06-05

Considerations on group-wise identical designs for linear mixed models

by Schmelter, T.

 

Preprint series: 06-05, Preprints

MSC:
62K05 Optimal designs
62J10 Analysis of variance and covariance
62H12 Estimation
62P10 Applications to biology

 

Abstract: We consider a general class of mixed models where the individual parameter vector is composed of a linear function of the population parameter vector plus a random effects vector. The linear function can vary between the different individuals. We show that the search for optimal designs for the estimation of the population parameter vector can be restricted to the class of group-wise identical designs, i. e. for each of the groups defined by the the different linear functions only one individual design has to be found. A way to apply the result to non-linear mixed models is described.

Keywords: optimal design, mixed model, random coefficient regression,


The author(s) agree, that this abstract may be stored asfull text and distributed as such by abstracting services.

Letzte Änderung: 01.03.2018 - Ansprechpartner: Webmaster