 30.07.2013

Certain problems in the physical sciences are governed by the coagulation and the coagulation-fragmentation equations. These equations are a type of integro-differential equations which are also known as aggregation and aggregation-breakage equations respectively. The coagulation (aggregation) term describes the kinetics of particle growth where particles can coagulate (aggregate) to form larger particles via binary interaction. On the other side, the fragmentation (breakage) term describes how particles break into two or more fragments. The term aggregation covers two processes, the coagulation and agglomeration process. The coagulation process is when particles aggregate forming a new particle where it is not possible to define them in the new particle. The agglomeration process is when particles aggregate and it is possible to define them in the new particle. The coagulation and agglomeration processes are often found in liquid and solid substance respectively. Mathematically the two processes are described by the same equation, therefore we will refer to it as coagulation.Breakage and fragmentation are also synonyms. In many applications, the size of a particle is considered as the only relevant particle property. If we describe the size of a particle by its mass, we have that during the coagulation process the total number of particles decreases while by the fragmentation process the total number of particles increases. In the coagulation process as well as in the fragmentation process the total mass remains constant. Examples of these processes can be found e.g. in astrophysics , in chemical and process engineering, polymer science, and aerosol science.

The aim of this work was to present some results related to the existences and uniqueness of solutions to the coagulation and the coagulation equation with multifragmentation.

We presented a proof of an existence theorem of solutions to the Smoluchowski coagulation equation for a very general class of kernels. This class of kernels includes singular kernels. The important Smoluchowski coagulation kernel for Brownian motion, the equi-partition of kinetic energy (EKE) kernel, and the granulation kernel are covered by our analysis. Our result is obtained in a suitable weighted Banach space of L^1 functions. We define a sequence of truncated problems from our original problem in order to eliminate the singularities of the kernels. Using the contraction mapping principle, we proved the existence and uniqueness of solutions to them. Using weak compactness theory, we prove that this sequence of solutions converges to a certain function. Then it was shown that the limiting function solves the original problem. The uniqueness result was obtained by taking the difference of two solutions and showing that this difference is equal to zero by appliying Gronwall’s inequality.

Using the same technique we proved the existence and uniqueness of solutions to the singular coagulation equation with multifragmentation in a suitable weighted Banach space of L^1 functions extending the previous result. The Smoluchowski coagulation kernel for Brownian motion, the equi-partition of kinetic energy (EKE) kernel, and the granulation kernel are examples of singular coagulation kernels which are covered in our analysis. It is important to point out that there is no previous existence result mentioned kernels of solution to the coagulation-fragmentation equation with singular kernel.

Projekt im Forschungsportal ansehen

Discontinuous Galerkin Method for Solving the Shallow Water Equations
Laufzeit: 01.04.2010 bis 31.03.2013

The shallow water equations (SWE) are derived from the incompressible Navier-Stokes equations using the hydrostatic assumption and the Boussinesq approximation. The SWE are a system of coupled nonlinear partial differential equations defined on complex physical domains arising, for example, from irregular land boundaries. The discontinuous Galerkin methdos (DG methods) is are a from of methods for solving partial differential equations. The combine features of the continuous framework and have been succesfully appled to problems  arising from a wider range of applications. In this project, we formulate the discontinuous Galerkin methods (DG methods) for solving the shallow water equations (SWE) and study them using methods of numerical analysis

Projekt im Forschungsportal ansehen

Fluidized Beds
Laufzeit: 01.04.2008 bis 31.03.2013

The traditional importance of heat and mass transfer in physics and engineering have led to many physical interesting and mathematically challenging problems in relation to nonlinear parabolic and hyperbolic equations. From the process engineering point of view, the fabrication and subsequent treatment of disperse products are very important. This is due to the fact that 60% of all products of the chemical industry are particles.The work is on the modeling of heat and mass transfer in gas-solid-fluidized beds with spray injection which are widely used for the formation of particles from liquid solutions or suspensions as well as for the coating of particles with solid layers for the production of functional surfaces to enhance their handling properties, e.g. instant properties, controlled release or protection for chemical reactions.
Such a fluidized bed spray granulation (FBSG) system involves high heat and mass transfer and mixing properties, as well as the coupling of wetting, drying, particle enlargement, homogenization and separation processes. In FBSG, the liquid is sprayed with a nozzle as droplets on solid particles. The droplets are deposited on the particles and distributed through spreading. The solvent evaporates in the hot, unsaturated fluidization gas, thereby the solid grows in layers on the particle surface. This process is called granulation or layering (coating). The process conditions in the injection zone have a strong influence on the local particle volume concentrations, particle velocities, deposition of the liquid droplets and solidfication of the solid content of the liquid and subsequent product qualitiy. Fluidized beds are widely used to achieve either chemical reactions or physical processing that require interfacial contact between gas and particles. Heat transfer is important in many of these applications, either to obtain energy transfer between the solid and gas phases or to obtain energy transfer between the two-phase mixture and a heating/cooling medium.The latter case is particularly important for fluidized bed reactors which require heat addition or extraction in order to achieve thermal control with heats of reaction. The project aims to compute balance laws for fluidized beds with discontinuous Galerkin methods.

Projekt im Forschungsportal ansehen

GRK 1554 Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Exact Riemann solutions to selected resonant hyperbolic systems"
Laufzeit: 01.06.2009 bis 31.03.2013

A variety of phenomena in nature and engineering can be described by the resonant hyperbolic systems, such as the tsunami waves in the ocean, the arterial and venous systems of hemodynamics, the jet engine of aircraft and rocket propulsion systems. The Riemann problem serves as building blocks for the existence and uniqueness of the general Cauchy problem of hyperbolic systems. Hence in this project, we aim to completely solve the Riemann problem for selected resonant hyperbolic systems: the gas dynamic equations in a duct of variable cross–sectional areas and the shallow water equations with a jump in the bottom topography. In the context of the Riemann solutions to the consideration resonant hyperbolic systems, the challenges both for theoretical and numerical studies are here. The first one is to reveal the structure of all resonant waves due to the fact that waves of different families are not well separated and coincide with each other. The second one is to uniformly compute the Riemann problem for any Riemann initial data. The third one is to determine the existence and uniqueness of the weak solutions for the general problem. We solved these problems in [Han et al. 2010, 2012]. The results are summarized in the following.

  • The velocity function was introduced to determine the wave curves of the stationary wave. The existence of the stationary waves has been studied for the first time. Specifically, for the gas dynamic equations in a duct of variable cross–sectional areas, on one hand if the duct is expanding monotonic, the stationary wave always exists; on the other hand if the the duct is converging monotonic, the stationary wave exists if and only if the variation of the duct is small enough. To be precise, we defined two critical duct areas to justify that certain stationary waves exist or not. For the shallow water equations, we validated that the water can always spread across a lowered bottom step; But the water can go across an elevated bottom step if and only if a critical step size is larger than the actual jump height of the bottom step. The critical step size is determined by the height and the Froude number of the inflow state. The existence for these two systems provides the methodology for other resonant hyperbolic systems, as well as for the general resonant hyperbolic systems.
  • Two basic types of the resonant waves were carefully studied. The first type is due to the coincidence of transonic rarefactions and stationary waves. While the second type is due to the coincidence of stationary waves with 0 speed shocks. The existence and monotonicity of two corresponding composite wave curves were carefully established.
  • For simplicity, two combination wave curves in the state space were named L-M and R-M wave curves. They can be classified into different basic cases. The wave configurations and the details of the L-M and R-M wave curves have been completely examined and studied.
  • The intersection points of the L–M and R–M curves correspond to the intermediate states of the Riemann solutions. The L-M curve is decreasing and the R-M curve is increasing for most cases. Hence the Riemann solution exists uniquely. However, bifurcations appear in certain cases of L-M and R-M curves. Due to the bifurcations, the L-M and R-M curves are folding in the state space. Therefore, there are more than one intersection points for L–M and R–M curves. In such kind of the case the Riemann solution is nonunique.
  • To single out the physically relevant solution among all the possible Riemann solutions, we compared the nonunique Riemann solutions of the gas dynamic equations in ducts with the averaged numerical solutions to compressible axisymmetrical Euler equations computed by the GRP scheme in a cylindrical tube based on unstructured triangle meshes. Here GRP is the abbreviation of the generalized Riemann problem. Andrianov and Warnecke in [1] suggested using the entropy rate admissibility criterion to rule out the unphysical solutions. However, several examples have been found for which the solution picked out does not have the maximum increase in entropy. Moreover, numerous numerical experiments show that the physically relevant solution is always located on a certain branch of the L–M curves. The bifurcation introduces two additional solutions, but the physical relevant solution is still on the original branch [Han et al. 2013].
In addition, a reduced 3 x 3 mathematical model for the blood flows in medium and large size arteries belongs to the considered resonant hyperbolic systems. The governing system for the blood flows is coupled with tube laws including geometrical and mechanical properties of the blood vessels. The high non-linearity of the tube law is a great challenge for solving the Riemann problem. The present aim of this project is to construct Riemann solutions for subcritical and supercritical Riemann initial data in a uniform manner.

Projekt im Forschungsportal ansehen

Untersuchung des Einflusses der Korngrößenverteilung und der Betriebsbedingungen auf die Qualität und den Energieverbrauch beim Brennen von Kalk in Schachtöfen
Laufzeit: 01.07.2010 bis 30.06.2011

Zur Herstellung von Kalk (CaO) wird der Rohstoff Kalkstein (CaCO3) unter Hitze zersetzt, wobei Kohlendioxid (CO2) abgespalten wird. Dieser Kalzinierungsprozess findet bei sehr hohen Temperaturen in einem Schachtofen statt. Der Kalkstein wird von oben in den Ofen eingefüllt und am unteren Ende wird der Kalk abgezogen. Heiße Gase fließen im Gegenstrom von unten nach oben und werden durch die Verbrennung von seitlich zugeführtem Brennstoff erhitzt. Damit wird der Ofen in die folgenden drei Zonen unterteilt: die Vorwärmzone, die Brennzone und die Kühlzone.

Mathematisch kann die chemische Reaktion durch eine Differentialgleichung für den Umsatzgrad beschrieben werden, die numerisch gelöst werden muss. Weiterhin gelten Energiebilanzgleichungen für die Solid- und Gastemperaturen, die den Wärme- und Massentransport beschreiben. Dies sind gekoppelte gewöhnliche Differentialgleichungen in einer räumlichen Variablen mit Anfangsbedingungen von verschiedenen Seiten des Ofens, wodurch ein System von Randwertproblemen gegeben ist.

In einem ersten Schritt wird eine monodisperse Verteilung der Kalksteine angenommen, um das allgemeine Verhalten des Prozesses zu beobachten und einen stabilen numerischen Code bereitzustellen. Hierbei wird auch der Einfluss des Wärmeverlustes durch die Wände und die axiale Wärmeleitung berücksichtigt. Diese Informationen fließen dann in die Simulation des Prozesses mit einer Korngrößenverteilung ein. Durch eine Vielzahl an Parametervariationen soll der Energieverbrauch optimiert werden.

Projekt im Forschungsportal ansehen

GRK-Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Numerical methods for population balance equations with high property space dimension"
Laufzeit: 01.08.2007 bis 31.03.2011

The topic of this project is the numerical analysis and computation of population balance equations (PBEs).
Aggregation and breakage PBEs can be rewritten in mass conservative form whereas growth is number conserving. Therefore, one of our aims is to achieve the coupling of all the particulate processes in such a way that both number and mass are preserved. We investigated mathematically and verified numerically schemes which are both number and mass preserving for the coupled processes. The second aim is to study the existence of approximated solution using the finite volume scheme for binary aggregation and general breakage problem. Further, we explored the stability and the convergence analysis of the method for non-linear aggregation and linear breakage problem. This is an extension of the results given by J.P. Bourgade and F. Filbet. Moreover, we also study the two-dimensional problems by using sectional methods such as the cell average and the fixed pivot techniques. The doctoral thesis was submitted in November 2010.

Projekt im Forschungsportal ansehen

International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering Magdeburg "Mathematical Theory for the Dynamics of Coagulation-Fragmentation Equations for Process Engineering"
Laufzeit: 01.10.2007 bis 30.09.2010

We are considering coagulation-fragmentation equations which are a type of partial integro-differential equations. For these we are considering typical questions of mathematical and numerical analysis. The coagulation-fragmentation equations model the dynamics of cluster growth and describe the time evolution of a system of clusters under the combined effect of coagulation and fragmentation. Each cluster is identified by its size (or volume) which is assumed to be a positve real number. From a physical point of view the basic mechanisms taken into account are the coalescence of two clusters to form a larger one and the breakage of clusters into smaller ones. These models are of subtantial interest in many areas of science: colloid chemistry, aerosol physics, astrophysics, polymer science, oil recovery dynamics, fluidized bed granulation processes, mathematical biology etc. Several researcher derived existence and uniqueness results for solutions to coagulation equations with binary fragmentation. However, the case of multiple fragmentation was mostly neglected. We established the existence of solutions to coagulation equations with multiple fragmentation for a large class of kernels which relies on the weak L1 compactness methods applied to suitably chosen approximating equations. The question of uniqueness was also considered and a new result was established. Recently, we gave the convergence analysis of the fixed pivot technique given by S. Kumar and Ramkrishna for solving the nonlinear coagulation population balance equations. In a sequel to this work, we also study the convergence analysis of the cell average technique given by J. Kumar et al. for nonlinear coagulation population balance equation and compared the mathematical and numerical observations with those for the fixed pivot technique. It is observed that the cell average technique gives a better performance than the fixed pivot technique on non-uniform grids. The doctorate was successfully completed in November 2010.

Projekt im Forschungsportal ansehen

International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering Magdeburg "The Dynamics of the Becker-Döring System of Nucleation Theory applied in Process Engineering"
Laufzeit: 01.10.2007 bis 30.09.2010

In this project we study the Becker-Döring model mathematically and numerically. This model describes nucleation process of droplets in gas, crystals in solutions or liquid droplets in a crystalline solid such as Gallium Arsenide (GaAs). It is a special case of the discrete coagulation-fragmentation equations. It has several applications including suspensions, aerosols, enantiomer crystallization etc. One of the objectives is to extend some results on existence and uniqueness of solutions. Furthermore, efficient computation of solutions through metastable phases is a big challenge due to a very large system of equations required to exhibit the metastability. Our aim is to provide a computationally efficient numerical method for solving the model. Regarding efficient computation, one possibility could be model reduction in such a way that over all balances like mass conservation and the total number of aggregates are accurate enough. The model reduction idea relies on considering computation of only a few concentrations. This leads to the inconsistency of the moments, that is, poor prediction of total aggregates and break down of mass conservation. In order to overcome inconsistency of the numerical method one can use the idea of the cell average technique [An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation, Powder Technology 182, 2008, Pages 81-104] which is well known for solving a general aggregation-breakage equation. This technique predicts the complete density distribution as well as the moments of the distribution very accurately by considering only a few grid points for the computation.

Projekt im Forschungsportal ansehen

Numerical methods for multi-phase mixture conservation laws with phase transition
Laufzeit: 20.09.2007 bis 20.09.2010

Multi-phase mixtures occur very commonly in nature and technology. Several mathematical models have been developed to describe the flow of such mixtures. But both the mathematical modelling and numerical computation of multi-phase flows are associated with certain difficulties. The difficulties is modelling concern the physical transfer processes taking places across the interface such as mass, momentum and heat transfer, and phase change. By using averaging technique of the single phase equations results additional terms, which describe those transfer processes. The exact expressions for the transfer terms are usually unknown. Also there appear differential terms that are extracted from the transfer terms that prevent the system from being in divergence form. Therefore, they are referred to as the non-conservative terms. The numerical difficulties arise the resulting model cannot be written in divergence form (conservative form) due to the existence of non-conservative terms. And in this case one cannot define a weak solution for the systems of governing equations in the standard sense of distributions, as it is done for the systems of conservation laws. The primary goal of this project is to improve and validate numerical schemes for the solution of two-phase flow equations concerning non-conservative terms. There exist a large number of numerical methods for conservation laws which use an exact or approximate solution of the local Riemann problem at the cell interfaces. These algorithms belong to the family of Godunov-type methods. To apply these methods to two pase flows we need to improve an efficient and robust Riemann solver for the non-conservative systems. Also we need to improve an accurate methods for the discretization of the non-conservative terms. Another problem in the numerical solution of two-phase flows occurs when pure phases are present in the domain. Then for the other phase, the situation is analogous to the occurence of vacuum in the solution of the usual fluid dynamics equations. For the Euler equations, there are two different ways to attack the problem of vacuum occurrence. One is to track the gas-vacuum interface explicitly. However in multi-D this becomes very complicated due to topological problems, like merging, breaking, and creating of the interfaces. An alternative is to admit a negligible amount of the phase, which is supposed to disappear. It is important to use a positively conservative method for the solution of the interface problems between almost pure phases. Otherwise a smallest numerical inaccuracy would lead to negative pressure or densities. The doctorate was successfully completed in 2010.

Projekt im Forschungsportal ansehen

Homogenized systems for liquid-vapour transition in unsteady compressible two-phase flow
Laufzeit: 01.01.2005 bis 31.12.2009

In this project, we consider the liquid vapour flow as a homogenized mixture of the two phases. The resulting models pose a major challenge to mathematics, since there are a number of important open questions to be studied. The primary goal is to improve goal is to improve and validate numerical schemes for such models. Numerical solutions are needed in many diverse engineering applications involving phenomena such as liquid sprays of bubbly flows. In order to improve the quality of numerical results we need to address some mathematical issues concerning the modelling and resulting well-posedness of the equations. Also we will have to develop a deeper understanding of the theory and numerical methods for hyperbolic systems of equations containing non-conservative derivatives. Another challenge is phase extinction, which is related to vacuum states in gas dynamics. Further, it will be necessary to encorporate phase transitions into the models and numerical computations. Gefördert von der DFG im Rahmen der DFG-CNRS-Forschergruppe 563 "Micro-Macro Modelling and Simulation of Liquid-Vapour Flows".

Projekt im Forschungsportal ansehen

Folgeprojekt "Partial Differential Equations and Applications in Geometry and Physics"
Laufzeit: 01.04.2004 bis 31.03.2009

The mathematical theory of systems of time-dependent nonlinear hyperbolic and mixed type partial differential equations, more specifically conservation laws, in more than one space dimension is in a very unsatisfactory state. The basic issue of global in time existence of solutions is still an open problem. Since the 1950s the existence and uniqueness for scalar equations was solved in the seminal work of Oleinik and Kruzkov. For systems in one space dimension there is an existence theorem of Glimm for data with small total variation since 1965. The small data requirement was only relaxed for some $2\times 2$ systems by DiPerna in the early eighties. Uniqueness is not completely understood, even in the one-dimensional case, despite some recent progress by Bressan, T.-P.\ Liu and T.\ Yang. This field offers a wealth of open problems for future research. Shock waves are discontinuous weak solutions of the equations. This generalization of solutions in the sense of distributions leads to a serious non-uniqueness problem which necessitates the use of additional so-called entropy conditions in order to select the physically meaningful solutions. Any approximation has to be checked whether it leads to these meaningful solutions. Wang Jinghua (Beijing) and Warnecke (Magdeburg) started their collaboration by partially proving the entropy consistency of large time step schemes. Later the convergence of finite difference approximations for relaxation systems and the Ruijgrok-Wu model in kinetic theory were proven. Also results on convergence rates and error estimates were achieved, some jointly with Wang"s former student Liu H. Traveling wave solutions for conservation laws with viscous and dispersive perturbations are smooth approximations of shock waves. The existence and stability of solutions that are perturbations of such traveling waves was proven by Pan Jun, Chinese doctoral student of Warnecke (Magdeburg).

Projekt im Forschungsportal ansehen

GRK Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Population Balance Modelling by the Discrete Element Method (DEM) in Fluidized Bed Spray Granulation"
Laufzeit: 01.10.2005 bis 31.01.2009

In a fluidized bed, particle growth is governed by different mechanisms; granulation, coating agglomeration, attrition and breakage. The agglomeration of particles is a process in which particles collide and stick together to form new large particles. This process is described by population balance equations for a time dependent particle size distribution function. The decisive quantities determining the process are integral kernels describing the collision frequency and intensity, adhesion probability and agglomeration rate. The aim of this project was to simulate these quantities using the Discrete Element Method (DEM). From these microscopic simulations the kernels werel be derived by averaging to a coarser scale. The project was completed with doctoral thesis of N.N. Rao.

Projekt im Forschungsportal ansehen

Development of adaptive methods for the efficient resolution of Navier-Stokes equations and hyperbolic systems with source terms
Laufzeit: 01.01.2005 bis 20.08.2008

The purpose of the project is the mathematical and numerical survey of non linear complex systems derived from problems linked to natural management resources, in particular water management. We will put the emphasis on working out efficient numerical methods that summarize as follows: - The use of self-adaptive methods in finite elements or finite volumes methods , through working out a posteriori error estimations for nonlinear systems derived from conservation laws. - The use of these estimations for automatic adaptation of meshes in an optimal way, by setting "in a better way" the degrees of freedom and developing new strategies of refinement in two or three dimensions. - Working out optimal and efficient solvents, by developing preconditioned methods allowing an efficient resolution at low cost of the large systems obtained after discretization . The numerical schemes should be appropriate for use in engineering, geophysical as well as biomechanical problems. We want to deal with the following types of problems: the Euler and Navier-Stokes equations with source terms, the shallow-water equations with source terms, which are often used in meteorological or geophysical modeling, conservation laws with nonlinear diffusion, which describe, for example, motion of oils, composites, polymers or blood (hemodynamics). In principal, providing usable results is the purpose of a numerical computation for realistic complex flows, but it is eminently desirable to be able to estimate its validity. Hence we will seek to check the efficiency and reliability of computer solution,starting from the computed solution it self and eventually from an auxiliary simple calculation. The a posteriori error estimations constitute a major tool to achieve this task in every numerical simulation and in every adaptable methods. One hould keep in mind that beyond the knowledge of the accuracy of our calculations, we also seek to minimize the cost in order to obtain the precision. A further important component for three-dimensional problems is the development of an iterative solution technique together with appropriate preconditioning. Fundamental to achieving success in any of these aspects are the choice of formulation and the approximation them selves. It is proposed that all these aspects be considered in this project: there are strong relationships and obvious interactions. Stabilized formulations, precondioned iteration and a posteriori error estimation and adaptive gird refinement are all areas which are internationally at the cutting edge research.

Projekt im Forschungsportal ansehen

Numerische Simulation intrazellulärer Ca 2+ - Dynamik in lebenden Zellen
Laufzeit: 01.12.2004 bis 31.08.2007

Kalzium ist ein wichtiger second messenger in der Zellkommunikation. Die Dynamik intrazelluläen Kalziums ist im wesentlichen Freisetzung und Aufnahme durch Speicher und die Reaktion mit Puffern. Das Projekt hat die detaillierte theoretische Untersuchung der Freisetzung aus dem endoplasmischen Retikulum zum Ziel. Es sollen experimentell unzugängliche Parameter durch Simulationen bestimmt werden. Die Untersuchungen beginnen an lokalen Ereignissen und befassen sich dann mit dem Übergang zu globaler Freisetzung. Die dreidimensionale Geometrie, räumlich diskrete Anordnung der Kanäle und deren stochastisches Verhalten sollen modelliert werden. Die Kenntnis lokaler Parameter wird erlauben, Modelle des ip-Rezeptorkanals qualitativ und quantitativ zu testen. Es sollen flexible adaptive Finite-Element-Methoden mit a posteriori Fehlerschätzern zum Einsatz kommen. Um die in der Zeitintegration auftretenden lokalen Steifigkeiten behandeln zu können, sollen lokale Partitionierungsmethoden für diesen numerisch aufwendigen Anwendungsfall entwickelt werden. Vom Standpunkt der Simulation betrachtet, ist intrazelluläre Kalziumdynamik prototypisch. Daher wird die zu schaffende software auch zur Simulation anderer intrazellulärer Prozesse genutzt werden können.

Projekt im Forschungsportal ansehen

Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Population Balance Modelling and Studies for the Particle Formulation in Fluidized Bed Spray Granulation
Laufzeit: 01.10.2003 bis 30.09.2006

The fluidized bed spray granulation has prevailed as a continuous thermal treatment method for granular solid matter due to its high mass and heat transfer ratio, as well as due to the coupling of the wetting, drying, particle enlarging, shaping, homogenization and separation processes. In a fluidized bed, particle growth is governed by different mechanisms: granulation, coating agglomeration, attrition and breakage. This work focuses on agglomeration especially modelling and computing of population balance balance of particulate systems in connection with heat and mass transfer. Modelling of agglomeration process results in a integral differential equation. Several solution techniques of the integral differential equation were investigated. Nevertheless, it has been observed that the numerical discretized methods are appropriate for the problem and solutions are compared against analytical solution for an ideal case of agglomeration in order to access their accuracy and to give a guideline for the choice of the method. The future aim is to couple the aggregation process with heat and mass transfer phenomena. Moreover, some attrition phenomenon has been observed during the aggregation process. Following this, the aim is to model attrition along with the aggregation process.

Projekt im Forschungsportal ansehen

Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Numerical Computation of Heat and Mass Transfer in Fluidzed beds with spray Injection"
Laufzeit: 01.03.2003 bis 28.02.2006

Fluidized bed spray granulation is a process used for the production of granular high-quality, low-dust, and low-attrition solids originating from liquid products. The modeling of the problem is obtained by the balance of the mass and energy of the air, of the solid as well as of the liquid contained in the fluidized bed. The balance inside the fluidized zone delivers a hyperbolic and parabolic partial differential equation for each balance variable. The balance variables are understood as functions of space and time. The model equations of the problem are a complicated system of partial differential equations. At present we are solving the full system with zero Neumann boundary conditions at the wall surface and Dirichlet boundary conditions at the bottom surface. For the full system we obtained positive results in two dimensions for the temperature and concentration distributions inside the fluidized bed using a standard Galerkin method for the spatial discretization with discrete boundary conditions and using the implicit Euler method for the time discretization. Now we want to compare these results with experimental results. Also we want to optimize the computation by using partitioning methods to compute non-stiff parts of the problem by explicit time stepping. We are studying the construction of invariant rectangles and stability for this problem. Later we are interested in 3D simulations. We want to use different degrees of net depositions for the liquid drops.

Projekt im Forschungsportal ansehen

Mikro-Makro-Wechselwirkungen in strukturierten Medien und Partikelsystemen "Numerical Study of intraparticle heat and mass transfer during drying"
Laufzeit: 01.03.2003 bis 28.02.2006

The aim of the study is to identify numerical methods that are necessary to provide accurate and efficient computations of the equations governing drying process. Drying of a porous material, i.e., removal of water from the pores by evaporation, is a complex process which involves heat and mass transfer. Porous media may be isotropic or an-isotropic. We are working with isotropic porous media at constant temperature (isothermal drying). The governing equations are strongly nonlinear, coupled diffusion equations with nonlinear boundary conditions. The laws of the variables change with different stages of drying. As an initial step, we reduced the problem by considering only the water balance equation which contains one primary variable and 17 dependent variables. Numerically the finite volume approach with explicit, semi-implicit and implicit discretizations has been studied in one dimension. Explicit scheme is studied in one and two dimensions. It has been observed that semi-implicitness is efficient and sufficient to guarantee the stability. Further we are interested in studying invariant regions and positivity of the solution. As a next step, we also consider the air balance which makes the system strongly coupled. We have results with an explicit finite volume scheme. Work is under progress in studying the implicit and semi-implicit discretizations for the coupled system.

Projekt im Forschungsportal ansehen

Echt mehrdimensionale Berechnungsverfahren für Systeme hyperbolischer Erhaltungsgleichungen
Laufzeit: 01.10.2000 bis 30.06.2004

In dem Projekt werden echt mehrdimensionale Berechnungsverfahren für nichtlineare Systeme von Erhaltungsgleichungen in zwei oder später drei Raumdimensionen weiterentwickelt und analytisch untersucht. Da die effiziente Approximation einer mehrdimensionalen Evolution mittels Bicharakteristiken für Systeme von Erhaltungsgleichungen ein schwieriges Problem darstellt, wurden derartige Verfahren bisher sehr vernachlässigt. Bei Überwindung dieses Problems wird man sehr nützliche Verfahren zur Auflösung mehrdimensionaler Pänomene, bei denen die derzeit überwiegend verwendeten Riemann-Löser aufgrund der Eindimensionalität ihres Ansatzes weniger adäquat sind, erhalten. Diese Verfahren sollen für ingenieurwissenschaftliche Anwendungen, z.B. bei den Euler-Gleichungen der reibungsfreien Gasdynamik oder den Maxwell-Gleichungen der Elektrodynamik, entwickelt werden. Dabei sollen eine höhere Genauigkeit und eine grössere Effizienz der Verfahren erzielt werden.Da numerische Berechnungen häufig, z.B. bei Problemen der Ingenieurwissenschaften, auf Differentialgleichungen angewandt werden, deren Lösung nicht explizit bekannt ist, können numerische Approximationen irreführende Ergebnisse liefern. Zur Absicherung der Verfahren ist deshalb eine weitere mathematische Analyse der Stabilität und der Genauigkeit der Approximationen wichtig.

Projekt im Forschungsportal ansehen

Partial Differential Equations and Applications in Geometry and Physics
Laufzeit: 01.04.2001 bis 31.03.2004

The mathematical theory of systems of time-dependent nonlinear hyperbolic and mixed type partial differential equations, more specifically conservation laws, in more than one space dimension is in a very unsatisfactory state. The basic issue of global in time existence of solutions is still an open problem. Since the 1950s the existence and uniqueness for scalar equations was solved in the seminal work of Oleinik and Kruzkov. For systems in one space dimension there is an existence theorem of Glimm for data with small total variation since 1965. The small data requirement was only relaxed for some $2\times 2$ systems by DiPerna in the early eighties. Uniqueness is not completely understood, even in the one-dimensional case, despite some recent progress by Bressan, T.-P.\ Liu and T.\ Yang. This field offers a wealth of open problems for future research. Shock waves are discontinuous weak solutions of the equations. This generalization of solutions in the sense of distributions leads to a serious non-uniqueness problem which necessitates the use of additional so-called entropy conditions in order to select the physically meaningful solutions. Any approximation has to be checked whether it leads to these meaningful solutions. Wang Jinghua (Beijing) and Warnecke (Magdeburg) started their collaboration by partially proving the entropy consistency of large time step schemes. Later the convergence of finite difference approximations for relaxation systems and the Ruijgrok-Wu model in kinetic theory were proven. Also results on convergence rates and error estimates were achieved, some jointly with Wang"s former student Liu H. Traveling wave solutions for conservation laws with viscous and dispersive perturbations are smooth approximations of shock waves. The existence and stability of solutions that are perturbations of such traveling waves was proven by Pan Jun, Chinese doctoral student of Warnecke (Magdeburg).

Projekt im Forschungsportal ansehen

Numerische Modellierung von komplexen kompressiblen Strömungen mit echt mehrdimensionalen Verfahren
Laufzeit: 01.01.2001 bis 31.12.2003

Ziel des Projektes ist die mathematische Modellierung von komplexen nichtlinearen Systemen von Erhaltungsgleichungen mit Quelltermen und/oder Dissipationstermen. Wir werden klassische, d.h. Newtonische, sowie auch nicht-Newtonische Dissipationsterme betrachten. Das Forschungsvorhaben konzentriert sich auf die Entwicklung von neuen numerischen Verfahren, die mit Hilfe von folgenden numerischen Approximationen von Splitting-Typ konstruiert werden: - eine echt mehrdimensionale Approximation mittels Bicharakteristiken der nichtlinearen Konvektionsterme erster Ordnung - eine stabile Finite-Elemente-/Finite-Differenzen-Approximation der Quellterme, sowie auch der Dissipationsterme. Die numerischen Verfahren sollen für ingenieurwissenschaftliche, geophysikalische oder biomechanische Anwendungen geeignet sein. Wir möchten die folgenden Beispielprobleme studieren: die Euler- und Navier-Stokes-Gleichungen mit Quelltermen, die Flachwasserwellen-Gleichungen mit Quelltermen, die z.B. in der geophysikalischen oder meteorologischen Modellierung verwendet werden, Erhaltungsgleichungen mit nichtlinearer Dissipation, wie z.B. Strömung von Ölen, Komposit-Materialien, Polymeren oder des Blutes, s.g. Hämodynamik. Da numerische Berechnungen häufig, z.B. bei Problemen der Ingenieurwissenschaften, auf Differentialgleichungen angewandt werden, deren Lösung nicht explizit bekannt ist, können numerische Approximationen irreführende Ergebnisse liefern. Zur Absicherung der Verfahren ist eine weitere mathematische Analyse der Stabilität und der Genauigkeit der Approximationen wichtig.

Projekt im Forschungsportal ansehen

Stabilität in hyperbolischen Systemen mit Relaxation (im DFG-Schwerpunkt: Analysis und Numerik von Erhaltungsgleichungen)
Laufzeit: 01.06.1999 bis 31.12.2003

Hyperbolische Systeme mit steifen Relaxationstermen treten in vielen physikalischen Situationen auf, wie zum Beispiel in einer relaxierten Gasströmung im thermischen und chemischen Ungleichgewicht, in der kinetischen Theorie verdünnter Gase, in Mehrphasenströmungen und Phasenübergängen.Relaxationswerte repräsentieren in einem gewissen Sinn eine detailliertere physikalische Modellierung feinerer Skalen als mittels Erhaltungsgleichungen; als typisches Beispiel sei der hydrodynamische Grenzwert der Boltzmann Gleichung genannt. Im Relaxationsprozess beschreibt das primäre System die physikalische Dynamik genauer als das System von Erhaltungsgleichungen, das man im Grenzübergang erhält. Beim Übergang zum Relaxationsgrenzwert geht die feine Auflösung oft verloren, und wir erhalten die meso- oder makroskopischen hyperbolischen Erhaltungsgleichungen. Ziel dieses Projektes ist ein besseres Verständnins derartiger Relaxationsprozesse durch Untersuchungen der Langzeitstabilität von Relaxationsprofilen und der damit zusammenhängenden Fragen der Stabilität bei hyperbolischen Relaxationsproblemen zu gewinnen. Die nichtlineare Stabilitätsanalyse derartiger Systeme liefert fundamentale Einsichten in das Lösungsverhalten dieser Gleichungssysteme und ist eine Grundlage für die Bewertung numerischer Ergebnisse, die das korrekte Lösungsverhalten widergeben müssten. Mit dem Projekt soll der Beitrag der Analysis zum Schwerpunkt verstärkt werden.

Projekt im Forschungsportal ansehen

Die numerische Behandlung der nichtlinearen zeitlichen Entwicklung stellarer Instabilitäten und pulsationsgetriebenen stellaren Massenverlusts in mehrdimensionaler Geometrie
Laufzeit: 15.10.2001 bis 15.10.2003

Strange - Mode - Instabilitäten wurden inzwischen in fast allen Modellen leuchtkräftiger Sterne nachgewiesen. Numerische Simulationen ihrer zeitlichen Entwicklung bis in den nichtlinearen Bereich haben ergeben, daß sie für pulsationsgetriebene Winde sowie Variabilität der betreffenden Objekte verantwortlich sein können. Im Hinblick auf die eminente astrophysikalische Bedeutung stellaren Massenverlusts sind verläßliche quantitative Aussagen über die Höhe des so möglicherweise erzeugten mittleren Massenverlusts von großem Interesse. Bisherige Studien waren auf sphärische Geometrie beschränkt und zeigen, daß eine mehrdimensionale Behandlung des Problems unerläßlich ist. Erste Schritte zur Bereitstellung eines entsprechenden numerischen Verfahrens, mit dem die Fragestellung adäquat behandelt werden kann, sind bereits getan.
Ziel des Projekts ist, in Zusammenarbeit von Astrophysik und Numerischer Mathematik, die Weiterentwicklung und Vervollständigung des numerischen Verfahrens, so daß die angestrebten Simulationen mit der neuesten Generation von Höchstleistungsrechnern möglich werden. Darüberhinaus soll das Verfahren mit den Methoden der numerischen Analysis mathematisch abgesichert werden.

Projekt im Forschungsportal ansehen

Erregungsfronten in der Cyclohexandion-BZ Reaktion auf gekrümmten Oberflächen (in Forschergruppe: Grenzflächendynamik bei Strukturbildungsprozessen)
Laufzeit: 01.08.2000 bis 31.08.2003

Die Kopplung von errebarer Reaktionskinetik mit Diffusion kann zur Ausbildung steiler chemischer Gradienten führen, die als kreis- oder spiralförmige Fronten durch das aktive Medium wandern. Die Ausbreitungseigenschaften solcher autokatalytischer Fronten sollen auf gekrümmten Oberflächen hinsichtlich iher Stabilität und ihrer Krümmungsabhängigkeit in engem Zusammenwirken von Laborexperiment, numerischer Simulation und theoretischer Analyse untersucht werden. Die Relevanz des Projekts liegt insbesondere in der Tatsache, daß Frontausbreitung dieser Art häufig in biologischen Systemen mit kleinen, gekrümmten Geometrien stattfinden.In Fortführung bisheriger Arbeiten sollen weitere Hohlformen mit nichtgleichmäßig gekrümmten Oberflächen entwickelt werden. Diese dienen dann zur exakteren Erforschung z.B. im Projekt gefundener neuer Effekte wie der Ausbreitung von ebenen Wellen auf gekrümmten Oberflächen. Desweiteren sollen theoretisch vorhergesagte Effekte wie die Bewegung von Spiralspitzen auf nichtgleichmäßig gekrümmten Oberflächen, die experimentell noch nicht verifiziert werden konnten, nachgewiesen werden.Im numerischen Projektteil werden Finite-Elemente-Methoden (FEM) für das zugehörige System von Reaktionsdiffusionsgleichungen auf gekrümmten Mannigfaltigkeiten entwickelt. Es werden Verfahren untersucht, die in Raum und Zeit adaptiv sind, insbesondere Zeitschrittverfahren, die lokal explizit-implizit arbeiten.

Projekt im Forschungsportal ansehen

Schwerpunktprogramm: Analysis und Numerik von Erhaltungsgleichungen (Koordinatorprojekt)
Laufzeit: 01.06.1997 bis 31.07.2003

Die Mittel, die der Schwerpunkt für Koordinationsaufgaben und gemeinsame Aktivitäten benötigt, werden vom Koordinator verwaltet. Die Mittel für Gasteinladungen sowie Forschungs- und Kongressreisen sind in den Projekten begründet worden und wurden bei der Bewilligung im Koordinatorprojekt zusammengefaßt. Weiterhin erhielt der Schwerpunkt Workshopmittel für seine Arbeit.

Projekt im Forschungsportal ansehen

Langzeitdynamik nichtlinearer hyperbolischer Systeme von Erhaltungsgleichungen und ihre numerische Approximation (im DFG-Schwerpunkt: Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme
Laufzeit: 01.01.1997 bis 31.05.2003

Thema dieses Forschungsvorhabens sind analytische und numerische Fragestellungen auf dem Gebiet der Langzeitdynamik unendlichdimensionaler dynamischer Systeme, die im Zusammenhang mit nichtlinearen Sytemen hyperbolischer partieller Differentialgleichungen auftreten. Damit werden sowohl das kontinuierliche Evolutionsproblem als auch seine konsistenten numerischen Approximationen als dynamische Systeme aufgefasst und unter diesem Gesichtspunkt verglichen. Es sollen Berechungsverfahren stationärer, periodischer und anderer Lösungen instationärer Systeme von hyperbolischen partiellen Differentialgleichungen, die für die Langzeitdynamik wichtig sind, untersucht und weiterentwickelt werden. Auch dissipative Strömungen dieser Systeme sollen betrachtet werden. Da numerische Berechnungen häufig, z.B. bei Problemen der Ingenieurwissenschaften, auf Differentialgleichungen angewandt werden, deren Lösungen man nicht explizit kennt, können numerische Approximationen irreführende Ergebnisse liefern. Ziel der Untersuchungen sind daher Aussagen über die Genauigkeit der Approximationen und die Entwicklung effizienter Verfahren für die korrekte Berechnung stationärer Zustände.

Projekt im Forschungsportal ansehen

Konvektionsinduzierte Morphologieübergänge (in Forschergruppe: Grenzflächendynamik bei Strukturbildungsprozessen)
Laufzeit: 01.11.1997 bis 31.10.2002

Das Vorhaben ist Erweiterung und Fortführung des Vorgängerprojekts Morphologische Instabilität beim Kristallwachstum: Einfluß der Konvektion. Ziel des Projekts dieser Antragsperiode ist es, die Untersuchungen von zweidimensionalen Einzelstrukturen unter Konvektion auf ausgedehnte Morphologien (in zwei Dimensionen) und Einzelstrukturen in drei Dimensionen auszudehnen. Bei rein diffusionsbegrenztem Wachstum hängt der Übergangspunkt zwischen der dendritischen und dublonischen Morphologie für eine periodische Anordnung "fingerförmiger" Kristalle von der Wellenlänge und damit der relativen Orientierung von Kristallanisotropie und globaler Wachstumsrichtung ab. Wie sich ein solches System unter der Einwirkung von Konvektionsströmungen verhält, soll untersucht werden. Dabei sind sowohl eingeprägte Strömungen mit gegebener Vorzugsrichtung zu betrachten, was zur Ausbildung zweier konkurrierender Wachstumsrichtungen mit entsprechend interessanter Dynamik führen kann, als auch natürliche Konvektion und deren stabilisierender bzw. destabilisierender Einfluss auf das gesamte dendritische array. Neben freiem Wachstum soll auch gerichtete Erstarrung untersucht werden, die mit dem extern einstellbaren Temperaturgradienten eine weitere gerichtete Größe ins Spiel bringt. Hier ist bekannt, dass der Zell-Dendriten-Übergang von Konvektion beeinflusst wird, es fehlt aber an detaillierten experimentellen Daten. Simulationen können hier genaue Aussagen liefern, die die Voraussetzung für eine analytische Modellierung bilden. Eine besonders interessante Frage ist durch Elektrodepositionsexperimente im Projekt V der letzten Antragsperiode nahegelegt worden: Ist es möglich, durch das Einschalten von Konvektion den Übergang von einer kompakten zu einer fraktalen Struktur zu induzieren? Im Falle des dreidimensionalen Wachstums einzelner Dendriten soll besonders die Frage von Oszillationen der Dendritenspitze untersucht werden. Solche Oszillationen werden in der interfacial wave theory von Xu für kleine Kristallanisotropien vorhergesagt, sind kontrovers und tauchen im Experiment immer wieder als Randnotiz auf. Falls sie existieren, sollten sie mit einem Strömungsfeld rückkoppeln, was ihre Detektion möglicherweise vereinfacht.Gegenstand ist die numerische Untersuchung von Strukturbildungsphänomenen an der Fest-flüssig-Phasengrenze einer erstarrenden Schmelze. Dabei wird von der üblichen Annahme eines rein diffusiven Transports in der flüssigen Phase abgewichen. Es sind numerische Algorithmen für die einzelnen Teilprozesse Wärmeleitung, Grenzflächenbewegung und Strömung zu entwickeln und zu verbinden. Diese sind dann auf Konvergenz und Stabilität zu analysieren. Das Projekt wird gefördert von der DFG und in Kooperation mit K. Kassner, Institut für Theoretische Physik, durchgeführt.Anmerkung: Das Projekt lief bis zum 31.10.2003.

Projekt im Forschungsportal ansehen

Fehlerschätzungen und Adaption für instationäre hyperbolische Systeme in reaktiven und Mehrphasen-Strömungen (im DFG-Schwerpunkt: Analysis und Numerik von Erhaltungsgleichungen)
Laufzeit: 01.06.1997 bis 30.09.2002

Anhand der im Rahmen des Schwerpunktes zu untersuchenden Gleichungssysteme für reaktive und Mehrphasen-Strömungen sollen die mathematischen Grundlagen der posteriori Fehlerschätzung insbesondere unter Berücksichtigung der Zeitabhängigkeit und des Mehrskalencharakters der Lösungen weiterentwickelt werden. Diese sollen für den Einsatz bei Netzadaptionen, Frontenauffindung, -verfolgung und adaptiven Lösern entwickelt werden, um zu effektiven mathematisch abgesicherten Techniken und einer hohen Auflösung bzw. Genauigkeit in zwei oder drei Raumdimensionen zu gelangen. Gut entwickelt ist die Adaption bisher nur für stationäre Probleme und gewöhnliche Differentialgleichungen (Schrittweitensteuerungen). Allerdings ist die mathematische Absicherung auch für stationäre Strömungen noch unvollständig. Bei Systemen ist die Frage zu untersuchen, wie die einzelnen physikalischen Größen bei der Adaption zu gewichten sind. Dabei spielen Entropievariablen und die Symmetrisierbarkeit eine besondere Rolle.

Projekt im Forschungsportal ansehen

Echt mehrdimensionale Verfahren in der Elektrodynamik
Laufzeit: 01.04.1998 bis 31.03.2002

Die Bicharakteristiken-basierten echt mehrdimensionalen Verfahren werden parallel zu dem Projekt ,,Echt mehrdimensionale Verfahren für hyperbolische Erhaltungsgleichugen`` im Hinblick auf konkrete Anwendungsprobleme der Elektrodynamik weiterentwickelt. Im Zentrum des Interesses stehen das System zur Wellengleichung und die Maxwell-Gleichungen sowie numerische Randbedingungen und singuläre Quellen.Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Nitsch am Institut Allgemeine Elektrotechnik und Leistungselektronik der Fakultät für Elektrotechnik.

Projekt im Forschungsportal ansehen

Graduiertenkolleg "Modellierung, Berechnung und Identifikation mechanischer Systeme"
Laufzeit: 01.03.1997 bis 28.02.2001

Aus dem Themenbereich des Graduiertenkollegs arbeiten drei externe Kollegiaten Nikolai Andrianov, Wolfram Heineken und Rüdiger Müller an der Analyse und Entwicklung numerischer Verfahren.

Projekt im Forschungsportal ansehen

Nichtkonforme Finite Elemente höherer Ordnung
Laufzeit: 01.01.2010 bis 31.12.2013

Im Rahmen dieses Projektes, das gemeinsam in Magdeburg und Dortmund bearbeitet werden soll, sollen Finite Element Techniken und Mehrgitterideen für nichtkonforme Elemente höherer Ordnung weiterentwickelt, analysiert und in der Open Source Software FEATFLOW realisiert werden.
Ziel ist dabei, die von den Antragstellern, die seit mehr als 15 Jahren auf dem Gebiet der nichtkonformen FEM sowie der Anwendung auf CFD-Probleme zusammenarbeiten, in früheren Arbeiten hergeleiteten Techniken zur Diskretisierung, Stabilisierung, Adaptivität und zur schnellen Lösung mittels Mehrgittertechniken sowohl für skalare Probleme als auch für die inkompressiblen Navier-Stokes Gleichungen auf den Fall höherer Ordnung zu übertragen. Durch die Realisierung in FEATFLOW wird gleichzeitig gewährleistet, dass eine ausgereifte numerische Testumgebung vorhanden ist und dass anhand realistischer CFD-Probleme in 2D und 3D die Qualität und numerische Effizienz dieser neuen Elementtypen bewertet werden kann.

Projekt im Forschungsportal ansehen

Generalizing Riemann Hypothesis to L-functions
Laufzeit: 01.01.2011 bis 31.12.2014

The Riemann Zeta function plays an important role in analytic number theory and has applications in physics, applied statistics and probability theory. While many of the properties of this function have been investigated, there remain important fundamental conjectures, a most notably the Riemann hypothesis: zeta(s)=0 implies Re(s)=1/2 for positive Re(s). In my thesis a functional analytical characterization of the Riemann hypothesis will be generalized to the so called L-functions.

Projekt im Forschungsportal ansehen

Analytical and Numerical Investigation of the Ultra-Relativistic Euler Equations
Laufzeit: 01.01.2011 bis 09.10.2013

In dieser Arbeit studierten wir die ultrarelativistischen Euler-Gleichungen für ein ideales Gas, ein System nichtlinearer hyperbolischer Erhaltungsgleichungen. Diese sind Gleichungen für den Druck, den räumlichen Anteil, der Vierergeschwindigkeit und der Teilchenzahldichte. Nach dem Studium einzelner Stoßwellen und Verdünnungsfächer lösten wir das Riemannsche Anfangswertproblem explizit. Wir zeigten die Eindeutigkeit der Lösungen.
Wir entwickelten für die Beschreibung von Stoßwellen-Interaktionen eine eigene Parametrisierung, die für verschiedene Familien von Stößen auf eine explizite Druckformel nach der Stoßinteraktion führt.
Wir verwendeten diese Formel, um ein interessantes Beispiel für "non backward uniqueness" der ultrarelativistischen Eulergleichungen anzugeben. Ein vorgestelltes numerisches Kegelschema basiert auf Riemann-Lösungen für dieses System, es ist stabil, erfüllt die CFL-Bedingung und erhält Positivität von Druck und Teilchenzahldichte.
Wir führten eine neue Funktion ein, die die Stärke der elementaren Wellen beschreibt, und leiteten hierzu scharfe Ungleichungen ab. Die Interpretation der Stärke Riemannscher Anfangsdaten ist ebenfalls gegeben. Diese Funktion hat die wichtige Eigenschaft, dass die Stärke auch für beliebige Wellen-Interaktionen unseres Systems monoton fallend mit der Zeit ist. Dieses Studium der Welleninteraktion gestattet auch die Bestimmung des Types der transmittierten Wellen. Es kann dazu verwendet werden, eine natürliche Totalvariation der Lösungen zu jeder Zeit zu definieren.
Wir haben für andere hyperbolische Systeme ein vergleichbares Resultat noch nicht gesehen. In den meisten Arbeiten über hyperbolische Erhaltungsgleichungen ist stattdessen ein eher klassischer Zugang üblich, der Änderungen der Riemann-Invarianten als ein Maß für die Stärke der Wellen verwendet. Weiterhin präsentierten wir eine neue Front-Tracking Methode für die ultrarelativistischen Eulergleichungen in einer Raumdimension. Der wichtigste Baustein hierfür ist ein eigener Riemann-Löser. Der Front-Tracking Riemann-Löser approximiert einen kontinuierlichen Verdünnungsfächer durch eine endliche Anzahl von Verdünngsstößen (non entropy shocks). Während andere
Front-Tracking Methoden auch nicht physikalische Lösungen gestatten, die die Rankine-Hugoniot Gleichungen verletzten, ist dies bei unserem Front-Tracking Riemann-Löser nicht der Fall. Wir erhalten somit exakte schwache Lösungen, deren Entropieverletzung kontrollierbar bleibt.

Wir vergleichen die exakte Riemann-Lösung mit den Lösungen des Kegelschemas und unserer Front-Tracking Methode für die ultrarelativistischen Eulergleichungen in einer Raumdimension. Die CFL-Bedingung ist hierbei sehr einfach, und unabhängig von den Anfangsdaten gegeben durch Delta t =  Delta x/2.
Sie kommt aus der Invarianz der Lichtgeschwindigkeit unter Lorentz-Transformationen. Die numerischen Beispiele zeigen sehr gute Übereinstimmung und eine scharfe Auflösung. Schliesslich studierten wir die  Welleninteraktionen auch mit verallgemeinerten Stößen, die die Rankine-Hugoniot Gleichungen erfüllen, aber nicht unbedingt die Entropieungleichung.

Projekt im Forschungsportal ansehen

Kinetische Behandlung von ausgewaehlten Anfangs- und Randwertproblemen
Laufzeit: 01.05.2001 bis 01.05.2005

Diese Studie ist solchen hyperbolischen Erhaltungsgleichungen gewidmet, die sich aus einer darunterliegenden kinetischen Gleichung mittels des Maximum-Entropie-Prinzips gewinnen lassen. Die zu untersuchenden kinetischen Schemata dienen sowohl der Lösung hyperbolischer Erhaltungsgleichungen als auch der Lösung gewisser kinetischer Gleichungen. Behandelt werden

  • i) das Euler System für ein einatomiges ideales Gas
  • ii) das 4- und 9-Feld System des Phonon-Bose-Gases
  • iii) die kinetische Boltzmann-Peierls-Gleichung für das Phonon-Bose-Gas.

Projekt im Forschungsportal ansehen

Letzte Änderung: 03.04.2023 - Ansprechpartner: Webmaster