Dr. Heiko Großmann

Dr. Heiko Großmann

Fakultät für Mathematik (FMA)
Institut für Mathematische Stochastik (IMST)
Universitätsplatz 2, 39106, Magdeburg, G18-405
Projekte

Aktuelle Projekte

Optimale Versuchspläne für Thurstone’sche IRT-Modelle
Laufzeit: 01.10.2024 bis 30.09.2027

Die grundlegenden Ziele dieses Projekts bestehen darin, optimale Versuchspläne für Thurstone´sche IRT-Modelle mit metrischen, binären und ordinalen Antworten zu entwickeln und analytisch zu charakterisieren, die eine hinreichend gute Schätzung der Traitscores erlauben. Zudem sollen binäre Paarvergleiche, die aus Rangreihen mit mehr als zwei Alternativen abgeleitet wurden, berücksichtigt werden. Optimale Versuchspläne sind im vorliegenden Fall dadurch definiert, dass Kombinationen solcher Werte von Itemparametern, Faktorladungen und Interzepts, bestimmt werden, die a-priori festgelegte Gütekriterien, wie z.B. Korrelation der geschätzten und wahren Traitscores, optimieren. Damit diese Modelle für die Personalauswahl sinnvoll eingesetzt werden können, sind lediglich positive Faktorladungen zugelassen. Diese Notwendigkeit, die aus Resultaten von Simulationsstudien folgt, erfordert die analytische Entwicklung neuartiger optimaler Versuchspläne. Über die in bisherigen einschlägigen Arbeiten entwickelten optimalen Designs hinausgehend sind hier insbesondere drei Anforderungen zu berücksichtigen: (a) die spezifische Form der Nichtlinearität, (b) die Einschränkung des Versuchsbereichs und © die Einschränkung, dass die Alternativen jeweils auf unterschiedlichen Faktoren laden. Damit die aus dem geplanten Projekt gewonnenen analytischen Erkenntnisse in der Praxis benutzerfreundlich umgesetzt werden können, soll ein entsprechendes R-Programm mit einer Shiny-Umgebung entwickelt werden.

Projekt im Forschungsportal ansehen

Abgeschlossene Projekte

Explaining osteoarthritis: development and implementation of a multimedia Patient Explanation Package (PEP-OA)
Laufzeit: 01.04.2019 bis 31.03.2021

Grant number: NIHRDH-PB-PG-0817-20031. Osteoarthritis (OA) is a common, debilitating and painful condition, particularly when patients move the affected joint. Core-management approaches (exercise and weight control) reduce pain and improve function, but exercise-induced pain creates anxiety and confusion about such self-management. Common, unhelpful, misconceptions about OA exist and currently professionals do not have the language to explain OA in a way that reflects current scientific understanding. The overarching aim of the project is to improve OA explanations through the development and implementation of a multimedia Patient Explanation Package (PEP-OA). A partial-profile conjoint analysis study with patients will estimate the extent to which new, prioritised, explanation statements are preferred over currently used/available statements. Suitable OA explanations identified in this study will be used in the further development of the multimedia package. The corresponding work package requires the development of an efficient experimental design for the choice experiment which will be carried out at the University of Magdeburg.

Projekt im Forschungsportal ansehen

Funktionale Datenanalyse von Ganganalyse-Daten
Laufzeit: 06.01.2014 bis 06.01.2018

Bestimmte neurologische Erkrankungen beeinträchtigen die Gehfähigkeit der betroffenen Individuen. In diesem Projekt werden Verfahren der funktionalen Datenanalyse entwickelt, um Daten zu analysieren, die mit Hilfe bildgebender Verfahren in einem Ganglabor bei Kindern und Jugendlichen erhoben werden. Im angewandten Teil des Projekts wird unter anderem untersucht, wie sich bestimmte medizinische Hilfsmittel (Orthesen) auf das Gehverhalten auswirken.

Projekt im Forschungsportal ansehen

Schätzverfahren für gemischte verallgemeinerte lineare Modelle bei kleinen Stichprobenumfängen
Laufzeit: 01.11.2012 bis 01.11.2016

Verallgemeinerte lineare Modelle mit festen und zufälligen Effekten bieten eine elegante Möglichkeit zur Modellierung abhängiger Beobachtungen. Bei der Schätzung der Modellparameter wird in der Regel angenommen, dass die zufälligen Parameter eine multivariate Normalverteilung besitzen. In diesem Projekt wird ein alternativer und speziell für kleine Stichprobenumfänge geeigneter Ansatz betrachtet, bei dem zwar, wie üblich, die bedingte Verteilung  der abhängigen Variable bei gegebenen Werten der zufälligen Parameter zur Exponentialfamilie gehört, die Verteilung der zufälligen Effekte jedoch aus Randomisierungsüberlegungen abgeleitet ist. Für das sich ergebende semiparametrische Modell wird ein Schätzalgorithmus entwickelt. Weiterhin wird in Simulationsstudien numerisch untersucht, wie sich Verletzungen der Normalverteilungsannahme auf die Schätzungen auswirken.

Projekt im Forschungsportal ansehen

Publikationen

2021

Begutachteter Zeitschriftenartikel

Optimal design for probit choice models with dependent utilities

Graßhoff, Ulrike; Großmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Statistics - London [u.a.] : Taylor & Francis, Bd. 55 (2021), Heft 1, S. 173-194

Partially orthogonal blocked three-level response surface designs

Großmann, Heiko; Gilmour, Steven G.

In: Econometrics and statistics - Amsterdam [u.a.] : Elsevier B.V . - 2021

2020

Begutachteter Zeitschriftenartikel

Enhanced normograms and pregnancy outcome analysis in nonhuman primate developmental toxicity studies

Großmann, Heiko; Weinbauer, Gerhard F.; Baker, Ann; Fuchs, Antje; Luetjens, C. Marc

In: Reproductive toxicology - Amsterdam [u.a.]: Elsevier Science, Bd. 95.2020, S. 29-36

On the meaning of block effects in paired comparison choice experimentsand a relationship with blocked 2(K) main effects plans

Großmann, Heiko

In: Journal of statistical planning and inference: JSPI - Amsterdam: North-Holland Publ. Co., Bd. 209.2020, S. 76-84

Nicht begutachteter Zeitschriftenartikel

Optimal design for probit choice models with dependent utilities

Graßhoff, Ulrike; Großmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: De.arxiv.org - [S.l.]: Arxiv.org, 2020, article 2001.09036, insgesamt 26 Seiten

2018

Begutachteter Zeitschriftenartikel

A practical approach to designing partial-profile choice experiments with two alternatives for estimating main effects and interactions of many two-level attributes

Großmann, Heiko

In: Journal of choice modelling - Amsterdam ˜[u.a.]œ: Elsevier, 2008 . - 2018[Online first]

2017

Begutachteter Zeitschriftenartikel

Testing gait with ankle-foot orthoses in children with cerebral palsy by using functional mixed-effects analysis of variance

Zhang, Bairu; Twycross-Lewis, Richard; Großmann, Heiko; Morrissey, Dylan

In: Scientific reports - [London]: Macmillan Publishers Limited, part of Springer Nature, Vol. 7.2017, Art. 11081, insgesamt 12 S.

2016

Buchbeitrag

Functional data analysis in designed experiments

Zhang, Bairu; Großmann, Heiko

In: mODa 11 - advances in model-oriented design and analysis: proceedings of the 11th International Workshop in Model-Oriented Design and Analysis held in Hamminkeln, Germany, June 12-17, 2016 - Switzerland: Springer, S. 235-242[Kongress: 11th International Workshop in Model-Oriented Design and Analysis, Hamminkeln, Germany, June 12-17, 2016]

Begutachteter Zeitschriftenartikel

Partial-profile choice designs for estimating main effects and interactions of two-level attributes from paired comparison data

Großmann, Heiko

In: Journal of statistical theory and practice - Cham: Springer International Publishing, Bd. 11.2016, 2, S. 236-253

2015

Buchbeitrag

Design for discrete choice experiments

Grossmann, Heiko; Schwabe, Rainer

In: Handbook of design and analysis of experiments - Boca Raton: CRC Press, a Chapman & Hall book . - 2015, S. 787-832 - (CRC Handbooks of Modern Statistical Methods; 7)

Begutachteter Zeitschriftenartikel

Automating the analysis of variance of orthogonal designs

Großmann, Heiko

In: Computational statistics & data analysis - Amsterdam: Elsevier Science, Bd. 70 (2014), S. 1-18

Nicht begutachteter Zeitschriftenartikel

Partial-profile choise designs for estimating main and interaction effects of two-level attributes from paired comparison data

Großmann, Heiko

In: Magdeburg: Univ., Fak. für Mathematik, 2015, 24 S. - (Preprint; Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg; 2015,15)

2014

Begutachteter Zeitschriftenartikel

A catalogue of designs for partial profiles in paired comparison experiments with three groups of factors

Großmann, Heiko; Graßhoff, Ulrike; Schwabe, Rainer

In: Statistics. - London [u.a.] : Taylor & Francis, Bd. 48.2014, 6, S. 1268-1281

2013

Begutachteter Zeitschriftenartikel

Optimal design for discrete choice experiments

Graßhoff, Ulrike; Großmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Journal of statistical planning and inference. - Amsterdam : North-Holland Publ. Co, Bd. 143.2013, 1, S. 167-175

2012

Originalartikel in begutachteter internationaler Zeitschrift

Designs for first-order interactions in paired comparison experiments with two-level factors

Großmann, Heiko; Schwabe, Rainer; Gilmour, Steven G.

In: Journal of statistical planning and inference. - Amsterdam : Elsevier, Bd. 142.2012, 8, S. 2395-2401

2010

Begutachteter Zeitschriftenartikel

Personality in bumblebees - individual consistency in responses to novel colours?

Muller, Helene; Großmann, Heiko; Chittka, Lars

In: Animal behaviour - Amsterdam [u.a.] : Elsevier, Bd. 80.2016, 6, S. 1065-1074

2009

Originalartikel in begutachteter internationaler Zeitschrift

Approximate and exact optimal designs for paired comparisons of partial profiles when there are two groups of factors

Großmann, Heiko; Graßhoff, Ulrike; Schwabe, Rainer

In: Journal of statistical planning and inference . - Amsterdam : Elsevier, Bd. 139.2009, 3, S. 1171-1179

Originalartikel in begutachteter zeitschriftenartiger Reihe

Some new design for first-order interactions in 2[K] paired comparison experiments

Großmann, Heiko; Schwabe, Rainer; Gilmour, Steven G.

In: 6th St. Petersburg Workshop on Simulation; 1: . - St. Petersburg : VVM com. Ltd., ISBN 978-5-9651035-4-6, S. 394-399, 2009Kongress: St. Petersburg Workshop on Simulation; 6 (St. Petersburg) : 2009.06.28-07.04

2007

Buchbeitrag

A conjoint measurement based rationale for inducing preferences

Großmann, Heiko; Brocke, Michaela; Holling, Heinz

In: Uncertainty and Risk - Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg ; Abdellaoui, Mohammed . - 2007, S. 243-260 - (Theory and Decision Library C, Series C: Game Theory, Mathematical Programming and Operations Research; 41)

Originalartikel in begutachteter internationaler Zeitschrift

Design optimality in multi-factor generalized linear models in the presence of an unrestricted quantitative factor

Graßhoff, Ulrike; Großmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Journal of statistical planning and inference - Amsterdam : Elsevier, Bd. 137 (2007), Heft 12, S. 3882-3893

Originalartikel in begutachteter zeitschriftenartiger Reihe

A comparison of efficient designs for choices between two options

Großmann, Heiko; Holling, Heinz; Graßhoff, Ulrike; Schwabe, Rainer

In: mODa 8 - advances in model-oriented design and analysis - Heidelberg [u.a.] : Physica-Verl. , 2007, S. 83-90 - (Contributions to Statistics)

A comparison of efficient designs for choices between two options

Großmann, Heiko; Holling, Heinz; Graßhoff, Ulrike; Schwabe, Rainer

In: mODa 8 - Advances in model oriented design and analysis - Heidelberg [u.a.] : Physica-Verl. , 2007, S. 83-90 - (Contributions to Statistics)

2006

Originalartikel in begutachteter internationaler Zeitschrift

Optimal designs for asymmetric linear paired comparisons with a profile strength constraint

Großmann, Heiko; Holling, Heinz; Graßhoff, Ulrike; Schwabe, Rainer

In: Metrika . - Berlin : Springer, Bd. 64.2006, 1, S. 109-119; Abstract

2005

Buchbeitrag

On the empirical relevance of optimal designs for the measurement of preferences.

Grossmann, Heiko; Holling, Heinz; Brocke, Michaela; Grasshoff, Ulrike; Schwabe, Rainer

In: Berger, Martijn P. F. (Hrsg.) ; Wong, Weng Kee (Hrsg.): Applications of optimal designs. Hoboken, NJ : Wiley, 2005, S. 45 - 65

Utility balance and design optimality in logistic models with one unrestricted quantitative factor.

Schwabe, Rainer; Grasshoff, Ulrike; Grossmann, Heiko; Holling, Heinz

In: Ermakov, S. M. (Hrsg.) ; Melas, V. B. (Hrsg.) ; Pepelyshev, A. N. (Hrsg.): Simulation 2005 (5th Workshop St. Petersburg, Russia June 26 - July 2, 2005). - proceedings. St. Petersburg : Univ., 2005, S. 605 - 610

2004

Originalartikel in begutachteter internationaler Zeitschrift

Optimal designs for main effects in linear paired comparison models.

Grasshoff, Ulrike; Grossmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Journal of statistical planning and inference [Amsterdam] 126(2004), S. 361 - 376

2003

Originalartikel in begutachteter internationaler Zeitschrift

Optimal paired comparison design for first-order interactions.

Grasshoff, Ulrike; Grossmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Statistics [Basingstoke] 37(2003), Nr. 5, S. 373 - 386

Originalartikel in begutachteter zeitschriftenartiger Reihe

Optimal 2(K) paired comparison designs for partial profiles.

Schwabe, Rainer; Grasshoff, Ulrike; Grossmann, Heiko; Holling, Heinz

In: Tatra mountains mathematical publications [Bratislava] 26(2003), S. 79 - 86

2002

Originalartikel in begutachteter zeitschriftenartiger Reihe

Advances in optimum experimental design for conjoint analysis and discrete choice models.

Grossmann, Heiko; Holling, Heinz; Schwabe, Rainer

In: Franses, P. H. (Hrsg.) ; Montgomery, A. L. (Hrsg.): Econometric models in marketing. Amsterdam : JAI, 2002, S. 93 - 117 (Advances in econometrics 16)

Lehrveranstaltungen

Sommersemester 2022

Statistische Methoden: LSF Elearning

Lineare statistische Modelle: LSF Elearning

Oberseminar zur Stochastik: LSF 

Informationsveranstaltung für den Masterstudiengang Statistik: LSF

Wintersemester 2021/22

Einführung in die Stochastik für das Lehramt: LSF Elearning

Oberseminar IMST: LSF 

Informationsveranstaltung für den Masterstudiengang Statistik: LSF 

Sommersemester 2021

Multivariate Statistik: LSF Elearning

Statistische Methoden: LSF 

Oberseminar zur Stochastik: LSF 

Informationsveranstaltung für den Masterstudiengang Statistik: LSF 

Wintersemester 2020/21

Einführung in die Stochastik für das Lehramt: LSF Elearning

 

Einführung in die Stochastik für das Lehramt Übung: LSF Elearning

Lineare Statistische Modelle:  LSF Elearning

Sommersemester 2020

Oberseminar zur Stochastik:  LSF

Multivariate Statistik:  LSF Elearning

Statistische Methoden:  LSF Elearning

Wintersemester 2019/20

Oberseminar zur Stochastik: LSF

Statistical Methods: LSF, Elearning

  • Statistical Methods (Tutorial): LSF

Statistische Modellierung und Datenanalyse: LSFElearning

  • Statistische Modellierung und Datenanalyse (Übung): LSF

Sommersemester 2019

Introduction to Probability and Statistics: LSF Elearning

Oberseminar zur Stochastik:  LSF

Seminar zur Statistik:  LSF Elearning

Statistische Methoden:  LSF Elearning

Wintersemester 2018/19

Multivariate Statistik: LSF Elearning

Statistical Methods: LSFElearning

  • Statistical Methods (Tutorial): LSF

Statistische Modellierung und Datenanalyse: LSF Elearning

  • Statistische Modellierung und Datenanalyse (Übung): LSF

Oberseminar zur Stochastik: LSF

Sommersemester 2018

Design und Analyse von Experimenten: LSF

Introduction to Probability and Statistics: LSF Elearning

  • Introduction to Probability and Statistics (Tutorial): LSF

Oberseminar zur Stochastik: LSF

Wintersemester 2017/18

Explorative Datenanalyse und Wahrscheinlichkeit: LSF Elearning

In dieser Veranstaltung werden Grundlagen der beschreibenden (deskriptiven) Statistik und der Wahrscheinlichkeitsrechung behandelt.

Mathematische Statistik: LSF Elearning

Ausgehend von der statistischen Modellierung wird die Theorie grundlegender Konzepte der parametrischen Statistik entwickelt: Statistische Modelle, Schätztheorie, Konfidenzbereiche, Testtheorie.

Statistical Methods: LSF Elearning

Statistical Inference: - Statistical Modelling - Point estimation - Confidence intervals - Testing of statistical hypotheses (parametric tests) - Non-parametric tests (goodness of fit, independence, homogeneity)

Oberseminar zur Stochastik: LSF

Vorträge zu Forschungs- und Abschlussarbeiten.

Sommersemester 2017

Statistische Methoden

Grundlegende statistische Schätz- und Testverfahren bei normalverteilten Daten, einfache Varianzanalyse, Regressions- und Korrelationsanalyse, Anpassungstests, Tests auf Homogenität und Unabhängigkeit, nichtparametrische Verfahren, Methode der Kleinsten Quadrate, Maximum-Likelihood und Bayes-Verfahren, Mulitiples Testen und multiple Konfidenzbereiche.

Die verschiedenen Verfahren und Methoden werden anhand realer Datensätze aus Biologie, Medizin und Wirtschaft illustriert, die mit Hilfe von Statistik-Software unter Computer-Einsatz ausgewertet werden. Gegebenenfalls werden Daten selbst erhoben.

Seminar zur Stochastik

Die Teilnehmerinnen und Teilnehmer sollen ein Thema selbstständig bearbeiten und in einem Vortrag präsentieren.

Introduction to Probability and Statistics

Descriptive Statistics: data, graphical representation, measures of location and variability, empirical quantiles, measures of relationship for bivariate data. Basic Probability: discrete and continuous probability spaces, random variables, expectation and variance, quantiles, covariance and correlation, conditional probability, independence.

Aim: Fundamental understanding of concepts and basic properties, ability to interpret and communicate data.

Oberseminar zur Stochastik

Vorträge zu Forschungs- und Abschlussarbeiten.

 

 

Material

 

Bibliothek optimaler Designs

Sammlung optimaler Designs für gepaarte Vergleiche

Summary

This page provides optimal designs for paired comparisons of partial profiles for choice experiments and conjoint analysis (ACA like graded paired comparisons). It is assumed that the set of attributes used to describe options can be partitioned into two groups such that the attributes in each group have the same number of levels. The total number of attributes considered ranges from four to six. The common number of levels for attributes in the first group is between two and four and attributes in the second group can have up to five levels. The number of attributes on which the two options in a pair differ is either two or three. In order to be practical, only optimal designs with up to 100 paired comparisons are presented.

Construction methods are described in:
Großmann, H., Graßhoff, U. and Schwabe, R. (2009). Approximate and exact optimal designs for paired comparisons of partial profiles when there are two groups of factors. Journal of Statistical Planning and Inference 139, 1171-1179.

How to read the table

    • Design: Click on name to display design in a new window
    • Parameters
      • K: Total number of attributes used to describe options
      • K1: Number of attributes in the first group
      • K2: Number of attributes in the second group
      • u1: Common number of levels for all attributes in the first group
      • u2: Common number of levels for all attributes in the second group
      • S: The profile strength, that is, the number of attributes for which the two options in each pair have different levels
    • Pairs: The required number of paired comparisons or choice sets
Optimal designs
 Parameters  Parameters 
DesignKK1K2u1u2SPairsDesignKK1K2u1u2SPairs
PP01 4 1 3 2 3 3 42 PP26 5 3 2 3 4 3 96
PP02 4 2 2 2 3 2 18 PP27 5 4 1 2 3 2 36
PP03 4 2 2 2 3 3 12 PP28 5 4 1 2 3 3 24
PP04 4 2 2 2 4 2 16 PP29 5 4 1 2 4 2 28
PP05 4 2 2 2 4 3 24 PP30 5 4 1 2 4 3 24
PP06 2 2 2 5 2 50 PP31 5 4 1 2 5 2 40
PP07 4 2 2 2 5 3 40 PP32 5 4 1 2 5 3 40
PP08 4 2 2 3 4 2 60 PP33 6 2 4 2 3 2 30
PP09 4 2 2 3 5 2 90 PP34 6 2 4 2 4 2 28
PP10 4 3 1 2 3 2 30 PP35 6 2 4 2 5 2 90
PP11 4 3 1 2 3 3 36 PP36 6 2 4 3 4 2 96
PP12 4 3 1 2 4 2 12 PP37 6 3 3 2 3 2 54
PP13 4 3 1 2 4 3 72 PP38 6 3 3 2 3 3 36
PP14 4 3 1 2 5 2 60 PP39 6 3 3 2 4 2 48
PP15 4 3 1 3 4 2 54 PP40 6 3 3 2 4 3 32
PP16 5 1 4 2 3 3 36 PP41 6 3 3 2 5 3 100
PP17 5 2 3 2 3 2 24 PP42 6 4 2 2 3 2 24
PP18 5 2 3 2 3 3 96 PP43 6 4 2 2 3 3 32
PP19 5 2 3 2 4 2 44 PP44 6 4 2 2 4 2 20
PP20 5 2 3 2 5 2 70 PP45 6 4 2 2 4 3 80
PP21 5 3 2 2 3 2 42 PP46 6 4 2 2 5 2 60
PP22 5 3 2 2 3 3 28 PP47 6 4 2 2 5 3 40
PP23 5 3 2 2 4 2 18 PP48 6 4 2 3 4 2 84
PP24 5 3 2 2 4 3 24 PP49 6 5 1 2 4 2 80
PP25 5 3 2 3 4 2 72 PP50 6 5 1 2 5 2 90

 

Using the designs

    • The designs presume that only main effects (part-worth utilities) are to be estimated; they are not suitable for models with interactions
    • Attributes are labeled with capital letters: A, B, C,...
    • The first K1 attributes have u1 levels and the remaining K2 attributes have u2 levels. Levels are numbered 1, 2,...
      • Example: Design PP01
        Since K1=1, K2=3, u1=2 and u2=3, attribute A has 2 levels whereas attributes B, C and D have 3 levels each
    • Meaning of the star symbol (*)
      • A * indicates that the level of an attribute is the same for both options in a pair
        • Example: Design PP02
          The options in the first two pairs of the design have common levels for attributes C and D
           Option 1Option 2
          PairABCDABCD
          1 1 1 * * 2 2 * *
          2 1 2 * * 2 1 * *
      • In practice, common levels are often not shown when pairs are presented for evaluation
        • Example: Design PP02
          When the two pairs in the above table are presented, often only levels of attributes A and B are used
      • Alternatively, if the level of an attribute is a * for both options in a pair, this can be replaced with the same (arbitrarily chosen) level of the attribute.
        • Example: Design PP02
          Attributes C and D both have 3 levels. So in the above table in the first pair the * for C can be replaced with the level 1 and the * star for D with the level 3. In the second pair, the shared level for C could be 2 and the common level for D could be 1 to give
           Option 1Option 2
          PairABCDABCD
          1 1 1 1 3 2 2 1 3
          2 1 2 2 1 2 1 2 1
    • Randomization
      • The pairs should be presented in random order
      • Within each pair it should be decided at random which option is presented first.
        Similarly, if the two options in each pair are presented simultaneously on a computer screen, use a random mechanism to decide which one appears on the left respectively right side of the screen.
        • Example: Design PP01
          The first two pairs of the design in the table are
           Option 1Option 2
          PairABCDABCD
          1 1 1 1 * 2 2 2 *
          2 1 2 2 * 2 3 3 *
          A possible outcome of the randomization could be that in the first pair options 1 and 2 are swapped while in the second pair their order remains unchanged:
           Option 1Option 2
          PairABCDABCD
          1 2 2 2 * 1 1 1 *
          2 1 2 2 * 2 3 3 *
      • Designs remain optimal after randomizing pairs and options within pairs
      • Do not randomize attribute levels within options
    • The designs can be easily pasted into a text editor such as notepad, winedt etc.

Letzte Änderung: 13.04.2021 - Ansprechpartner: Webmaster