97-25

Ein weiteres Gegenbeispiel zur Borsukschen Vermutung

by Grey, J.; Weißbach, B. (Magdeburg)

 

Preprint series: 97-25, Preprints

MSC:
52A20 Convex sets in $n$ dimensions (including convex hypersurfaces), See also {53A07, 53C45}

 

Abstract: In 1933 K. Borsuk raised the question whether every bounded set M ae E d ; cardM 0 2, can be covered by at most d + 1 sets of smaller diameter than M . J. Kahn and G. Kalai showed in 1992 that this is not the case. The smallest dimension d for which they obtained a counterexample is d = 2016. A. Nilli constructs a counterexample for d = 946. We show here that such a counterexample already exists for d = 903. The proof follows a pattern from the construction of A. Nilli.

Keywords: Borsuk\'s problem

Letzte Änderung: 01.03.2018 - Ansprechpartner: Webmaster