Prof. Dr. Miles Simon
Forschungsinteressen
- Ricci flow, singular metric spaces, mean curvature flow, singularities of Ricci and mean-curvature flow, geometric flows, geometric flows with surgery, parabolic and elliptic differential equations, global geometry, compactness theorems in geometry.
Highschool Education, Hawker College, Canberra, Australia (1984-1985):
Bachelor of Science, Honours, Australian National University (1986-1991):
- Honours Thesis: Mean Curvature Flow of Rotationally Symmetric Hypersurfaces
Masters/ Ph.D Studies, Melbourne University (1992-1997)
Ph. D. Defence, Melbourne University (1997)
Postdoc, Max Planck Institut for Mathematics in the Natural Sciences, Leipzig (Feb. 1998- Jan. 1999)
Ph. D. ( Melbourne University) officially accepted (1999)
Postdoc, Humboldt University of Berlin (Feb. 1999- June 1999)
Postdoc/Scientific Assistant, Albert Ludwigs University Freiburg ( July 1999- July 2012)
Habilitation , Albert Ludwigs University Freiburg (2007)
- Selected chapters from my Habilitation Thesis pdf "Ricci flow of almost non-negatively curved three manifolds" , Nov. 2006
University Professor, Otto von Guericke University Magdeburg (2011-)
laufende Veranstaltungen
WiSe 2024/25 | Analysis III |
WiSe 2024/25 | Funktionentheorie Lehramt |
bisherige Veranstaltungen
Seminar with Hannover: Differential Geometry and Analysis
Seminar: Geometric Analysis
2024
Simon, M.;
Preserving curvature lower bounds when Ricci flowing non-smooth initial data,
Surveys in Differential Geometry, Essays on Geometric Flows - Celebrating 40 Years of Ricci Flow, 27 (1) 147-187, (2024)
https://dx.doi.org/10.4310/SDG.241011021158
2023
Lamm, T., Simon, M.;
Ricci flow of W2,2-metrics in four dimensions,
Commentarii Mathematici Helvetici, Vol. 98, No. 2pp. 261–364(2023)
DOI 10.4171/CMH/553
2022
Simon, M., Topping, P. ;
Local control on the geometry in 3D Ricci flow,
Journal of Differential Geometry, 122(3) 467-518 (November 2022).
https://doi.org/10.4310/jdg/1675712996
2021
Deruelle, A,; Schulze, F.; Simon, M. :
On the regularity of Ricci flows coming out of metric spaces,
JEMS, Vol. 24, No. 7pp. 2233–2277, (2021).
DOI 10.4171/JEMS/1138
Simon, M., Topping, P.,
Local mollication of Riemannian metrics using Ricci flow, and Ricci limit spaces,
Geometry Topology, Geom. Topol. 25(2), 913-948, (2021).
2020
Simon, M. :
Extending four dimensional Ricci flows with bounded scalar curvature,
Communications in analysis and geometry , Internat. Press, Bd. 28 ,7, S. 1683-1754, (2020)
Simon, M. :
Some integral curvature estimates for the Ricci flow in four dimensions ,
Communications in analysis and geometry , Internat. Press, Bd. 28. 3, S. 707-727, (2020)
2019
Böhm, C., Lafuente, R., , Simon, M. :
Optimal curvature estimates for homogeneous Ricci flows,
International Mathematics Research Notices, 14, pp. 4431-4468 (2019)
https://doi.org/10.1093/imrn/rnx256
2017
Simon, M.:
Ricci flow of Regions with Curvature Bounded Below in Dimension Three ,
J Geom Anal Volume 27, pp. 3051–3070 (2017).
doi:10.1007/s12220-017-9793-4
2014
Simon, Miles and Wheeler, Glen :
Some local estimates and a uniqueness result for the entire biharmonic heat equation ,
Advances in Calculus of Variations, (2014)
DOI: 10.1515/acv-2014-0027
2013
Simon, Miles :
Local smoothing results for the Ricci flow in dimensions two and three.
Geom. Topol. 17(4): 2263-2287 (2013)
DOI: 10.2140/gt.2013.17.2263
Schulze, Felix; Simon, Miles :
Expanding solitons with non-negative curvature operator coming out of cones
Math. Z. 275, 625–639 (2013)
https://doi.org/10.1007/s00209-013-1150-0
2012
Simon, Miles :
Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below.
J. reine angew. Math. 662, 59—94, (2012)
DOI: 10.1515/CRELLE.2011.088,
2011
Simon, M., Schulze, F., Schnürer, O.,
Stability of hyperbolic space under Ricci flow,
Communications in analysis and geometry ; 19 , 5. - S. 1023-1047, (2011)
2009
Simon, Miles :
Ricci flow of almost non-negatively curved three manifolds,
J. reine angew. Math. 630 (2009),
DOI 10.1515/CRELLE.2009.038
2008
Simon, Miles :
Local results for flows whose speed or height satisfies a bound of the form c/t.
International Mathematics Research Notices, Vol. 2008 : article ID rnn097, 14 pages, (2008)
Schnuerer, Oliver, Schulze, Felix, Simon, Miles :
Stability of Euclidean space under Ricci flow,
Communications in Geom. and Ana., Volume 16, Number 1, 127–158, (2008).
2004
Simon, Miles :
Deforming Lipschitz metrics into smooth metrics while keeping their curvature operator non-negative,
In Book "Geometric Evolution Equations", Hsinchu, Taiwan, July 15- August 14, 2002, edited by Shu-Cheng Chang,Ben Chow, Sun-Chin Chu, Chang-Shou Lin, American Mathematical Society, (2004)
2002
Simon, Miles :
Deformation of C0 Riemannian metrics in the direction of their Ricci curvature,
Comm. Anal. Geom. 10, no. 5, 1033-1074, (2002).
Simon, Miles :
Some corrections to "C0 Riemannian metrics in the direction of their Ricci curvature":
2000
Simon, Miles:
A class of Riemannian manifolds which pinch when evolved by Ricci flow,
Manuscripta Mathematica, 101, no.1, (2000)